static void oskar_condition_unlock(oskar_ConditionVar* var) { oskar_mutex_unlock(&var->lock); }
void oskar_simulator_run_block(oskar_Simulator* h, int block_index, int device_id, int* status) { double obs_start_mjd, dt_dump_days; int i_active, time_index_start, time_index_end; int num_channels, num_times_block, total_chunks, total_times; DeviceData* d; if (*status) return; /* Check that initialisation has happened. We can't initialise here, * as we're already multi-threaded at this point. */ if (!h->header) { *status = OSKAR_ERR_MEMORY_NOT_ALLOCATED; oskar_log_error(h->log, "Simulator not initalised. " "Call oskar_simulator_check_init() first."); return; } #ifdef _OPENMP if (!h->coords_only) { /* Disable any nested parallelism. */ omp_set_num_threads(1); omp_set_nested(0); } #endif /* Set the GPU to use. (Supposed to be a very low-overhead call.) */ if (device_id >= 0 && device_id < h->num_gpus) oskar_device_set(h->gpu_ids[device_id], status); /* Clear the visibility block. */ i_active = block_index % 2; /* Index of the active buffer. */ d = &(h->d[device_id]); oskar_timer_resume(d->tmr_compute); oskar_vis_block_clear(d->vis_block, status); /* Set the visibility block meta-data. */ total_chunks = h->num_sky_chunks; num_channels = h->num_channels; total_times = h->num_time_steps; obs_start_mjd = h->time_start_mjd_utc; dt_dump_days = h->time_inc_sec / 86400.0; time_index_start = block_index * h->max_times_per_block; time_index_end = time_index_start + h->max_times_per_block - 1; if (time_index_end >= total_times) time_index_end = total_times - 1; num_times_block = 1 + time_index_end - time_index_start; /* Set the number of active times in the block. */ oskar_vis_block_set_num_times(d->vis_block, num_times_block, status); oskar_vis_block_set_start_time_index(d->vis_block, time_index_start); /* Go though all possible work units in the block. A work unit is defined * as the simulation for one time and one sky chunk. */ while (!h->coords_only) { oskar_Sky* sky; int i_work_unit, i_chunk, i_time, i_channel, sim_time_idx; oskar_mutex_lock(h->mutex); i_work_unit = (h->work_unit_index)++; oskar_mutex_unlock(h->mutex); if ((i_work_unit >= num_times_block * total_chunks) || *status) break; /* Convert slice index to chunk/time index. */ i_chunk = i_work_unit / num_times_block; i_time = i_work_unit - i_chunk * num_times_block; sim_time_idx = time_index_start + i_time; /* Copy sky chunk to device only if different from the previous one. */ if (i_chunk != d->previous_chunk_index) { oskar_timer_resume(d->tmr_copy); oskar_sky_copy(d->chunk, h->sky_chunks[i_chunk], status); oskar_timer_pause(d->tmr_copy); } sky = h->apply_horizon_clip ? d->chunk_clip : d->chunk; /* Apply horizon clip if required. */ if (h->apply_horizon_clip) { double gast, mjd; mjd = obs_start_mjd + dt_dump_days * (sim_time_idx + 0.5); gast = oskar_convert_mjd_to_gast_fast(mjd); oskar_timer_resume(d->tmr_clip); oskar_sky_horizon_clip(d->chunk_clip, d->chunk, d->tel, gast, d->station_work, status); oskar_timer_pause(d->tmr_clip); } /* Simulate all baselines for all channels for this time and chunk. */ for (i_channel = 0; i_channel < num_channels; ++i_channel) { if (*status) break; if (h->log) { oskar_mutex_lock(h->mutex); oskar_log_message(h->log, 'S', 1, "Time %*i/%i, " "Chunk %*i/%i, Channel %*i/%i [Device %i, %i sources]", disp_width(total_times), sim_time_idx + 1, total_times, disp_width(total_chunks), i_chunk + 1, total_chunks, disp_width(num_channels), i_channel + 1, num_channels, device_id, oskar_sky_num_sources(sky)); oskar_mutex_unlock(h->mutex); } sim_baselines(h, d, sky, i_channel, i_time, sim_time_idx, status); } d->previous_chunk_index = i_chunk; } /* Copy the visibility block to host memory. */ oskar_timer_resume(d->tmr_copy); oskar_vis_block_copy(d->vis_block_cpu[i_active], d->vis_block, status); oskar_timer_pause(d->tmr_copy); oskar_timer_pause(d->tmr_compute); }
static void* run_blocks(void* arg) { oskar_Imager* h; oskar_Mem *plane, *uu, *vv, *ww = 0, *amp, *weight, *block, *l, *m, *n; size_t max_size; const size_t smallest = 1024, largest = 65536; int dev_loc = OSKAR_CPU, *status; /* Get thread function arguments. */ h = ((ThreadArgs*)arg)->h; const int thread_id = ((ThreadArgs*)arg)->thread_id; const int num_vis = ((ThreadArgs*)arg)->num_vis; plane = ((ThreadArgs*)arg)->plane; status = &(h->status); /* Set the device used by the thread. */ if (thread_id < h->num_gpus) { dev_loc = h->dev_loc; oskar_device_set(h->dev_loc, h->gpu_ids[thread_id], status); } /* Copy visibility data to device. */ uu = oskar_mem_create_copy(((ThreadArgs*)arg)->uu, dev_loc, status); vv = oskar_mem_create_copy(((ThreadArgs*)arg)->vv, dev_loc, status); amp = oskar_mem_create_copy(((ThreadArgs*)arg)->amp, dev_loc, status); weight = oskar_mem_create_copy(((ThreadArgs*)arg)->weight, dev_loc, status); if (h->algorithm == OSKAR_ALGORITHM_DFT_3D) ww = oskar_mem_create_copy(((ThreadArgs*)arg)->ww, dev_loc, status); #ifdef _OPENMP /* Disable nested parallelism. */ omp_set_nested(0); omp_set_num_threads(1); #endif /* Calculate the maximum pixel block size, and number of blocks. */ const size_t num_pixels = (size_t)h->image_size * (size_t)h->image_size; max_size = num_pixels / h->num_devices; max_size = ((max_size + smallest - 1) / smallest) * smallest; if (max_size > largest) max_size = largest; if (max_size < smallest) max_size = smallest; const int num_blocks = (int) ((num_pixels + max_size - 1) / max_size); /* Allocate device memory for pixel block data. */ block = oskar_mem_create(h->imager_prec, dev_loc, 0, status); l = oskar_mem_create(h->imager_prec, dev_loc, max_size, status); m = oskar_mem_create(h->imager_prec, dev_loc, max_size, status); n = oskar_mem_create(h->imager_prec, dev_loc, max_size, status); /* Loop until all blocks are done. */ for (;;) { size_t block_size; /* Get a unique block index. */ oskar_mutex_lock(h->mutex); const int i_block = (h->i_block)++; oskar_mutex_unlock(h->mutex); if ((i_block >= num_blocks) || *status) break; /* Calculate the block size. */ const size_t block_start = i_block * max_size; block_size = num_pixels - block_start; if (block_size > max_size) block_size = max_size; /* Copy the (l,m,n) positions for the block. */ oskar_mem_copy_contents(l, h->l, 0, block_start, block_size, status); oskar_mem_copy_contents(m, h->m, 0, block_start, block_size, status); if (h->algorithm == OSKAR_ALGORITHM_DFT_3D) oskar_mem_copy_contents(n, h->n, 0, block_start, block_size, status); /* Run DFT for the block. */ oskar_dft_c2r(num_vis, 2.0 * M_PI, uu, vv, ww, amp, weight, (int) block_size, l, m, n, block, status); /* Add data to existing pixels. */ oskar_mem_add(plane, plane, block, block_start, block_start, 0, block_size, status); } /* Free memory. */ oskar_mem_free(uu, status); oskar_mem_free(vv, status); oskar_mem_free(ww, status); oskar_mem_free(amp, status); oskar_mem_free(weight, status); oskar_mem_free(block, status); oskar_mem_free(l, status); oskar_mem_free(m, status); oskar_mem_free(n, status); return 0; }