float path_follower_base::spin()
{
    /* wait for state update of 2 file descriptor for 20 ms */
    int poll_ret = poll(fds, 1, 100);//20);

    if (poll_ret < 0) {
        /* this is seriously bad - should be an emergency */
        if (poll_error_counter < 10 || poll_error_counter % 50 == 0) {
            /* use a counter to prevent flooding (and slowing us down) */
            printf("[path_follower] ERROR return value from poll(): %d\n", poll_ret);
        }

        poll_error_counter++;
        return -1;
    } else {

        parameter_update_poll();
        vehicle_state_poll();
        current_path_poll();

        struct input_s input;
        input.flag = _current_path.flag;
        input.Va_d = _current_path.Va_d;
        for(int i=0;i<3;i++)
        {
            input.r_path[i] = _current_path.r[i];
            input.q_path[i] = _current_path.q[i];
            input.c_orbit[i] = _current_path.c[i];
        }
        input.rho_orbit = _current_path.rho;
        input.lam_orbit = _current_path.lambda;
        input.pn = _vehicle_state.position[0];               /** position north */
        input.pe = _vehicle_state.position[1];               /** position east */
        input.h = _vehicle_state.position[2];                /** altitude */
        input.Va = _vehicle_state.Va;
//        input.phi = _vehicle_state.phi;
//        input.theta = _vehicle_state.theta;
        input.chi = _vehicle_state.chi;
//        input.r = _vehicle_state.r;

        struct output_s output;

        follow(_params, input, output);

        controller_commands_publish(output);
        return input.h;
    }
}
void
MulticopterAttitudeControl::task_main()
{
	warnx("started");
	fflush(stdout);

	/*
	 * do subscriptions
	 */
	_v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	_v_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	_v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_armed_sub = orb_subscribe(ORB_ID(actuator_armed));

	/* initialize parameters cache */
	parameters_update();

	/* wakeup source: vehicle attitude */
	struct pollfd fds[1];

	fds[0].fd = _v_att_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {

		/* wait for up to 100ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0)
			continue;

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			/* sleep a bit before next try */
			usleep(100000);
			continue;
		}

		perf_begin(_loop_perf);

		/* run controller on attitude changes */
		if (fds[0].revents & POLLIN) {
			static uint64_t last_run = 0;
			float dt = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too small (< 2ms) and too large (> 20ms) dt's */
			if (dt < 0.002f) {
				dt = 0.002f;

			} else if (dt > 0.02f) {
				dt = 0.02f;
			}

			/* copy attitude topic */
			orb_copy(ORB_ID(vehicle_attitude), _v_att_sub, &_v_att);

			/* check for updates in other topics */
			parameter_update_poll();
			vehicle_control_mode_poll();
			arming_status_poll();
			vehicle_manual_poll();

			if (_v_control_mode.flag_control_attitude_enabled) {
				control_attitude(dt);

				/* publish attitude rates setpoint */
				_v_rates_sp.roll = _rates_sp(0);
				_v_rates_sp.pitch = _rates_sp(1);
				_v_rates_sp.yaw = _rates_sp(2);
				_v_rates_sp.thrust = _thrust_sp;
				_v_rates_sp.timestamp = hrt_absolute_time();

				if (_v_rates_sp_pub > 0) {
					orb_publish(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_pub, &_v_rates_sp);

				} else {
					_v_rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &_v_rates_sp);
				}

			} else {
				/* attitude controller disabled, poll rates setpoint topic */
				vehicle_rates_setpoint_poll();
				_rates_sp(0) = _v_rates_sp.roll;
				_rates_sp(1) = _v_rates_sp.pitch;
				_rates_sp(2) = _v_rates_sp.yaw;
				_thrust_sp = _v_rates_sp.thrust;
			}

			if (_v_control_mode.flag_control_rates_enabled) {
				control_attitude_rates(dt);

				/* publish actuator controls */
				_actuators.control[0] = (isfinite(_att_control(0))) ? _att_control(0) : 0.0f;
				_actuators.control[1] = (isfinite(_att_control(1))) ? _att_control(1) : 0.0f;
				_actuators.control[2] = (isfinite(_att_control(2))) ? _att_control(2) : 0.0f;
				_actuators.control[3] = (isfinite(_thrust_sp)) ? _thrust_sp : 0.0f;
				_actuators.timestamp = hrt_absolute_time();

				if (_actuators_0_pub > 0) {
					orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators);

				} else {
					_actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators);
				}
			}
		}

		perf_end(_loop_perf);
	}

	warnx("exit");

	_control_task = -1;
	_exit(0);
}
void
MulticopterAttitudeControl::task_main()
{

	/*
	 * do subscriptions
	 */
	_v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	_ctrl_state_sub = orb_subscribe(ORB_ID(control_state));
	_v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_armed_sub = orb_subscribe(ORB_ID(actuator_armed));
	_vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));
	_motor_limits_sub = orb_subscribe(ORB_ID(multirotor_motor_limits));

	/* initialize parameters cache */
	parameters_update();

	/* wakeup source: vehicle attitude */
	px4_pollfd_struct_t fds[1];

	fds[0].fd = _ctrl_state_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {

		/* wait for up to 100ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			/* sleep a bit before next try */
			usleep(100000);
			continue;
		}

		perf_begin(_loop_perf);

		/* run controller on attitude changes */
		if (fds[0].revents & POLLIN) {
			static uint64_t last_run = 0;
			float dt = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too small (< 2ms) and too large (> 20ms) dt's */
			if (dt < 0.002f) {
				dt = 0.002f;

			} else if (dt > 0.02f) {
				dt = 0.02f;
			}

			/* copy attitude and control state topics */
			orb_copy(ORB_ID(control_state), _ctrl_state_sub, &_ctrl_state);

			/* check for updates in other topics */
			parameter_update_poll();
			vehicle_control_mode_poll();
			arming_status_poll();
			vehicle_manual_poll();
			vehicle_status_poll();
			vehicle_motor_limits_poll();

			/* Check if we are in rattitude mode and the pilot is above the threshold on pitch
			 * or roll (yaw can rotate 360 in normal att control).  If both are true don't
			 * even bother running the attitude controllers */
			if (_vehicle_status.main_state == vehicle_status_s::MAIN_STATE_RATTITUDE) {
				if (fabsf(_manual_control_sp.y) > _params.rattitude_thres ||
				    fabsf(_manual_control_sp.x) > _params.rattitude_thres) {
					_v_control_mode.flag_control_attitude_enabled = false;
				}
			}

			if (_v_control_mode.flag_control_attitude_enabled) {

				if (_ts_opt_recovery == nullptr) {
					// the  tailsitter recovery instance has not been created, thus, the vehicle
					// is not a tailsitter, do normal attitude control
					control_attitude(dt);

				} else {
					vehicle_attitude_setpoint_poll();
					_thrust_sp = _v_att_sp.thrust;
					math::Quaternion q(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
					math::Quaternion q_sp(&_v_att_sp.q_d[0]);
					_ts_opt_recovery->setAttGains(_params.att_p, _params.yaw_ff);
					_ts_opt_recovery->calcOptimalRates(q, q_sp, _v_att_sp.yaw_sp_move_rate, _rates_sp);

					/* limit rates */
					for (int i = 0; i < 3; i++) {
						_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
					}
				}

				/* publish attitude rates setpoint */
				_v_rates_sp.roll = _rates_sp(0);
				_v_rates_sp.pitch = _rates_sp(1);
				_v_rates_sp.yaw = _rates_sp(2);
				_v_rates_sp.thrust = _thrust_sp;
				_v_rates_sp.timestamp = hrt_absolute_time();

				if (_v_rates_sp_pub != nullptr) {
					orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

				} else if (_rates_sp_id) {
					_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
				}

				//}

			} else {
				/* attitude controller disabled, poll rates setpoint topic */
				if (_v_control_mode.flag_control_manual_enabled) {
					/* manual rates control - ACRO mode */
					_rates_sp = math::Vector<3>(_manual_control_sp.y, -_manual_control_sp.x,
								    _manual_control_sp.r).emult(_params.acro_rate_max);
					_thrust_sp = math::min(_manual_control_sp.z, MANUAL_THROTTLE_MAX_MULTICOPTER);

					/* publish attitude rates setpoint */
					_v_rates_sp.roll = _rates_sp(0);
					_v_rates_sp.pitch = _rates_sp(1);
					_v_rates_sp.yaw = _rates_sp(2);
					_v_rates_sp.thrust = _thrust_sp;
					_v_rates_sp.timestamp = hrt_absolute_time();

					if (_v_rates_sp_pub != nullptr) {
						orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

					} else if (_rates_sp_id) {
						_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
					}

				} else {
					/* attitude controller disabled, poll rates setpoint topic */
					vehicle_rates_setpoint_poll();
					_rates_sp(0) = _v_rates_sp.roll;
					_rates_sp(1) = _v_rates_sp.pitch;
					_rates_sp(2) = _v_rates_sp.yaw;
					_thrust_sp = _v_rates_sp.thrust;
				}
			}

			if (_v_control_mode.flag_control_rates_enabled) {
				control_attitude_rates(dt);

				/* publish actuator controls */
				_actuators.control[0] = (PX4_ISFINITE(_att_control(0))) ? _att_control(0) : 0.0f;
				_actuators.control[1] = (PX4_ISFINITE(_att_control(1))) ? _att_control(1) : 0.0f;
				_actuators.control[2] = (PX4_ISFINITE(_att_control(2))) ? _att_control(2) : 0.0f;
				_actuators.control[3] = (PX4_ISFINITE(_thrust_sp)) ? _thrust_sp : 0.0f;
				_actuators.timestamp = hrt_absolute_time();
				_actuators.timestamp_sample = _ctrl_state.timestamp;

				_controller_status.roll_rate_integ = _rates_int(0);
				_controller_status.pitch_rate_integ = _rates_int(1);
				_controller_status.yaw_rate_integ = _rates_int(2);
				_controller_status.timestamp = hrt_absolute_time();

				if (!_actuators_0_circuit_breaker_enabled) {
					if (_actuators_0_pub != nullptr) {
						orb_publish(_actuators_id, _actuators_0_pub, &_actuators);
						perf_end(_controller_latency_perf);

					} else if (_actuators_id) {
						_actuators_0_pub = orb_advertise(_actuators_id, &_actuators);
					}

				}

				/* publish controller status */
				if (_controller_status_pub != nullptr) {
					orb_publish(ORB_ID(mc_att_ctrl_status), _controller_status_pub, &_controller_status);

				} else {
					_controller_status_pub = orb_advertise(ORB_ID(mc_att_ctrl_status), &_controller_status);
				}
			}
		}

		perf_end(_loop_perf);
	}

	_control_task = -1;
	return;
}
void
MulticopterAttitudeControl::task_main()
{

	/*
	 * do subscriptions
	 */
	_v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	_v_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	_v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_armed_sub = orb_subscribe(ORB_ID(actuator_armed));
	_vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));
	_motor_limits_sub = orb_subscribe(ORB_ID(multirotor_motor_limits));

	/* initialize parameters cache */
	parameters_update();

	/* wakeup source: vehicle attitude */
	px4_pollfd_struct_t fds[1];

	fds[0].fd = _v_att_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {

		/* wait for up to 100ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0)
			continue;

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			/* sleep a bit before next try */
			usleep(100000);
			continue;
		}

		perf_begin(_loop_perf);

		/* run controller on attitude changes */
		if (fds[0].revents & POLLIN) {
			static uint64_t last_run = 0;
			float dt = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too small (< 2ms) and too large (> 20ms) dt's */
			if (dt < 0.002f) {
				dt = 0.002f;

			} else if (dt > 0.02f) {
				dt = 0.02f;
			}

			/* copy attitude topic */
			orb_copy(ORB_ID(vehicle_attitude), _v_att_sub, &_v_att);

			/* check for updates in other topics */
			parameter_update_poll();
			vehicle_control_mode_poll();
			arming_status_poll();
			vehicle_manual_poll();
			vehicle_status_poll();
			vehicle_motor_limits_poll();

			if (_v_control_mode.flag_control_attitude_enabled) {
				control_attitude(dt);

				/* publish attitude rates setpoint */
				_v_rates_sp.roll = _rates_sp(0);
				_v_rates_sp.pitch = _rates_sp(1);
				_v_rates_sp.yaw = _rates_sp(2);
				_v_rates_sp.thrust = _thrust_sp;
				_v_rates_sp.timestamp = hrt_absolute_time();

				if (_v_rates_sp_pub != nullptr) {
					orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

				} else if (_rates_sp_id) {
					_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
				}

			} else {
				/* attitude controller disabled, poll rates setpoint topic */
				if (_v_control_mode.flag_control_manual_enabled) {
					/* manual rates control - ACRO mode */
					_rates_sp = math::Vector<3>(_manual_control_sp.y, -_manual_control_sp.x, _manual_control_sp.r).emult(_params.acro_rate_max);
					_thrust_sp = _manual_control_sp.z;

					/* publish attitude rates setpoint */
					_v_rates_sp.roll = _rates_sp(0);
					_v_rates_sp.pitch = _rates_sp(1);
					_v_rates_sp.yaw = _rates_sp(2);
					_v_rates_sp.thrust = _thrust_sp;
					_v_rates_sp.timestamp = hrt_absolute_time();

					if (_v_rates_sp_pub != nullptr) {
						orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

					} else if (_rates_sp_id) {
						_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
					}

				} else {
					/* attitude controller disabled, poll rates setpoint topic */
					vehicle_rates_setpoint_poll();
					_rates_sp(0) = _v_rates_sp.roll;
					_rates_sp(1) = _v_rates_sp.pitch;
					_rates_sp(2) = _v_rates_sp.yaw;
					_thrust_sp = _v_rates_sp.thrust;
				}
			}

			if (_v_control_mode.flag_control_rates_enabled) {
				control_attitude_rates(dt);

				/* publish actuator controls */
				_actuators.control[0] = (PX4_ISFINITE(_att_control(0))) ? _att_control(0) : 0.0f;
				_actuators.control[1] = (PX4_ISFINITE(_att_control(1))) ? _att_control(1) : 0.0f;
				_actuators.control[2] = (PX4_ISFINITE(_att_control(2))) ? _att_control(2) : 0.0f;
				_actuators.control[3] = (PX4_ISFINITE(_thrust_sp)) ? _thrust_sp : 0.0f;
				_actuators.timestamp = hrt_absolute_time();
				_actuators.timestamp_sample = _v_att.timestamp;

				_controller_status.roll_rate_integ = _rates_int(0);
				_controller_status.pitch_rate_integ = _rates_int(1);
				_controller_status.yaw_rate_integ = _rates_int(2);
				_controller_status.timestamp = hrt_absolute_time();

				if (!_actuators_0_circuit_breaker_enabled) {
					if (_actuators_0_pub != nullptr) {
						orb_publish(_actuators_id, _actuators_0_pub, &_actuators);
						perf_end(_controller_latency_perf);

					} else if (_actuators_id) {
						_actuators_0_pub = orb_advertise(_actuators_id, &_actuators);
					}

				}

				/* publish controller status */
				if(_controller_status_pub != nullptr) {
					orb_publish(ORB_ID(mc_att_ctrl_status),_controller_status_pub, &_controller_status);
				} else {
					_controller_status_pub = orb_advertise(ORB_ID(mc_att_ctrl_status), &_controller_status);
				}
			}
		}

		perf_end(_loop_perf);
	}

	_control_task = -1;
	return;
}
Exemple #5
0
void
Sensors::task_main()
{

	/* start individual sensors */
	accel_init();
	gyro_init();
	mag_init();
	baro_init();
	adc_init();

	/*
	 * do subscriptions
	 */
	_gyro_sub = orb_subscribe(ORB_ID(sensor_gyro));
	_accel_sub = orb_subscribe(ORB_ID(sensor_accel));
	_mag_sub = orb_subscribe(ORB_ID(sensor_mag));
	_rc_sub = orb_subscribe(ORB_ID(input_rc));
	_baro_sub = orb_subscribe(ORB_ID(sensor_baro));
	_diff_pres_sub = orb_subscribe(ORB_ID(differential_pressure));
	_vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sub = orb_subscribe(ORB_ID(manual_control_setpoint));

	/* rate limit vehicle status updates to 5Hz */
	orb_set_interval(_vcontrol_mode_sub, 200);

	/* rate limit gyro to 250 Hz (the gyro signal is lowpassed accordingly earlier) */
	orb_set_interval(_gyro_sub, 4);

	/*
	 * do advertisements
	 */
	struct sensor_combined_s raw;
	memset(&raw, 0, sizeof(raw));
	raw.timestamp = hrt_absolute_time();
	raw.adc_voltage_v[0] = 0.0f;
	raw.adc_voltage_v[1] = 0.0f;
	raw.adc_voltage_v[2] = 0.0f;
	raw.adc_voltage_v[3] = 0.0f;

	memset(&_battery_status, 0, sizeof(_battery_status));
	_battery_status.voltage_v = -1.0f;
	_battery_status.voltage_filtered_v = -1.0f;
	_battery_status.current_a = -1.0f;
	_battery_status.discharged_mah = -1.0f;

	/* get a set of initial values */
	accel_poll(raw);
	gyro_poll(raw);
	mag_poll(raw);
	baro_poll(raw);
	diff_pres_poll(raw);

	parameter_update_poll(true /* forced */);

	/* advertise the sensor_combined topic and make the initial publication */
	_sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw);

	/* wakeup source(s) */
	struct pollfd fds[1];

	/* use the gyro to pace output - XXX BROKEN if we are using the L3GD20 */
	fds[0].fd = _gyro_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {

		/* wait for up to 50ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 50);

		/* if pret == 0 it timed out - periodic check for _task_should_exit, etc. */

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		perf_begin(_loop_perf);

		/* check vehicle status for changes to publication state */
		vehicle_control_mode_poll();

		/* check parameters for updates */
		parameter_update_poll();

		/* the timestamp of the raw struct is updated by the gyro_poll() method */

		/* copy most recent sensor data */
		gyro_poll(raw);
		accel_poll(raw);
		mag_poll(raw);
		baro_poll(raw);

		/* check battery voltage */
		adc_poll(raw);

		diff_pres_poll(raw);

		/* Inform other processes that new data is available to copy */
		if (_publishing) {
			orb_publish(ORB_ID(sensor_combined), _sensor_pub, &raw);
		}

		/* Look for new r/c input data */
		rc_poll();

		perf_end(_loop_perf);
	}

	warnx("[sensors] exiting.");

	_sensors_task = -1;
	_exit(0);
}
Exemple #6
0
void task_main(int argc, char *argv[])
{
	PX4_WARN("enter mpu9x50 task_main");

	sigset_t set;
	int      sig = 0;
	int rv;
	exit_mreasurement = false;

	parameters_init();

	// create the mpu9x50 default configuration structure
	struct mpu9x50_config config = {
		.gyro_lpf = _gyro_lpf,
		.acc_lpf  = _accel_lpf,
		.gyro_fsr = MPU9X50_GYRO_FSR_500DPS,
		.acc_fsr  = MPU9X50_ACC_FSR_4G,
		.gyro_sample_rate = _imu_sample_rate,
		.compass_enabled = true,
		.compass_sample_rate = MPU9x50_COMPASS_SAMPLE_RATE_100HZ,
		.spi_dev_path = _device,
	};

	// TODO-JYW:
	// manually register with the DriverFramework to allow this driver to
	// be found by other modules
//	DriverFramework::StubSensor<DriverFramework::SPIDevObj> stub_sensor("mpu9x50", "/dev/accel0", "/dev/accel");

	if (mpu9x50_initialize(&config) != 0) {
		PX4_WARN("error initializing mpu9x50. Quit!");
		goto exit;
	}

	if (mpu9x50_register_interrupt(SPI_INT_GPIO, &mpu9x50::data_ready_isr, NULL)
	    //if (mpu9x50_register_interrupt(SPI_INT_GPIO, &mpu9x50::data_ready_isr, NULL)

	    != 0) {
		PX4_WARN("error registering data ready interrupt. Quit!");
		goto exit;
	}

	// create all uorb publications
	if (!create_pubs()) {
		goto exit;
	}

	// subscribe to parameter_update topic
	_params_sub = orb_subscribe(ORB_ID(parameter_update));

	// initialize signal
	sigemptyset(&set);
	sigaddset(&set, SIGRTMIN);

	while (!_task_should_exit) {
		// wait on signal
		rv = sigwait(&set, &sig);

		// check if we are waken up by the proper signal
		if (rv != 0 || sig != SIGRTMIN) {
			PX4_WARN("mpu9x50 sigwait failed rv %d sig %d", rv, sig);
			continue;
		}

		// read new IMU data and store the results in data
		if (mpu9x50_get_data(&_data) != 0) {
			PX4_WARN("mpu9x50_get_data() failed");
			continue;
		}

		// since the context switch takes long time, override the timestamp provided by mpu9x50_get_data()
		// with the ts of isr.
		// Note: This is ok for MPU sample rate of < 1000; Higer than 1000 Sample rates will be an issue
		// as the data is not consistent.
		_data.timestamp = _isr_data_ready_timestamp;

		// poll parameter update
		parameter_update_poll();

		// data is ready
		update_reports();

		// publish all sensor reports
		publish_reports();

	}

	exit_mreasurement = true;

exit:
	PX4_WARN("closing mpu9x50");
	mpu9x50_close();
}

/** mpu9x50 main entrance */
void task_main_trampoline(int argc, char *argv[])
{
	PX4_WARN("task_main_trampoline");
	task_main(argc, argv);
}
float estimator_base::spin()
{
    /* wait for sensor update of 2 file descriptor for 10 ms */
    int poll_ret = poll(fds, 1, 50);

    if (poll_ret < 0) {
        /* this is seriously bad - should be an emergency */
        if (poll_error_counter < 10 || poll_error_counter % 50 == 0) {
            /* use a counter to prevent flooding (and slowing us down) */
            printf("[controller] ERROR return value from poll(): %d\n", poll_ret);
        }

        poll_error_counter++;
        return 0;

    } else {

        parameter_update_poll();
        sensor_combined_poll();
        gps_poll();

        struct input_s input;
        input.gyro_x = _sensor_combined.gyro_rad_s[0];
        input.gyro_y = _sensor_combined.gyro_rad_s[1];
        input.gyro_z = _sensor_combined.gyro_rad_s[2];
        input.accel_x = _sensor_combined.accelerometer_m_s2[0];
        input.accel_y = _sensor_combined.accelerometer_m_s2[1];
        input.accel_z = _sensor_combined.accelerometer_m_s2[2];
        input.static_pres = (_init_static - _sensor_combined.baro_pres_mbar)*100; // 1 mbar == 100 pa
        input.diff_pres = (_sensor_combined.differential_pressure_pa < 0 ? 0 : _sensor_combined.differential_pressure_pa);

        if(_gps_init && _gps_new)
        {
            input.gps_new = true;
            float conversion = (3.14159/(180*1e7)); //from 1/10th of a micro degree to radian
            input.gps_n = EARTH_RADIUS * (float)(_gps.lat - _init_lat) * conversion;
            input.gps_e = EARTH_RADIUS * cosf((float)_init_lat * conversion) * (float)(_gps.lon - _init_lon) * conversion;
            input.gps_h = (_gps.alt - _init_alt) / 1e3f;
            input.gps_Vg = _gps.vel_m_s;
            input.gps_course = _gps.cog_rad;
        }
        else
        {
            input.gps_new = false;
        }

        if(_time_to_run == 1)
        {
            if(true)//_gps_init) // don't estimate unless you have gps
            {
                hrt_abstime curr_time = hrt_absolute_time();
                input.Ts = (prev_time_ != 0) ? (curr_time - prev_time_) * 0.000001f : 0.0f;
                prev_time_ = curr_time;

                struct output_s output;

                estimate(_params, input, output);

                vehicle_state_publish(output);
            }
            _time_to_run = -1;
        }
        _time_to_run++;

        return input.gps_n;
    }
}