Exemple #1
0
void NMenuCtrl::OnMouseMove(NPoint point )
{
	udword idx = GetItemIdxUnderPt(point);
	TRACE("HighLighted idx %d\n", idx);

	if (idx!=m_dwItemHighLightedIdx)
	{
		m_bEntered = true;
		//Change highLighted item
		m_dwItemHighLightedIdx = idx;

		if (m_dwItemHighLightedIdx!=-1)
		{
			NMEItemDesc* pitem = &m_carrayItems[m_dwItemHighLightedIdx];


			//Open Popup Menu
			if (pitem->ppopUpMenu)
			{
				//TRACE("Opening Popup idx %d\n", m_dwItemHighLightedIdx);

				//Hide old popup
				if (m_pcurPopupMenu)
					m_pcurPopupMenu->ShowMenu(false, null);

				//Show new popup Menu
				NPoint pT(pitem->rcItem.right, pitem->rcItem.top);
				NPoint pTF(pT);
				ClientToScreen(pTF);

				//Clipping...
				NRect rcPopup;
				pitem->ppopUpMenu->CalcMenuSize(rcPopup);

				NRect rcApp = GetGUISubSystem()->GetMainWnd()->GetWindowRect();
				if (pTF.x + rcPopup.Width() > rcApp.right)
				{
					pT.x=pitem->rcItem.left-rcPopup.Width();
					pTF=pT;
					ClientToScreen(pTF);
				}
				if (pTF.y + rcPopup.Height() > rcApp.bottom)
				{
					pTF.y=rcApp.Height()-rcPopup.Height();
				}

				//TRACE("%d %d\n", pTF.x, pTF.y);

				//Display Popup
				pitem->ppopUpMenu->TrackPopupMenu(pTF, this);

				m_pcurPopupMenu = pitem->ppopUpMenu;
			}
		}

		//Repaint
		Update();
	}

}
Exemple #2
0
osg::Matrixd CameraModel::projection(float znear, float zfar) const {
	// See http://strawlab.org/2011/11/05/augmented-reality-with-OpenGL/
    if (!intrinsic_valid) {throw "invalid intrinsic";}

	float depth = zfar - znear;
	float q = -(zfar + znear) / depth;
	float qn = -2 * (zfar * znear) / depth;

	float x0=0;
	float y0=0;

	osg::Matrixd p;
	float width=_width;
	float height=_height;

	if (_y_up) {
		p=osg::Matrixf( 2*_K00/ width, -2*_K01/ width, (-2*_K02+ width+2*x0)/ width, 0,
						0,             -2*_K11/height, (-2*_K12+height+2*y0)/height, 0,
						0,              0,             q,                            qn,
						0,              0,             -1,                           0);
	}
	else {
		p=osg::Matrixf( 2*_K00/ width, -2*_K01/ width, (-2*_K02+ width+2*x0)/ width, 0,
						0,              2*_K11/height, ( 2*_K12-height+2*y0)/height, 0,
						0,              0,             q,                            qn,
						0,              0,             -1,                           0);
 	}
	osg::Matrixd pT;
	for (int i=0; i<4; i++) {
		for (int j=0; j<4; j++) {
			pT(i,j) = p(j,i);
		}
	}
	return pT;
}
Exemple #3
0
double LinearModel::getPValue()
{  
  vector_t var = getVar();
  bool okay = var[testParameter] < 1e-20 || !realnum(var[testParameter]) ? false : all_valid;

  if (all_valid)
    {
      double se = sqrt(var[testParameter]);
      double Z = coef[testParameter] / se;	  
      return pT(Z,Y.size()-np);
    }
  else return 1;
}
Exemple #4
0
int parse(Task ** task)
{
	int parseStatus;

	resetParserError();

	if (task == NULL)
	{
		parserErrorNo = PE_NULL_POINTER;
		return PS_ERROR;
	}

	if (isWaitLex())
		if (gl())
			return PS_ERROR;

	*task = pT();

	if (*task != NULL)
		parseStatus = PS_OK;
	else if (parserErrorNo == PE_NONE)
	{
		if (cur_l->type == LEX_EOL)
			parseStatus = PS_EOL;
		else if (cur_l->type == LEX_EOF)
			parseStatus = PS_EOF;
	}
	else
		parseStatus = PS_ERROR;

	if (parseStatus == PS_ERROR &&
		cur_l->type != LEX_EOL &&
		cur_l->type != LEX_EOF)
	{
		do
			if (glhard())
				break;
		while (cur_l->type != LEX_EOL &&
			cur_l->type != LEX_EOF);
	}

	cl();

	return parseStatus;
}
Exemple #5
0
Foam::SolverPerformance<Type>
Foam::PBiCICG<Type, DType, LUType>::solve(Field<Type>& psi) const
{
    word preconditionerName(this->controlDict_.lookup("preconditioner"));

    // --- Setup class containing solver performance data
    SolverPerformance<Type> solverPerf
    (
        preconditionerName + typeName,
        this->fieldName_
    );

    register label nCells = psi.size();

    Type* __restrict__ psiPtr = psi.begin();

    Field<Type> pA(nCells);
    Type* __restrict__ pAPtr = pA.begin();

    Field<Type> pT(nCells, pTraits<Type>::zero);
    Type* __restrict__ pTPtr = pT.begin();

    Field<Type> wA(nCells);
    Type* __restrict__ wAPtr = wA.begin();

    Field<Type> wT(nCells);
    Type* __restrict__ wTPtr = wT.begin();

    Type wArT = solverPerf.great_*pTraits<Type>::one;
    Type wArTold = wArT;

    // --- Calculate A.psi and T.psi
    this->matrix_.Amul(wA, psi);
    this->matrix_.Tmul(wT, psi);

    // --- Calculate initial residual and transpose residual fields
    Field<Type> rA(this->matrix_.source() - wA);
    Field<Type> rT(this->matrix_.source() - wT);
    Type* __restrict__ rAPtr = rA.begin();
    Type* __restrict__ rTPtr = rT.begin();

    // --- Calculate normalisation factor
    Type normFactor = this->normFactor(psi, wA, pA);

    if (LduMatrix<Type, DType, LUType>::debug >= 2)
    {
        Info<< "   Normalisation factor = " << normFactor << endl;
    }

    // --- Calculate normalised residual norm
    solverPerf.initialResidual() = cmptDivide(gSumCmptMag(rA), normFactor);
    solverPerf.finalResidual() = solverPerf.initialResidual();

    // --- Check convergence, solve if not converged
    if (!solverPerf.checkConvergence(this->tolerance_, this->relTol_))
    {
        // --- Select and construct the preconditioner
        autoPtr<typename LduMatrix<Type, DType, LUType>::preconditioner>
        preconPtr = LduMatrix<Type, DType, LUType>::preconditioner::New
        (
            *this,
            this->controlDict_
        );

        // --- Solver iteration
        do
        {
            // --- Store previous wArT
            wArTold = wArT;

            // --- Precondition residuals
            preconPtr->precondition(wA, rA);
            preconPtr->preconditionT(wT, rT);

            // --- Update search directions:
            wArT = gSumCmptProd(wA, rT);

            if (solverPerf.nIterations() == 0)
            {
                for (register label cell=0; cell<nCells; cell++)
                {
                    pAPtr[cell] = wAPtr[cell];
                    pTPtr[cell] = wTPtr[cell];
                }
            }
            else
            {
                Type beta = cmptDivide
                (
                    wArT,
                    stabilise(wArTold, solverPerf.vsmall_)
                );

                for (register label cell=0; cell<nCells; cell++)
                {
                    pAPtr[cell] = wAPtr[cell] + cmptMultiply(beta, pAPtr[cell]);
                    pTPtr[cell] = wTPtr[cell] + cmptMultiply(beta, pTPtr[cell]);
                }
            }


            // --- Update preconditioned residuals
            this->matrix_.Amul(wA, pA);
            this->matrix_.Tmul(wT, pT);

            Type wApT = gSumCmptProd(wA, pT);

            // --- Test for singularity
            if
            (
                solverPerf.checkSingularity
                (
                    cmptDivide(cmptMag(wApT), normFactor)
                )
            )
            {
                break;
            }


            // --- Update solution and residual:

            Type alpha = cmptDivide
            (
                wArT,
                stabilise(wApT, solverPerf.vsmall_)
            );

            for (register label cell=0; cell<nCells; cell++)
            {
                psiPtr[cell] += cmptMultiply(alpha, pAPtr[cell]);
                rAPtr[cell] -= cmptMultiply(alpha, wAPtr[cell]);
                rTPtr[cell] -= cmptMultiply(alpha, wTPtr[cell]);
            }

            solverPerf.finalResidual() =
                cmptDivide(gSumCmptMag(rA), normFactor);

        } while
        (
            solverPerf.nIterations()++ < this->maxIter_
        && !(solverPerf.checkConvergence(this->tolerance_, this->relTol_))
        );
    }

    return solverPerf;
}
Exemple #6
0
inline void
LU( DistMatrix<F>& A, DistMatrix<int,VC,STAR>& p )
{
#ifndef RELEASE
    CallStackEntry entry("LU");
    if( A.Grid() != p.Grid() )
        throw std::logic_error("{A,p} must be distributed over the same grid");
    if( p.Viewing() && 
        (std::min(A.Height(),A.Width()) != p.Height() || p.Width() != 1) ) 
        throw std::logic_error
        ("p must be a vector of the same height as the min dimension of A.");
#endif
    const Grid& g = A.Grid();
    if( !p.Viewing() )
        p.ResizeTo( std::min(A.Height(),A.Width()), 1 );

    // Matrix views
    DistMatrix<F>
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),  AB(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),  
                         A20(g), A21(g), A22(g);

    DistMatrix<int,VC,STAR>
        pT(g),  p0(g), 
        pB(g),  p1(g),
                p2(g);

    // Temporary distributions
    DistMatrix<F,  STAR,STAR> A11_STAR_STAR(g);
    DistMatrix<F,  MC,  STAR> A21_MC_STAR(g);
    DistMatrix<F,  STAR,VR  > A12_STAR_VR(g);
    DistMatrix<F,  STAR,MR  > A12_STAR_MR(g);
    DistMatrix<int,STAR,STAR> p1_STAR_STAR(g);

    // Pivot composition
    std::vector<int> image, preimage;

    // Start the algorithm
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( p, pT,
         pB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        RepartitionDown
        ( pT,  p0,
         /**/ /**/
               p1,
          pB,  p2 );

        View1x2( AB, ABL, ABR );

        const int pivotOffset = A01.Height();
        A12_STAR_VR.AlignWith( A22 );
        A12_STAR_MR.AlignWith( A22 );
        A21_MC_STAR.AlignWith( A22 );
        A11_STAR_STAR.ResizeTo( A11.Height(), A11.Width() );
        p1_STAR_STAR.ResizeTo( p1.Height(), 1 );
        //--------------------------------------------------------------------//
        A21_MC_STAR = A21;
        A11_STAR_STAR = A11;
        lu::Panel( A11_STAR_STAR, A21_MC_STAR, p1_STAR_STAR, pivotOffset );
        ComposePivots( p1_STAR_STAR, pivotOffset, image, preimage );
        ApplyRowPivots( AB, image, preimage );

        // Perhaps we should give up perfectly distributing this operation since
        // it's total contribution is only O(n^2)
        A12_STAR_VR = A12;
        LocalTrsm
        ( LEFT, LOWER, NORMAL, UNIT, F(1), A11_STAR_STAR, A12_STAR_VR );

        A12_STAR_MR = A12_STAR_VR;
        LocalGemm( NORMAL, NORMAL, F(-1), A21_MC_STAR, A12_STAR_MR, F(1), A22 );

        A11 = A11_STAR_STAR;
        A12 = A12_STAR_MR;
        A21 = A21_MC_STAR;
        p1 = p1_STAR_STAR;
        //--------------------------------------------------------------------//
        A12_STAR_VR.FreeAlignments();
        A12_STAR_MR.FreeAlignments();
        A21_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlidePartitionDown
        ( pT,  p0,
               p1,
         /**/ /**/
          pB,  p2 );
    }
}
Exemple #7
0
Foam::lduSolverPerformance Foam::PBiCG::solve
(
    scalarField& x,
    const scalarField& b,
    const direction cmpt
) const
{
    // --- Setup class containing solver performance data
    lduSolverPerformance solverPerf
    (
        lduMatrix::preconditioner::getName(dict()) + typeName,
        fieldName()
    );


    register label nCells = x.size();

    scalar* __restrict__ xPtr = x.begin();

    scalarField pA(nCells);
    scalar* __restrict__ pAPtr = pA.begin();

    scalarField pT(nCells, 0.0);
    scalar* __restrict__ pTPtr = pT.begin();

    scalarField wA(nCells);
    scalar* __restrict__ wAPtr = wA.begin();

    scalarField wT(nCells);
    scalar* __restrict__ wTPtr = wT.begin();

    scalar wArT = matrix_.great_;
    scalar wArTold = wArT;

    // Calculate A.x and T.x
    matrix_.Amul(wA, x, coupleBouCoeffs_, interfaces_, cmpt);
    matrix_.Tmul(wT, x, coupleIntCoeffs_, interfaces_, cmpt);

    // Calculate initial residual and transpose residual fields
    scalarField rA(b - wA);
    scalarField rT(b - wT);
    scalar* __restrict__ rAPtr = rA.begin();
    scalar* __restrict__ rTPtr = rT.begin();

    // Calculate normalisation factor
    scalar normFactor = this->normFactor(x, b, wA, pA, cmpt);

    if (lduMatrix::debug >= 2)
    {
        Info<< "   Normalisation factor = " << normFactor << endl;
    }

    // Calculate normalised residual norm
    solverPerf.initialResidual() = gSumMag(rA)/normFactor;
    solverPerf.finalResidual() = solverPerf.initialResidual();

    // Check convergence, solve if not converged
    if (!stop(solverPerf))
    {
        // Select and construct the preconditioner
        autoPtr<lduPreconditioner> preconPtr;

        preconPtr =
            lduPreconditioner::New
            (
                matrix_,
                coupleBouCoeffs_,
                coupleIntCoeffs_,
                interfaces_,
                dict()
            );

        // Solver iteration
        do
        {
            // Store previous wArT
            wArTold = wArT;

            // Precondition residuals
            preconPtr->precondition(wA, rA, cmpt);
            preconPtr->preconditionT(wT, rT, cmpt);

            // Update search directions:
            wArT = gSumProd(wA, rT);

            if (solverPerf.nIterations() == 0)
            {
                for (register label cell=0; cell<nCells; cell++)
                {
                    pAPtr[cell] = wAPtr[cell];
                    pTPtr[cell] = wTPtr[cell];
                }
            }
            else
            {
                scalar beta = wArT/wArTold;

                for (register label cell=0; cell<nCells; cell++)
                {
                    pAPtr[cell] = wAPtr[cell] + beta*pAPtr[cell];
                    pTPtr[cell] = wTPtr[cell] + beta*pTPtr[cell];
                }
            }


            // Update preconditioned residuals
            matrix_.Amul(wA, pA, coupleBouCoeffs_, interfaces_, cmpt);
            matrix_.Tmul(wT, pT, coupleIntCoeffs_, interfaces_, cmpt);

            scalar wApT = gSumProd(wA, pT);


            // Test for singularity
            if (solverPerf.checkSingularity(mag(wApT)/normFactor)) break;


            // Update solution and residual:

            scalar alpha = wArT/wApT;

            for (register label cell=0; cell<nCells; cell++)
            {
                xPtr[cell] += alpha*pAPtr[cell];
                rAPtr[cell] -= alpha*wAPtr[cell];
                rTPtr[cell] -= alpha*wTPtr[cell];
            }

            solverPerf.finalResidual() = gSumMag(rA)/normFactor;
            solverPerf.nIterations()++;
        } while (!stop(solverPerf));
    }

    return solverPerf;
}
Exemple #8
0
inline void
internal::PanelLU
( DistMatrix<F,  STAR,STAR>& A, 
  DistMatrix<F,  MC,  STAR>& B, 
  DistMatrix<int,STAR,STAR>& p, 
  int pivotOffset )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLU");
    if( A.Grid() != p.Grid() || p.Grid() != B.Grid() )
        throw std::logic_error
        ("Matrices must be distributed over the same grid");
    if( A.Width() != B.Width() )
        throw std::logic_error("A and B must be the same width");
    if( A.Height() != p.Height() || p.Width() != 1 )
        throw std::logic_error("p must be a vector that conforms with A");
#endif
    const Grid& g = A.Grid();
    const int r = g.Height();
    const int colShift = B.ColShift();
    const int colAlignment = B.ColAlignment();

    // Matrix views
    DistMatrix<F,STAR,STAR> 
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  
                         A20(g), a21(g),     A22(g);

    DistMatrix<F,MC,STAR>
        BL(g), BR(g),
        B0(g), b1(g), B2(g);

    DistMatrix<int,STAR,STAR>
        pT(g),  p0(g),
        pB(g),  psi1(g),
                p2(g);

    const int width = A.Width();
    const int numBytes = (width+1)*sizeof(F)+sizeof(int);
    std::vector<byte> sendData(numBytes);
    std::vector<byte> recvData(numBytes);

    // Extract pointers to send and recv data
    F* sendBufFloat = (F*) &sendData[0];
    F* recvBufFloat = (F*) &recvData[0];
    int* sendBufInt = (int*) &sendData[(width+1)*sizeof(F)];
    int* recvBufInt = (int*) &recvData[(width+1)*sizeof(F)];

    // Start the algorithm
    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionRight( B, BL, BR, 0 );
    PartitionDown
    ( p, pT,
         pB, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionRight
        ( BL, /**/ BR,  
          B0, /**/ b1, B2 );

        RepartitionDown
        ( pT,  p0,
         /**/ /****/
               psi1,
          pB,  p2 );

        //--------------------------------------------------------------------//
        
        // Store the index/value of the pivot candidate in A
        F pivotValue = alpha11.GetLocalEntry(0,0);
        int pivotIndex = a01.Height();
        for( int i=0; i<a21.Height(); ++i )
        {
            F value = a21.GetLocalEntry(i,0);
            if( FastAbs(value) > FastAbs(pivotValue) )
            {
                pivotValue = value;
                pivotIndex = a01.Height() + i + 1;
            }
        }

        // Update the pivot candidate to include local data from B
        for( int i=0; i<B.LocalHeight(); ++i )
        {
            F value = b1.GetLocalEntry(i,0);
            if( FastAbs(value) > FastAbs(pivotValue) )
            {
                pivotValue = value;
                pivotIndex = A.Height() + colShift + i*r;
            }
        }

        // Fill the send buffer with:
        // [ pivotValue | pivotRow | pivotIndex ]
        if( pivotIndex < A.Height() )
        {
            sendBufFloat[0] = A.GetLocalEntry(pivotIndex,a10.Width());

            const int ALDim = A.LocalLDim();
            const F* ABuffer = A.LocalBuffer(pivotIndex,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = ABuffer[j*ALDim];
        }
        else
        {
            const int localIndex = ((pivotIndex-A.Height())-colShift)/r;
            sendBufFloat[0] = b1.GetLocalEntry(localIndex,0);

            const int BLDim = B.LocalLDim();
            const F* BBuffer = B.LocalBuffer(localIndex,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = BBuffer[j*BLDim];
        }
        *sendBufInt = pivotIndex;

        // Communicate to establish the pivot information
        mpi::AllReduce
        ( &sendData[0], &recvData[0], numBytes, PivotOp<F>(), g.ColComm() );

        // Update the pivot vector
        const int maxIndex = *recvBufInt;
        p.SetLocalEntry(a01.Height(),0,maxIndex+pivotOffset);

        // Copy the current row into the pivot row
        if( maxIndex < A.Height() )
        {
            const int ALDim = A.LocalLDim();
            F* ASetBuffer = A.LocalBuffer(maxIndex,0);
            const F* AGetBuffer = A.LocalBuffer(A00.Height(),0);
            for( int j=0; j<width; ++j )
                ASetBuffer[j*ALDim] = AGetBuffer[j*ALDim];
        }
        else
        {
            const int ownerRank = (colAlignment+(maxIndex-A.Height())) % r;
            if( g.Row() == ownerRank )
            {
                const int localIndex = ((maxIndex-A.Height())-colShift) / r;

                const int ALDim = A.LocalLDim();
                const int BLDim = B.LocalLDim();
                F* BBuffer = B.LocalBuffer(localIndex,0);
                const F* ABuffer = A.LocalBuffer(A00.Height(),0);
                for( int j=0; j<width; ++j )
                    BBuffer[j*BLDim] = ABuffer[j*ALDim];
            }
        }

        // Copy the pivot row into the current row
        {
            F* ABuffer = A.LocalBuffer(A00.Height(),0);
            const int ALDim = A.LocalLDim();
            for( int j=0; j<width; ++j )
                ABuffer[j*ALDim] = recvBufFloat[j+1];
        }

        // Now we can perform the update of the current panel
        F alpha = alpha11.GetLocalEntry(0,0);
        if( alpha == (F)0 )
            throw SingularMatrixException();
        F alpha11Inv = ((F)1) / alpha;
        Scal( alpha11Inv, a21.LocalMatrix() );
        Scal( alpha11Inv, b1.LocalMatrix()  );
        Geru( (F)-1, a21.LocalMatrix(), a12.LocalMatrix(), A22.LocalMatrix() );
        Geru( (F)-1, b1.LocalMatrix(), a12.LocalMatrix(), B2.LocalMatrix() );
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        SlidePartitionRight
        ( BL,     /**/ BR,  
          B0, b1, /**/ B2 );

        SlidePartitionDown
        ( pT,  p0,
               psi1,
         /**/ /****/
          pB,  p2 );
    }
    PopBlocksizeStack();

#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #9
0
Foam::solverPerformance Foam::PBiCG::solve
(
    scalarField& psi,
    const scalarField& source,
    const direction cmpt
) const
{
    // --- Setup class containing solver performance data
    solverPerformance solverPerf
    (
        lduMatrix::preconditioner::getName(controlDict_) + typeName,
        fieldName_
    );

    label nCells = psi.size();

    scalar* __restrict__ psiPtr = psi.begin();

    scalarField pA(nCells);
    scalar* __restrict__ pAPtr = pA.begin();

    scalarField pT(nCells, 0.0);
    scalar* __restrict__ pTPtr = pT.begin();

    scalarField wA(nCells);
    scalar* __restrict__ wAPtr = wA.begin();

    scalarField wT(nCells);
    scalar* __restrict__ wTPtr = wT.begin();

    scalar wArT = solverPerf.great_;
    scalar wArTold = wArT;

    // --- Calculate A.psi and T.psi
    matrix_.Amul(wA, psi, interfaceBouCoeffs_, interfaces_, cmpt);
    matrix_.Tmul(wT, psi, interfaceIntCoeffs_, interfaces_, cmpt);

    // --- Calculate initial residual and transpose residual fields
    scalarField rA(source - wA);
    scalarField rT(source - wT);
    scalar* __restrict__ rAPtr = rA.begin();
    scalar* __restrict__ rTPtr = rT.begin();

    // --- Calculate normalisation factor
    scalar normFactor = this->normFactor(psi, source, wA, pA);

    if (lduMatrix::debug >= 2)
    {
        Info<< "   Normalisation factor = " << normFactor << endl;
    }

    // --- Calculate normalised residual norm
    solverPerf.initialResidual() =
        gSumMag(rA, matrix().mesh().comm())
       /normFactor;
    solverPerf.finalResidual() = solverPerf.initialResidual();

    // --- Check convergence, solve if not converged
    if
    (
        minIter_ > 0
     || !solverPerf.checkConvergence(tolerance_, relTol_)
    )
    {
        // --- Select and construct the preconditioner
        autoPtr<lduMatrix::preconditioner> preconPtr =
        lduMatrix::preconditioner::New
        (
            *this,
            controlDict_
        );

        // --- Solver iteration
        do
        {
            // --- Store previous wArT
            wArTold = wArT;

            // --- Precondition residuals
            preconPtr->precondition(wA, rA, cmpt);
            preconPtr->preconditionT(wT, rT, cmpt);

            // --- Update search directions:
            wArT = gSumProd(wA, rT, matrix().mesh().comm());

            if (solverPerf.nIterations() == 0)
            {
                for (label cell=0; cell<nCells; cell++)
                {
                    pAPtr[cell] = wAPtr[cell];
                    pTPtr[cell] = wTPtr[cell];
                }
            }
            else
            {
                scalar beta = wArT/wArTold;

                for (label cell=0; cell<nCells; cell++)
                {
                    pAPtr[cell] = wAPtr[cell] + beta*pAPtr[cell];
                    pTPtr[cell] = wTPtr[cell] + beta*pTPtr[cell];
                }
            }


            // --- Update preconditioned residuals
            matrix_.Amul(wA, pA, interfaceBouCoeffs_, interfaces_, cmpt);
            matrix_.Tmul(wT, pT, interfaceIntCoeffs_, interfaces_, cmpt);

            scalar wApT = gSumProd(wA, pT, matrix().mesh().comm());

            // --- Test for singularity
            if (solverPerf.checkSingularity(mag(wApT)/normFactor))
            {
                break;
            }


            // --- Update solution and residual:

            scalar alpha = wArT/wApT;

            for (label cell=0; cell<nCells; cell++)
            {
                psiPtr[cell] += alpha*pAPtr[cell];
                rAPtr[cell] -= alpha*wAPtr[cell];
                rTPtr[cell] -= alpha*wTPtr[cell];
            }

            solverPerf.finalResidual() =
                gSumMag(rA, matrix().mesh().comm())
               /normFactor;
        } while
        (
            (
                solverPerf.nIterations()++ < maxIter_
            && !solverPerf.checkConvergence(tolerance_, relTol_)
            )
         || solverPerf.nIterations() < minIter_
        );
    }

    return solverPerf;
}
Exemple #10
0
AOSContext::ReturnCode AOSOutput_Template::execute(AOSContext& context)
{
  //a_See if extension for mime type set for the template(s)
  AString ext;
  if (context.getOutputParams().emitContentFromPath(AOS_BaseModules_Constants::MIME_EXTENSION, ext))
  {
    m_Services.useConfiguration().setMimeTypeFromExt(ext, context);
  }
  else
  {
    //a_Set content type based on request URL extension
    m_Services.useConfiguration().setMimeTypeFromExt(context.useRequestUrl().getExtension(), context);
  }
  
  // Iterate parameters and build the template
  const AXmlElement::CONTAINER& container = context.getOutputParams().getContentContainer();
  for (AXmlElement::CONTAINER::const_iterator cit = container.begin(); cit != container.end(); ++cit)
  {
    //a_Check "if" condition
    AString ifElement;
    if ((*cit)->getAttributes().get(ASW("if",2), ifElement))
    {
      if (ifElement.getSize() > 0)
      {
        //a_Check condition, if not met continue with next template
        if (!context.useModel().exists(ifElement))
        {
          if (context.useEventVisitor().isLogging(AEventVisitor::EL_DEBUG))
            context.useEventVisitor().startEvent(ARope("Skipping conditional file template IF ")+ifElement, AEventVisitor::EL_DEBUG);
          continue;
        }
      }
    }
    //a_Check "ifnot" condition
    ifElement.clear();
    if ((*cit)->getAttributes().get(ASW("ifnot",5), ifElement))
    {
      if (ifElement.getSize() > 0)
      {
        //a_Check condition, if not met continue with next template
        if (context.useModel().exists(ifElement))
        {
          if (context.useEventVisitor().isLogging(AEventVisitor::EL_DEBUG))
            context.useEventVisitor().startEvent(ARope("Skipping conditional file template IFNOT ")+ifElement, AEventVisitor::EL_DEBUG);
          continue;
        }
      }
    }

    //
    // Now we check if this is inlined or filename
    //
    AString str(1024, 512);
    if ((*cit)->getName().equals(AOS_BaseModules_Constants::TEMPLATE))
    {
      if (context.useEventVisitor().isLoggingDebug())
      {
        context.useEventVisitor().startEvent(getClass() + ": Creating new inline template", AEventVisitor::EL_DEBUG);
      }
      // Create a new template
      AAutoPtr<ATemplate> pTemplate(m_Services.createTemplate(), true);

      // Add inline template
      str.clear();
      (*cit)->emitContent(str);
      AFile_AString strfile(str);
      pTemplate->clear();
      pTemplate->fromAFile(strfile);
      pTemplate->process(context.useLuaTemplateContext(), context.useOutputBuffer());
    }
    else if ((*cit)->getName().equals(AOS_BaseModules_Constants::FILENAME))
    {
      // Add filename based template
      AFilename filename(m_Services.useConfiguration().getAosBaseDataDirectory());
      str.clear();
      (*cit)->emitContent(str);
      filename.join(str, false);

      if (context.useEventVisitor().isLoggingDebug())
      {
        context.useEventVisitor().startEvent(getClass()+": Fetching/parsing template for: "+filename, AEventVisitor::EL_DEBUG);
      }
      AAutoPtr<ATemplate> pT(NULL, false);
      if (ACacheInterface::NOT_FOUND == m_Services.useCacheManager().getTemplate(context, filename, pT))
      {
        //a_Not found add error and continue
        if (context.useEventVisitor().isLogging(AEventVisitor::EL_WARN))
          context.useEventVisitor().startEvent(ARope(getClass())+ASWNL(": Unable to find a template file: ")+filename+ASWNL(", ignoring and continuing"), AEventVisitor::EL_WARN);
        continue;
      }

      //a_Parse template
      if (context.useEventVisitor().isLogging(AEventVisitor::EL_DEBUG))
      {
        context.useEventVisitor().startEvent(getClass()+"Processing template file: "+filename, AEventVisitor::EL_DEBUG);
      }
      AASSERT(this, pT.isNotNull());
      pT->process(context.useLuaTemplateContext(), context.useOutputBuffer());
    }
  }

  return AOSContext::RETURN_OK;
}
Exemple #11
0
Foam::SolverPerformance<Type>
Foam::PBiCCCG<Type, DType, LUType>::solve
(
    gpuField<Type>& psi
) const
{
    word preconditionerName(this->controlDict_.lookup("preconditioner"));

    // --- Setup class containing solver performance data
    SolverPerformance<Type> solverPerf
    (
        preconditionerName + typeName,
        this->fieldName_
    );

    register label nCells = psi.size();

    gpuField<Type> pA(nCells);

    gpuField<Type> pT(nCells, pTraits<Type>::zero);

    gpuField<Type> wA(nCells);

    gpuField<Type> wT(nCells);

    scalar wArT = 1e15; //this->matrix_.great_;
    scalar wArTold = wArT;

    // --- Calculate A.psi and T.psi
    this->matrix_.Amul(wA, psi);
    this->matrix_.Tmul(wT, psi);

    // --- Calculate initial residual and transpose residual fields
    gpuField<Type> rA(this->matrix_.source() - wA);
    gpuField<Type> rT(this->matrix_.source() - wT);

    // --- Calculate normalisation factor
    Type normFactor = this->normFactor(psi, wA, pA);

    if (LduMatrix<Type, DType, LUType>::debug >= 2)
    {
        Info<< "   Normalisation factor = " << normFactor << endl;
    }

    // --- Calculate normalised residual norm
    solverPerf.initialResidual() = cmptDivide(gSumCmptMag(rA), normFactor);
    solverPerf.finalResidual() = solverPerf.initialResidual();

    // --- Check convergence, solve if not converged
    if
    (
        this->minIter_ > 0
     || !solverPerf.checkConvergence(this->tolerance_, this->relTol_)
    )
    {
        // --- Select and construct the preconditioner
        autoPtr<typename LduMatrix<Type, DType, LUType>::preconditioner>
        preconPtr = LduMatrix<Type, DType, LUType>::preconditioner::New
        (
            *this,
            this->controlDict_
        );

        // --- Solver iteration
        do
        {
            // --- Store previous wArT
            wArTold = wArT;

            // --- Precondition residuals
            preconPtr->precondition(wA, rA);
            preconPtr->preconditionT(wT, rT);

            // --- Update search directions:
            wArT = gSumProd(wA, rT);

            if (solverPerf.nIterations() == 0)
            {
                thrust::copy(wA.begin(),wA.end(),pA.begin());
                thrust::copy(wT.begin(),wT.end(),pT.begin());
            }
            else
            {
                scalar beta = wArT/wArTold;

                thrust::transform
                (
                    wA.begin(),
                    wA.end(),
                    thrust::make_transform_iterator
                    (
                        pA.begin(),
                        multiplyOperatorSFFunctor<scalar,Type,Type>(beta)
                    ),
                    pA.begin(),
                    addOperatorFunctor<Type,Type,Type>()
                );

                thrust::transform
                (
                    wT.begin(),
                    wT.end(),
                    thrust::make_transform_iterator
                    (
                        pT.begin(),
                        multiplyOperatorSFFunctor<scalar,Type,Type>(beta)
                    ),
                    pT.begin(),
                    addOperatorFunctor<Type,Type,Type>()
                );
            }


            // --- Update preconditioned residuals
            this->matrix_.Amul(wA, pA);
            this->matrix_.Tmul(wT, pT);

            scalar wApT = gSumProd(wA, pT);

            // --- Test for singularity
            if
            (
                solverPerf.checkSingularity
                (
                    cmptDivide(pTraits<Type>::one*mag(wApT), normFactor)
                )
            )
            {
                break;
            }


            // --- Update solution and residual:

            scalar alpha = wArT/wApT;

            thrust::transform
            (
                psi.begin(),
                psi.end(),
                thrust::make_transform_iterator
                (
                    pA.begin(),
                    multiplyOperatorSFFunctor<scalar,Type,Type>(alpha)
                ),
                psi.begin(),
                addOperatorFunctor<Type,Type,Type>()
            );

            thrust::transform
            (
                rA.begin(),
                rA.end(),
                thrust::make_transform_iterator
                (
                    wA.begin(),
                    multiplyOperatorSFFunctor<scalar,Type,Type>(alpha)
                ),
                rA.begin(),
                subtractOperatorFunctor<Type,Type,Type>()
            );

            thrust::transform
            (
                rT.begin(),
                rT.end(),
                thrust::make_transform_iterator
                (
                    wT.begin(),
                    multiplyOperatorSFFunctor<scalar,Type,Type>(alpha)
                ),
                rT.begin(),
                subtractOperatorFunctor<Type,Type,Type>()
            );

            solverPerf.finalResidual() =
                cmptDivide(gSumCmptMag(rA), normFactor);

        } while
        (
            (
                solverPerf.nIterations()++ < this->maxIter_
            && !solverPerf.checkConvergence(this->tolerance_, this->relTol_)
            )
         || solverPerf.nIterations() < this->minIter_
        );
    }

    return solverPerf;
}
Exemple #12
0
void LinearModel::displayResults(ofstream & OUT, Locus * loc)
{
  
  vector_t var;
  
  if ( all_valid ) 
    var = getVar();
  else
    {
      var.clear();
      var.resize(np,0);
    }
  
  for (int p=1; p<np; p++) // skip intercept
    {
      
      bool okay = var[p] < 1e-20 || !realnum(var[p]) ? false : all_valid;
      
      double se = 0; 
      double Z = 0;
      double pvalue = 1;
      
      if (okay)
	{
	  se = sqrt(var[p]);
	  Z = coef[p] / se;
	  pvalue = pT(Z,Y.size()-np);
	}
      
      // If filtering p-values
      if ( (!par::pfilter) || pvalue <= par::pfvalue ) 
	{	 
	  
	  // Skip covariates?
	  if ( par::no_show_covar && p != testParameter )
	    continue;
	  
	  OUT << setw(4) << loc->chr  << " " 
	      << setw(par::pp_maxsnp) << loc->name << " " 
	      << setw(10) << loc->bp << " "
	      << setw(4) << loc->allele1 << " "
	      << setw(10) << label[p] << " "
	      << setw(8) << Y.size() << " ";
	  
	  if (okay)
	    {
	      OUT << setw(10) << coef[p] << " ";
	      
	      if (par::display_ci)
		
		OUT << setw(8) << se << " "
		    << setw(8) << coef[p] - par::ci_zt * se << " "
		    << setw(8) << coef[p] + par::ci_zt * se << " ";	    
	      
	      OUT << setw(12) << Z << " "
		  << setw(12) << pvalue;
	    }
	  else
	    {
	      OUT << setw(10) << "NA" << " ";
	      
	      if (par::display_ci)
		OUT << setw(8) << "NA" << " "
		    << setw(8) << "NA" << " "
		    << setw(8) << "NA" << " ";	    
	      
	      OUT << setw(12) << "NA" << " "
		  << setw(12) << "NA";
	    }
	  
	  OUT << "\n";	
	}

    }


}