void oskar_vis_block_clear(oskar_VisBlock* vis, int* status)
{
    /* Check if safe to proceed. */
    if (*status) return;

    oskar_mem_clear_contents(vis->auto_correlations, status);
    oskar_mem_clear_contents(vis->cross_correlations, status);
    oskar_mem_clear_contents(vis->baseline_uu_metres, status);
    oskar_mem_clear_contents(vis->baseline_vv_metres, status);
    oskar_mem_clear_contents(vis->baseline_ww_metres, status);
}
static void set_up_device_data(oskar_BeamPattern* h, int* status)
{
    int i, beam_type, max_src, max_size, auto_power, cross_power, raw_data;
    if (*status) return;

    /* Get local variables. */
    max_src = h->max_chunk_size;
    max_size = h->num_active_stations * max_src;
    beam_type = h->prec | OSKAR_COMPLEX;
    if (h->pol_mode == OSKAR_POL_MODE_FULL)
        beam_type |= OSKAR_MATRIX;
    raw_data = h->ixr_txt || h->ixr_fits ||
            h->voltage_raw_txt || h->voltage_amp_txt || h->voltage_phase_txt ||
            h->voltage_amp_fits || h->voltage_phase_fits;
    auto_power = h->auto_power_fits || h->auto_power_txt;
    cross_power = h->cross_power_raw_txt ||
            h->cross_power_amp_fits || h->cross_power_phase_fits ||
            h->cross_power_amp_txt || h->cross_power_phase_txt;

    /* Expand the number of devices to the number of selected GPUs,
     * if required. */
    if (h->num_devices < h->num_gpus)
        oskar_beam_pattern_set_num_devices(h, h->num_gpus);

    for (i = 0; i < h->num_devices; ++i)
    {
        int dev_loc, i_stokes;
        DeviceData* d = &h->d[i];
        if (*status) break;

        /* Select the device. */
        if (i < h->num_gpus)
        {
            oskar_device_set(h->gpu_ids[i], status);
            dev_loc = OSKAR_GPU;
        }
        else
        {
            dev_loc = OSKAR_CPU;
        }

        /* Device memory. */
        d->previous_chunk_index = -1;
        if (!d->tel)
        {
            d->jones_data = oskar_mem_create(beam_type, dev_loc, max_size,
                    status);
            d->x    = oskar_mem_create(h->prec, dev_loc, 1 + max_src, status);
            d->y    = oskar_mem_create(h->prec, dev_loc, 1 + max_src, status);
            d->z    = oskar_mem_create(h->prec, dev_loc, 1 + max_src, status);
            d->tel  = oskar_telescope_create_copy(h->tel, dev_loc, status);
            d->work = oskar_station_work_create(h->prec, dev_loc, status);
        }

        /* Host memory. */
        if (!d->jones_data_cpu[0] && raw_data)
        {
            d->jones_data_cpu[0] = oskar_mem_create(beam_type, OSKAR_CPU,
                    max_size, status);
            d->jones_data_cpu[1] = oskar_mem_create(beam_type, OSKAR_CPU,
                    max_size, status);
        }

        /* Auto-correlation beam output arrays. */
        for (i_stokes = 0; i_stokes < 4; ++i_stokes)
        {
            if (!h->stokes[i_stokes]) continue;

            if (!d->auto_power[i_stokes] && auto_power)
            {
                /* Device memory. */
                d->auto_power[i_stokes] = oskar_mem_create(beam_type, dev_loc,
                        max_size, status);

                /* Host memory. */
                d->auto_power_cpu[i_stokes][0] = oskar_mem_create(
                        beam_type, OSKAR_CPU, max_size, status);
                d->auto_power_cpu[i_stokes][1] = oskar_mem_create(
                        beam_type, OSKAR_CPU, max_size, status);
                if (h->average_single_axis == 'T')
                    d->auto_power_time_avg[i_stokes] = oskar_mem_create(
                            beam_type, OSKAR_CPU, max_size, status);
                if (h->average_single_axis == 'C')
                    d->auto_power_channel_avg[i_stokes] = oskar_mem_create(
                            beam_type, OSKAR_CPU, max_size, status);
                if (h->average_time_and_channel)
                    d->auto_power_channel_and_time_avg[i_stokes] =
                            oskar_mem_create(beam_type, OSKAR_CPU,
                                    max_size, status);
            }

            /* Cross-correlation beam output arrays. */
            if (!d->cross_power[i_stokes] && cross_power)
            {
                if (h->num_active_stations < 2)
                {
                    oskar_log_error(h->log, "Cannot create cross-power beam "
                            "using less than two active stations.");
                    *status = OSKAR_ERR_INVALID_ARGUMENT;
                    break;
                }

                /* Device memory. */
                d->cross_power[i_stokes] = oskar_mem_create(
                        beam_type, dev_loc, max_src, status);

                /* Host memory. */
                d->cross_power_cpu[i_stokes][0] = oskar_mem_create(

                        beam_type, OSKAR_CPU, max_src, status);
                d->cross_power_cpu[i_stokes][1] = oskar_mem_create(
                        beam_type, OSKAR_CPU, max_src, status);
                if (h->average_single_axis == 'T')
                    d->cross_power_time_avg[i_stokes] = oskar_mem_create(
                            beam_type, OSKAR_CPU, max_src, status);
                if (h->average_single_axis == 'C')
                    d->cross_power_channel_avg[i_stokes] = oskar_mem_create(
                            beam_type, OSKAR_CPU, max_src, status);
                if (h->average_time_and_channel)
                    d->cross_power_channel_and_time_avg[i_stokes] =
                            oskar_mem_create(beam_type, OSKAR_CPU,
                                    max_src, status);
            }
            if (d->auto_power[i_stokes])
                oskar_mem_clear_contents(d->auto_power[i_stokes], status);
            if (d->cross_power[i_stokes])
                oskar_mem_clear_contents(d->cross_power[i_stokes], status);
        }

        /* Timers. */
        if (!d->tmr_compute)
            d->tmr_compute = oskar_timer_create(OSKAR_TIMER_NATIVE);
    }
}
Exemple #3
0
    void runTest(int prec1, int prec2, int loc1, int loc2, int matrix,
            int extended, double time_average)
    {
        int num_baselines, status = 0, type;
        oskar_Mem *vis1, *vis2;
        oskar_Timer *timer1, *timer2;
        double time1, time2, frequency = 100e6;

        // Create the timers.
        timer1 = oskar_timer_create(loc1 == OSKAR_GPU ?
                OSKAR_TIMER_CUDA : OSKAR_TIMER_NATIVE);
        timer2 = oskar_timer_create(loc2 == OSKAR_GPU ?
                OSKAR_TIMER_CUDA : OSKAR_TIMER_NATIVE);

        // Run first part.
        createTestData(prec1, loc1, matrix);
        num_baselines = oskar_telescope_num_baselines(tel);
        type = prec1 | OSKAR_COMPLEX;
        if (matrix) type |= OSKAR_MATRIX;
        vis1 = oskar_mem_create(type, loc1, num_baselines, &status);
        oskar_mem_clear_contents(vis1, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_sky_set_use_extended(sky, extended);
        oskar_telescope_set_channel_bandwidth(tel, bandwidth);
        oskar_telescope_set_time_average(tel, time_average);
        oskar_timer_start(timer1);
        oskar_cross_correlate(vis1, oskar_sky_num_sources(sky), jones, sky,
                tel, u_, v_, w_, 1.0, frequency, &status);
        time1 = oskar_timer_elapsed(timer1);
        destroyTestData();
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Run second part.
        createTestData(prec2, loc2, matrix);
        num_baselines = oskar_telescope_num_baselines(tel);
        type = prec2 | OSKAR_COMPLEX;
        if (matrix) type |= OSKAR_MATRIX;
        vis2 = oskar_mem_create(type, loc2, num_baselines, &status);
        oskar_mem_clear_contents(vis2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        oskar_sky_set_use_extended(sky, extended);
        oskar_telescope_set_channel_bandwidth(tel, bandwidth);
        oskar_telescope_set_time_average(tel, time_average);
        oskar_timer_start(timer2);
        oskar_cross_correlate(vis2, oskar_sky_num_sources(sky), jones, sky,
                tel, u_, v_, w_, 1.0, frequency, &status);
        time2 = oskar_timer_elapsed(timer2);
        destroyTestData();
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Destroy the timers.
        oskar_timer_free(timer1);
        oskar_timer_free(timer2);

        // Compare results.
        check_values(vis1, vis2);

        // Free memory.
        oskar_mem_free(vis1, &status);
        oskar_mem_free(vis2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Record properties for test.
        RecordProperty("SourceType", extended ? "Gaussian" : "Point");
        RecordProperty("JonesType", matrix ? "Matrix" : "Scalar");
        RecordProperty("TimeSmearing", time_average == 0.0 ? "off" : "on");
        RecordProperty("Prec1", prec1 == OSKAR_SINGLE ? "Single" : "Double");
        RecordProperty("Loc1", loc1 == OSKAR_CPU ? "CPU" : "GPU");
        RecordProperty("Time1_ms", int(time1 * 1000));
        RecordProperty("Prec2", prec2 == OSKAR_SINGLE ? "Single" : "Double");
        RecordProperty("Loc2", loc2 == OSKAR_CPU ? "CPU" : "GPU");
        RecordProperty("Time2_ms", int(time2 * 1000));

#ifdef ALLOW_PRINTING
        // Print times.
        printf("  > %s. %s sources. Time smearing %s.\n",
                matrix ? "Matrix" : "Scalar",
                extended ? "Gaussian" : "Point",
                time_average == 0.0 ? "off" : "on");
        printf("    %s precision %s: %.2f ms, %s precision %s: %.2f ms\n",
                prec1 == OSKAR_SINGLE ? "Single" : "Double",
                loc1 == OSKAR_CPU ? "CPU" : "GPU",
                time1 * 1000.0,
                prec2 == OSKAR_SINGLE ? "Single" : "Double",
                loc2 == OSKAR_CPU ? "CPU" : "GPU",
                time2 * 1000.0);
#endif
    }
    void runTest(int prec1, int prec2, int loc1, int loc2, int matrix)
    {
        int status = 0, type;
        oskar_Mem *beam1, *beam2;
        oskar_Timer *timer1, *timer2;
        double time1, time2;

        // Create the timers.
        timer1 = oskar_timer_create(loc1 == OSKAR_GPU ?
                OSKAR_TIMER_CUDA : OSKAR_TIMER_NATIVE);
        timer2 = oskar_timer_create(loc2 == OSKAR_GPU ?
                OSKAR_TIMER_CUDA : OSKAR_TIMER_NATIVE);

        // Run first part.
        type = prec1 | OSKAR_COMPLEX;
        if (matrix) type |= OSKAR_MATRIX;
        beam1 = oskar_mem_create(type, loc1, num_sources, &status);
        oskar_mem_clear_contents(beam1, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        createTestData(prec1, loc1, matrix);
        oskar_timer_start(timer1);
        oskar_evaluate_cross_power(num_sources, num_stations,
                jones, 0, beam1, &status);
        time1 = oskar_timer_elapsed(timer1);
        destroyTestData();
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Run second part.
        type = prec2 | OSKAR_COMPLEX;
        if (matrix) type |= OSKAR_MATRIX;
        beam2 = oskar_mem_create(type, loc2, num_sources, &status);
        oskar_mem_clear_contents(beam2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);
        createTestData(prec2, loc2, matrix);
        oskar_timer_start(timer2);
        oskar_evaluate_cross_power(num_sources, num_stations,
                jones, 0, beam2, &status);
        time2 = oskar_timer_elapsed(timer2);
        destroyTestData();
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Destroy the timers.
        oskar_timer_free(timer1);
        oskar_timer_free(timer2);

        // Compare results.
        check_values(beam1, beam2);

        // Free memory.
        oskar_mem_free(beam1, &status);
        oskar_mem_free(beam2, &status);
        ASSERT_EQ(0, status) << oskar_get_error_string(status);

        // Record properties for test.
        RecordProperty("JonesType", matrix ? "Matrix" : "Scalar");
        RecordProperty("Prec1", prec1 == OSKAR_SINGLE ? "Single" : "Double");
        RecordProperty("Loc1", loc1 == OSKAR_CPU ? "CPU" : "GPU");
        RecordProperty("Time1_ms", int(time1 * 1000));
        RecordProperty("Prec2", prec2 == OSKAR_SINGLE ? "Single" : "Double");
        RecordProperty("Loc2", loc2 == OSKAR_CPU ? "CPU" : "GPU");
        RecordProperty("Time2_ms", int(time2 * 1000));

#ifdef ALLOW_PRINTING
        // Print times.
        printf("  > %s.\n", matrix ? "Matrix" : "Scalar");
        printf("    %s precision %s: %.2f ms, %s precision %s: %.2f ms\n",
                prec1 == OSKAR_SINGLE ? "Single" : "Double",
                loc1 == OSKAR_CPU ? "CPU" : "GPU",
                time1 * 1000.0,
                prec2 == OSKAR_SINGLE ? "Single" : "Double",
                loc2 == OSKAR_CPU ? "CPU" : "GPU",
                time2 * 1000.0);
#endif
    }