void assemble_HM(const Geometry& geo, SymMatrix& mat, const unsigned gauss_order) { mat = SymMatrix((geo.size()-geo.outermost_interface().nb_triangles())); mat.set(0.0); double K = 1.0 / (4.0 * M_PI); // We iterate over the meshes (or pair of domains) to fill the lower half of the HeadMat (since its symmetry) for ( Geometry::const_iterator mit1 = geo.begin(); mit1 != geo.end(); ++mit1) { for ( Geometry::const_iterator mit2 = geo.begin(); (mit2 != (mit1+1)); ++mit2) { // if mit1 and mit2 communicate, i.e they are used for the definition of a common domain const int orientation = geo.oriented(*mit1, *mit2); // equals 0, if they don't have any domains in common // equals 1, if they are both oriented toward the same domain // equals -1, if they are not if ( orientation != 0 ) { double Scoeff = orientation * geo.sigma_inv(*mit1, *mit2) * K; double Dcoeff = - orientation * geo.indicator(*mit1, *mit2) * K; double Ncoeff; if ( !(mit1->outermost() || mit2->outermost()) ) { // Computing S block first because it's needed for the corresponding N block operatorS(*mit1, *mit2, mat, Scoeff, gauss_order); Ncoeff = geo.sigma(*mit1, *mit2)/geo.sigma_inv(*mit1, *mit2); } else { Ncoeff = orientation * geo.sigma(*mit1, *mit2) * K; } if ( !mit1->outermost() ) { // Computing D block operatorD(*mit1, *mit2, mat, Dcoeff, gauss_order); } if ( ( *mit1 != *mit2 ) && ( !mit2->outermost() ) ) { // Computing D* block operatorD(*mit1, *mit2, mat, Dcoeff, gauss_order, true); } // Computing N block operatorN(*mit1, *mit2, mat, Ncoeff, gauss_order); } } } // Deflate the diagonal block (N33) of 'mat' : (in order to have a zero-mean potential for the outermost interface) const Interface i = geo.outermost_interface(); unsigned i_first = (*i.begin()->mesh().vertex_begin())->index(); deflat(mat, i, mat(i_first, i_first) / (geo.outermost_interface().nb_vertices())); }
uint32_t decodeDeBruijn(uint8_t n) { if(n==R) return T[w[0] + C*w[1]]; uint8_t w0= w[0]; n--; uint8_t nR= n-R; operatorD(n); uint8_t k; if(nR==0) k= 2; else k= (C-1)*(powC_N[nR+1]-1); uint32_t p= (C-1)*powC_N[nR] + k; uint32_t e; uint32_t f; uint32_t j; uint8_t allOnes= 1; for(uint8_t i= 0; i<n; i++) if(w[i]!=1) allOnes= 0; if(allOnes) { e= w0-L[idxL[nR] + k] + powC_2; if(e<0) e+= C; j= p + e; } else { f= decodeDeBruijn(n); if(f>k) f--; e= L[idxL[nR] + f]-w0; if(e<0) e+= C; j= f + (powC_N[nR] - 1)*e; if(j<0 || j>p-1) j+= C; } return j; }
void assemble_cortical(const Geometry& geo, Matrix& mat, const Head2EEGMat& M, const std::string& domain_name, const unsigned gauss_order, double alpha, double beta, const std::string &filename) { // Following the article: M. Clerc, J. Kybic "Cortical mapping by Laplace–Cauchy transmission using a boundary element method". // Assumptions: // - domain_name: the domain containing the sources is an innermost domain (defined as the interior of only one interface (called Cortex) // - Cortex interface is composed of one mesh only (no shared vertices) // TODO check orders of MxM products for efficiency ... delete intermediate matrices const Domain& SourceDomain = geo.domain(domain_name); const Interface& Cortex = SourceDomain.begin()->interface(); const Mesh& cortex = Cortex.begin()->mesh(); // test the assumption assert(SourceDomain.size() == 1); assert(Cortex.size() == 1); // shape of the new matrix: unsigned Nl = geo.size()-geo.outermost_interface().nb_triangles()-Cortex.nb_vertices()-Cortex.nb_triangles(); unsigned Nc = geo.size()-geo.outermost_interface().nb_triangles(); std::fstream f(filename.c_str()); Matrix P; if ( !f ) { // build the HeadMat: // The following is the same as assemble_HM except N_11, D_11 and S_11 are not computed. SymMatrix mat_temp(Nc); mat_temp.set(0.0); double K = 1.0 / (4.0 * M_PI); // We iterate over the meshes (or pair of domains) to fill the lower half of the HeadMat (since its symmetry) for ( Geometry::const_iterator mit1 = geo.begin(); mit1 != geo.end(); ++mit1) { for ( Geometry::const_iterator mit2 = geo.begin(); (mit2 != (mit1+1)); ++mit2) { // if mit1 and mit2 communicate, i.e they are used for the definition of a common domain const int orientation = geo.oriented(*mit1, *mit2); // equals 0, if they don't have any domains in common // equals 1, if they are both oriented toward the same domain // equals -1, if they are not if ( orientation != 0) { double Scoeff = orientation * geo.sigma_inv(*mit1, *mit2) * K; double Dcoeff = - orientation * geo.indicator(*mit1, *mit2) * K; double Ncoeff; if ( !(mit1->outermost() || mit2->outermost()) && ( (*mit1 != *mit2)||( *mit1 != cortex) ) ) { // Computing S block first because it's needed for the corresponding N block operatorS(*mit1, *mit2, mat_temp, Scoeff, gauss_order); Ncoeff = geo.sigma(*mit1, *mit2)/geo.sigma_inv(*mit1, *mit2); } else { Ncoeff = orientation * geo.sigma(*mit1, *mit2) * K; } if ( !mit1->outermost() && (( (*mit1 != *mit2)||( *mit1 != cortex) )) ) { // Computing D block operatorD(*mit1, *mit2, mat_temp, Dcoeff, gauss_order); } if ( ( *mit1 != *mit2 ) && ( !mit2->outermost() ) ) { // Computing D* block operatorD(*mit1, *mit2, mat_temp, Dcoeff, gauss_order, true); } // Computing N block if ( (*mit1 != *mit2)||( *mit1 != cortex) ) { operatorN(*mit1, *mit2, mat_temp, Ncoeff, gauss_order); } } } } // Deflate the diagonal block (N33) of 'mat' : (in order to have a zero-mean potential for the outermost interface) const Interface i = geo.outermost_interface(); unsigned i_first = (*i.begin()->mesh().vertex_begin())->index(); deflat(mat_temp, i, mat_temp(i_first, i_first) / (geo.outermost_interface().nb_vertices())); mat = Matrix(Nl, Nc); mat.set(0.0); // copy mat_temp into mat except the lines for cortex vertices [i_vb_c, i_ve_c] and cortex triangles [i_tb_c, i_te_c]. unsigned iNl = 0; unsigned i_vb_c = (*cortex.vertex_begin())->index(); unsigned i_ve_c = (*cortex.vertex_rbegin())->index(); unsigned i_tb_c = cortex.begin()->index(); unsigned i_te_c = cortex.rbegin()->index(); for ( unsigned i = 0; i < Nc; ++i) { if ( !(i_vb_c<=i && i<=i_ve_c) && !(i_tb_c<=i && i<=i_te_c) ) { mat.setlin(iNl, mat_temp.getlin(i)); ++iNl; } } // ** Construct P: the null-space projector ** Matrix W; { Matrix U, s; mat.svd(U, s, W); } SparseMatrix S(Nc,Nc); // we set S to 0 everywhere, except in the last part of the diag: for ( unsigned i = Nl; i < Nc; ++i) { S(i, i) = 1.0; } P = (W * S) * W.transpose(); // P is a projector: P^2 = P and mat*P*X = 0 if ( filename.length() != 0 ) { std::cout << "Saving projector P (" << filename << ")." << std::endl; P.save(filename); } } else { std::cout << "Loading projector P (" << filename << ")." << std::endl; P.load(filename); } // ** Get the gradient of P1&P0 elements on the meshes ** Matrix MM(M.transpose() * M); SymMatrix RR(Nc, Nc); RR.set(0.); for ( Geometry::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { mit->gradient_norm2(RR); } // ** Choose Regularization parameter ** SparseMatrix alphas(Nc,Nc); // diagonal matrix Matrix Z; if ( alpha < 0 ) { // try an automatic method... TODO find better estimation double nRR_v = RR.submat(0, geo.nb_vertices(), 0, geo.nb_vertices()).frobenius_norm(); alphas.set(0.); alpha = MM.frobenius_norm() / (1.e3*nRR_v); beta = alpha * 50000.; for ( Vertices::const_iterator vit = geo.vertex_begin(); vit != geo.vertex_end(); ++vit) { alphas(vit->index(), vit->index()) = alpha; } for ( Meshes::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { if ( !mit->outermost() ) { for ( Mesh::const_iterator tit = mit->begin(); tit != mit->end(); ++tit) { alphas(tit->index(), tit->index()) = beta; } } } std::cout << "AUTOMATIC alphas = " << alpha << "\tbeta = " << beta << std::endl; } else { for ( Vertices::const_iterator vit = geo.vertex_begin(); vit != geo.vertex_end(); ++vit) { alphas(vit->index(), vit->index()) = alpha; } for ( Meshes::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { if ( !mit->outermost() ) { for ( Mesh::const_iterator tit = mit->begin(); tit != mit->end(); ++tit) { alphas(tit->index(), tit->index()) = beta; } } } std::cout << "alphas = " << alpha << "\tbeta = " << beta << std::endl; } Z = P.transpose() * (MM + alphas*RR) * P; // ** PseudoInverse and return ** // X = P * { (M*P)' * (M*P) + (R*P)' * (R*P) }¡(-1) * (M*P)'m // X = P * { P'*M'*M*P + P'*R'*R*P }¡(-1) * P'*M'm // X = P * { P'*(MM + a*RR)*P }¡(-1) * P'*M'm // X = P * Z¡(-1) * P' * M'm Matrix rhs = P.transpose() * M.transpose(); mat = P * Z.pinverse() * rhs; }
void deflat(T& M, const Geometry& geo) { //deflat all current barriers as one unsigned nb_vertices=0,i_first=0; double coef=0.0; for(std::vector<std::vector<std::string> >::const_iterator git=geo.geo_group().begin();git!=geo.geo_group().end();++git){ nb_vertices=0; i_first=0; for(std::vector<std::string>::const_iterator mit=git->begin();mit!=git->end();++mit){ const Mesh msh=geo.mesh(*mit); if(msh.outermost()){ nb_vertices+=msh.nb_vertices(); if(i_first==0) i_first=(*msh.vertex_begin())->index(); } } coef=M(i_first,i_first)/nb_vertices; for(std::vector<std::string>::const_iterator mit=git->begin();mit!=git->end();++mit){ Mesh msh=geo.mesh(*mit); if(msh.outermost()) for(Mesh::const_vertex_iterator vit1=msh.vertex_begin();vit1!=msh.vertex_end();++vit1){ #pragma omp parallel for #ifndef OPENMP_3_0 for (int i2=vit1-msh.vertex_begin();i2<msh.vertex_size();++i2) { const Mesh::const_vertex_iterator vit2 = msh.vertex_begin()+i2; #else for (Mesh::const_vertex_iterator vit2=vit1;vit2<msh.vertex_end();++vit2) { #endif M((*vit1)->index(),(*vit2)->index()) += coef; } } } } } void assemble_HM(const Geometry& geo, SymMatrix& mat, const unsigned gauss_order) { mat = SymMatrix((geo.size()-geo.nb_current_barrier_triangles())); mat.set(0.0); double K = 1.0 / (4.0 * M_PI); // We iterate over the meshes (or pair of domains) to fill the lower half of the HeadMat (since its symmetry) for(Geometry::const_iterator mit1 = geo.begin(); mit1 != geo.end(); ++mit1) { if(!mit1->isolated()){ for(Geometry::const_iterator mit2 = geo.begin(); (mit2 != (mit1+1)); ++mit2) { if((!mit2->isolated()) && (geo.sigma(*mit1,*mit2)!=0.0)){ // if mit1 and mit2 communicate, i.e they are used for the definition of a common domain const int orientation = geo.oriented(*mit1, *mit2); // equals 0, if they don't have any domains in common // equals 1, if they are both oriented toward the same domain // equals -1, if they are not if(orientation!=0){ double Scoeff = orientation * geo.sigma_inv(*mit1, *mit2) * K; double Dcoeff = - orientation * geo.indicator(*mit1, *mit2) * K; double Ncoeff; if( (!mit1->current_barrier()) && (!mit2->current_barrier()) ) { // Computing S block first because it's needed for the corresponding N block operatorS(*mit1, *mit2, mat, Scoeff, gauss_order); Ncoeff = geo.sigma(*mit1, *mit2)/geo.sigma_inv(*mit1, *mit2); }else{ Ncoeff = orientation * geo.sigma(*mit1, *mit2) * K; } if(!mit1->current_barrier()){ // Computing D block operatorD(*mit1, *mit2, mat, Dcoeff, gauss_order,false); } if((*mit1!=*mit2) && (!mit2->current_barrier())){ // Computing D* block operatorD(*mit1, *mit2, mat, Dcoeff, gauss_order, true); } // Computing N block operatorN(*mit1, *mit2, mat, Ncoeff, gauss_order); } } } } } // Deflate all current barriers as one deflat(mat,geo); }
void assemble_cortical2(const Geometry& geo, Matrix& mat, const Head2EEGMat& M, const std::string& domain_name, const unsigned gauss_order, double gamma, const std::string &filename) { // Re-writting of the optimization problem in M. Clerc, J. Kybic "Cortical mapping by Laplace–Cauchy transmission using a boundary element method". // with a Lagrangian formulation as in see http://www.math.uh.edu/~rohop/fall_06/Chapter3.pdf eq3.3 // find argmin(norm(gradient(X)) under constraints: // H * X = 0 and M * X = m // let G be the gradient norm matrix, l1, l2 the lagrange parameters // // [ G H' M'] [ X ] [ 0 ] // | H 0 | | l1 | = | 0 | // [ M 0 ] [ l2 ] [ m ] // // {----,----} // K // we want a submat of the inverse of K (using blockwise inversion, (TODO maybe iterative solution better ?)). // Assumptions: // - domain_name: the domain containing the sources is an innermost domain (defined as the interior of only one interface (called Cortex) // - Cortex interface is composed of one mesh only (no shared vertices) const Domain& SourceDomain = geo.domain(domain_name); const Interface& Cortex = SourceDomain.begin()->interface(); const Mesh& cortex = Cortex.begin()->mesh(); om_error(SourceDomain.size()==1); om_error(Cortex.size()==1); // shape of the new matrix: unsigned Nl = geo.size()-geo.nb_current_barrier_triangles()-Cortex.nb_vertices()-Cortex.nb_triangles(); unsigned Nc = geo.size()-geo.nb_current_barrier_triangles(); std::fstream f(filename.c_str()); Matrix H; if ( !f ) { // build the HeadMat: // The following is the same as assemble_HM except N_11, D_11 and S_11 are not computed. SymMatrix mat_temp(Nc); mat_temp.set(0.0); double K = 1.0 / (4.0 * M_PI); // We iterate over the meshes (or pair of domains) to fill the lower half of the HeadMat (since its symmetry) for ( Geometry::const_iterator mit1 = geo.begin(); mit1 != geo.end(); ++mit1) { for ( Geometry::const_iterator mit2 = geo.begin(); (mit2 != (mit1+1)); ++mit2) { // if mit1 and mit2 communicate, i.e they are used for the definition of a common domain const int orientation = geo.oriented(*mit1, *mit2); // equals 0, if they don't have any domains in common // equals 1, if they are both oriented toward the same domain // equals -1, if they are not if ( orientation != 0) { double Scoeff = orientation * geo.sigma_inv(*mit1, *mit2) * K; double Dcoeff = - orientation * geo.indicator(*mit1, *mit2) * K; double Ncoeff; if ( !(mit1->current_barrier() || mit2->current_barrier()) && ( (*mit1 != *mit2)||( *mit1 != cortex) ) ) { // Computing S block first because it's needed for the corresponding N block operatorS(*mit1, *mit2, mat_temp, Scoeff, gauss_order); Ncoeff = geo.sigma(*mit1, *mit2)/geo.sigma_inv(*mit1, *mit2); } else { Ncoeff = orientation * geo.sigma(*mit1, *mit2) * K; } if ( !mit1->current_barrier() && (( (*mit1 != *mit2)||( *mit1 != cortex) )) ) { // Computing D block operatorD(*mit1, *mit2, mat_temp, Dcoeff, gauss_order); } if ( ( *mit1 != *mit2 ) && ( !mit2->current_barrier() ) ) { // Computing D* block operatorD(*mit1, *mit2, mat_temp, Dcoeff, gauss_order, true); } // Computing N block if ( (*mit1 != *mit2)||( *mit1 != cortex) ) { operatorN(*mit1, *mit2, mat_temp, Ncoeff, gauss_order); } } } } // Deflate all current barriers as one deflat(mat_temp,geo); H = Matrix(Nl + M.nlin(), Nc); H.set(0.0); // copy mat_temp into H except the lines for cortex vertices [i_vb_c, i_ve_c] and cortex triangles [i_tb_c, i_te_c]. unsigned iNl = 0; for ( Geometry::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { if ( *mit != cortex ) { for ( Mesh::const_vertex_iterator vit = mit->vertex_begin(); vit != mit->vertex_end(); ++vit) { H.setlin(iNl, mat_temp.getlin((*vit)->index())); ++iNl; } if ( !mit->current_barrier() ) { for ( Mesh::const_iterator tit = mit->begin(); tit != mit->end(); ++tit) { H.setlin(iNl, mat_temp.getlin(tit->index())); ++iNl; } } } } if ( filename.length() != 0 ) { std::cout << "Saving matrix H (" << filename << ")." << std::endl; H.save(filename); } } else { std::cout << "Loading matrix H (" << filename << ")." << std::endl; H.load(filename); } // concat M to H for ( unsigned i = Nl; i < Nl + M.nlin(); ++i) { for ( unsigned j = 0; j < Nc; ++j) { H(i, j) = M(i-Nl, j); } } // ** Get the gradient of P1&P0 elements on the meshes ** SymMatrix G(Nc); G.set(0.); for ( Geometry::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { mit->gradient_norm2(G); } // multiply by gamma the submat of current gradient norm2 for ( Meshes::const_iterator mit = geo.begin(); mit != geo.end(); ++mit) { if ( !mit->current_barrier() ) { for ( Mesh::const_iterator tit1 = mit->begin(); tit1 != mit->end(); ++tit1) { for ( Mesh::const_iterator tit2 = mit->begin(); tit2 != mit->end(); ++tit2) { G(tit1->index(), tit2->index()) *= gamma; } } } } std::cout << "gamma = " << gamma << std::endl; G.invert(); mat = (G * H.transpose() * (H * G * H.transpose()).inverse()).submat(0, Nc, Nl, M.nlin()); }