Exemple #1
0
static void evaluate_station_ECEF_coords(
        double* station_x, double* station_y, double* station_z,
        int stationID, const oskar_Telescope* telescope)
{
    double st_x, st_y, st_z;
    double lon, lat, alt;
    const oskar_Station* station;
    const void *x_, *y_, *z_;

    x_ = oskar_mem_void_const(
            oskar_telescope_station_true_x_offset_ecef_metres_const(telescope));
    y_ = oskar_mem_void_const(
            oskar_telescope_station_true_y_offset_ecef_metres_const(telescope));
    z_ = oskar_mem_void_const(
            oskar_telescope_station_true_z_offset_ecef_metres_const(telescope));
    station = oskar_telescope_station_const(telescope, stationID);
    lon = oskar_station_lon_rad(station);
    lat = oskar_station_lat_rad(station);
    alt = oskar_station_alt_metres(station);

    if (oskar_mem_type(
            oskar_telescope_station_true_x_offset_ecef_metres_const(telescope)) ==
            OSKAR_DOUBLE)
    {
        st_x = ((const double*)x_)[stationID];
        st_y = ((const double*)y_)[stationID];
        st_z = ((const double*)z_)[stationID];
    }
    else
    {
        st_x = (double)((const float*)x_)[stationID];
        st_y = (double)((const float*)y_)[stationID];
        st_z = (double)((const float*)z_)[stationID];
    }

    oskar_convert_offset_ecef_to_ecef(1, &st_x, &st_y, &st_z, lon, lat, alt,
            station_x, station_y, station_z);
}
Exemple #2
0
static void sim_baselines(oskar_Simulator* h, DeviceData* d, oskar_Sky* sky,
        int channel_index_block, int time_index_block,
        int time_index_simulation, int* status)
{
    int num_baselines, num_stations, num_src, num_times_block, num_channels;
    double dt_dump_days, t_start, t_dump, gast, frequency, ra0, dec0;
    const oskar_Mem *x, *y, *z;
    oskar_Mem* alias = 0;

    /* Get dimensions. */
    num_baselines   = oskar_telescope_num_baselines(d->tel);
    num_stations    = oskar_telescope_num_stations(d->tel);
    num_src         = oskar_sky_num_sources(sky);
    num_times_block = oskar_vis_block_num_times(d->vis_block);
    num_channels    = oskar_vis_block_num_channels(d->vis_block);

    /* Return if there are no sources in the chunk,
     * or if block time index requested is outside the valid range. */
    if (num_src == 0 || time_index_block >= num_times_block) return;

    /* Get the time and frequency of the visibility slice being simulated. */
    dt_dump_days = h->time_inc_sec / 86400.0;
    t_start = h->time_start_mjd_utc;
    t_dump = t_start + dt_dump_days * (time_index_simulation + 0.5);
    gast = oskar_convert_mjd_to_gast_fast(t_dump);
    frequency = h->freq_start_hz + channel_index_block * h->freq_inc_hz;

    /* Scale source fluxes with spectral index and rotation measure. */
    oskar_sky_scale_flux_with_frequency(sky, frequency, status);

    /* Evaluate station u,v,w coordinates. */
    ra0 = oskar_telescope_phase_centre_ra_rad(d->tel);
    dec0 = oskar_telescope_phase_centre_dec_rad(d->tel);
    x = oskar_telescope_station_true_x_offset_ecef_metres_const(d->tel);
    y = oskar_telescope_station_true_y_offset_ecef_metres_const(d->tel);
    z = oskar_telescope_station_true_z_offset_ecef_metres_const(d->tel);
    oskar_convert_ecef_to_station_uvw(num_stations, x, y, z, ra0, dec0, gast,
            d->u, d->v, d->w, status);

    /* Set dimensions of Jones matrices. */
    if (d->R)
        oskar_jones_set_size(d->R, num_stations, num_src, status);
    if (d->Z)
        oskar_jones_set_size(d->Z, num_stations, num_src, status);
    oskar_jones_set_size(d->J, num_stations, num_src, status);
    oskar_jones_set_size(d->E, num_stations, num_src, status);
    oskar_jones_set_size(d->K, num_stations, num_src, status);

    /* Evaluate station beam (Jones E: may be matrix). */
    oskar_timer_resume(d->tmr_E);
    oskar_evaluate_jones_E(d->E, num_src, OSKAR_RELATIVE_DIRECTIONS,
            oskar_sky_l(sky), oskar_sky_m(sky), oskar_sky_n(sky), d->tel,
            gast, frequency, d->station_work, time_index_simulation, status);
    oskar_timer_pause(d->tmr_E);

#if 0
    /* Evaluate ionospheric phase (Jones Z: scalar) and join with Jones E.
     * NOTE this is currently only a CPU implementation. */
    if (d->Z)
    {
        oskar_evaluate_jones_Z(d->Z, num_src, sky, d->tel,
                &settings->ionosphere, gast, frequency, &(d->workJonesZ),
                status);
        oskar_timer_resume(d->tmr_join);
        oskar_jones_join(d->E, d->Z, d->E, status);
        oskar_timer_pause(d->tmr_join);
    }
#endif

    /* Evaluate parallactic angle (Jones R: matrix), and join with Jones Z*E.
     * TODO Move this into station beam evaluation instead. */
    if (d->R)
    {
        oskar_timer_resume(d->tmr_E);
        oskar_evaluate_jones_R(d->R, num_src, oskar_sky_ra_rad_const(sky),
                oskar_sky_dec_rad_const(sky), d->tel, gast, status);
        oskar_timer_pause(d->tmr_E);
        oskar_timer_resume(d->tmr_join);
        oskar_jones_join(d->R, d->E, d->R, status);
        oskar_timer_pause(d->tmr_join);
    }

    /* Evaluate interferometer phase (Jones K: scalar). */
    oskar_timer_resume(d->tmr_K);
    oskar_evaluate_jones_K(d->K, num_src, oskar_sky_l_const(sky),
            oskar_sky_m_const(sky), oskar_sky_n_const(sky), d->u, d->v, d->w,
            frequency, oskar_sky_I_const(sky),
            h->source_min_jy, h->source_max_jy, status);
    oskar_timer_pause(d->tmr_K);

    /* Join Jones K with Jones Z*E. */
    oskar_timer_resume(d->tmr_join);
    oskar_jones_join(d->J, d->K, d->R ? d->R : d->E, status);
    oskar_timer_pause(d->tmr_join);

    /* Create alias for auto/cross-correlations. */
    oskar_timer_resume(d->tmr_correlate);
    alias = oskar_mem_create_alias(0, 0, 0, status);

    /* Auto-correlate for this time and channel. */
    if (oskar_vis_block_has_auto_correlations(d->vis_block))
    {
        oskar_mem_set_alias(alias,
                oskar_vis_block_auto_correlations(d->vis_block),
                num_stations *
                (num_channels * time_index_block + channel_index_block),
                num_stations, status);
        oskar_auto_correlate(alias, num_src, d->J, sky, status);
    }

    /* Cross-correlate for this time and channel. */
    if (oskar_vis_block_has_cross_correlations(d->vis_block))
    {
        oskar_mem_set_alias(alias,
                oskar_vis_block_cross_correlations(d->vis_block),
                num_baselines *
                (num_channels * time_index_block + channel_index_block),
                num_baselines, status);
        oskar_cross_correlate(alias, num_src, d->J, sky, d->tel,
                d->u, d->v, d->w, gast, frequency, status);
    }

    /* Free alias for auto/cross-correlations. */
    oskar_mem_free(alias, status);
    oskar_timer_pause(d->tmr_correlate);
}
Exemple #3
0
static void set_up_vis_header(oskar_Simulator* h, int* status)
{
    int num_stations, vis_type;
    const double rad2deg = 180.0/M_PI;
    int write_autocorr = 0, write_crosscorr = 0;
    if (*status) return;

    /* Check type of correlations to produce. */
    if (h->correlation_type == 'C')
        write_crosscorr = 1;
    else if (h->correlation_type == 'A')
        write_autocorr = 1;
    else if (h->correlation_type == 'B')
    {
        write_autocorr = 1;
        write_crosscorr = 1;
    }

    /* Create visibility header. */
    num_stations = oskar_telescope_num_stations(h->tel);
    vis_type = h->prec | OSKAR_COMPLEX;
    if (oskar_telescope_pol_mode(h->tel) == OSKAR_POL_MODE_FULL)
        vis_type |= OSKAR_MATRIX;
    h->header = oskar_vis_header_create(vis_type, h->prec,
            h->max_times_per_block, h->num_time_steps, h->num_channels,
            h->num_channels, num_stations, write_autocorr, write_crosscorr,
            status);

    /* Add metadata from settings. */
    oskar_vis_header_set_freq_start_hz(h->header, h->freq_start_hz);
    oskar_vis_header_set_freq_inc_hz(h->header, h->freq_inc_hz);
    oskar_vis_header_set_time_start_mjd_utc(h->header, h->time_start_mjd_utc);
    oskar_vis_header_set_time_inc_sec(h->header, h->time_inc_sec);

    /* Add settings file contents if defined. */
    if (h->settings_path)
    {
        oskar_Mem* temp;
        temp = oskar_mem_read_binary_raw(h->settings_path,
                OSKAR_CHAR, OSKAR_CPU, status);
        oskar_mem_copy(oskar_vis_header_settings(h->header), temp, status);
        oskar_mem_free(temp, status);
    }

    /* Copy other metadata from telescope model. */
    oskar_vis_header_set_time_average_sec(h->header,
            oskar_telescope_time_average_sec(h->tel));
    oskar_vis_header_set_channel_bandwidth_hz(h->header,
            oskar_telescope_channel_bandwidth_hz(h->tel));
    oskar_vis_header_set_phase_centre(h->header, 0,
            oskar_telescope_phase_centre_ra_rad(h->tel) * rad2deg,
            oskar_telescope_phase_centre_dec_rad(h->tel) * rad2deg);
    oskar_vis_header_set_telescope_centre(h->header,
            oskar_telescope_lon_rad(h->tel) * rad2deg,
            oskar_telescope_lat_rad(h->tel) * rad2deg,
            oskar_telescope_alt_metres(h->tel));
    oskar_mem_copy(oskar_vis_header_station_x_offset_ecef_metres(h->header),
            oskar_telescope_station_true_x_offset_ecef_metres_const(h->tel),
            status);
    oskar_mem_copy(oskar_vis_header_station_y_offset_ecef_metres(h->header),
            oskar_telescope_station_true_y_offset_ecef_metres_const(h->tel),
            status);
    oskar_mem_copy(oskar_vis_header_station_z_offset_ecef_metres(h->header),
            oskar_telescope_station_true_z_offset_ecef_metres_const(h->tel),
            status);
}