Exemple #1
0
void esProj_perspective(
		esMat4f *mat, float fov, float screenratio, float near, float far,
		esVec3f eye, esVec3f at, esVec3f up) {
	float persp[16];
	perspective_matrix(persp, fov, screenratio, near, far);

	float look[16];
	lookat_matrix(look, eye, at, up);

	mul_matrix(mat->mat, look, persp);
}
Exemple #2
0
static void
Render(unsigned int width, unsigned int height, shader_data* data)
{
    float matrix_rotate[16], matrix_modelview[16], matrix_perspective[16], matrix_mvp[16];

    /* 
    * Do some rotation with Euler angles. It is not a fixed axis as
    * quaterions would be, but the effect is cool. 
    */
    rotate_matrix((float)data->angle_x, 1.0f, 0.0f, 0.0f, matrix_modelview);
    rotate_matrix((float)data->angle_y, 0.0f, 1.0f, 0.0f, matrix_rotate);

    multiply_matrix(matrix_rotate, matrix_modelview, matrix_modelview);

    rotate_matrix((float)data->angle_z, 0.0f, 1.0f, 0.0f, matrix_rotate);

    multiply_matrix(matrix_rotate, matrix_modelview, matrix_modelview);

    /* Pull the camera back from the cube */
    matrix_modelview[14] -= 2.5;

    perspective_matrix(45.0f, (float)width/height, 0.01f, 100.0f, matrix_perspective);
    multiply_matrix(matrix_perspective, matrix_modelview, matrix_mvp);

    GL_CHECK(glUniformMatrix4fv(data->attr_mvp, 1, GL_FALSE, matrix_mvp));

    data->angle_x += 3;
    data->angle_y += 2;
    data->angle_z += 1;

    if(data->angle_x >= 360) data->angle_x -= 360;
    if(data->angle_x < 0) data->angle_x += 360;
    if(data->angle_y >= 360) data->angle_y -= 360;
    if(data->angle_y < 0) data->angle_y += 360;
    if(data->angle_z >= 360) data->angle_z -= 360;
    if(data->angle_z < 0) data->angle_z += 360;

    GL_CHECK(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT));
    GL_CHECK(glDrawArrays(GL_TRIANGLES, 0, 36));
}
Exemple #3
0
void renderFrame() {
	static float grey;
	//grey += 0.01f;
	//if (grey > 1.0f) {
	//	grey = 0.0f;
	//}
	glClearColor(grey, grey, grey, 1.0f);
	checkGlError("glClearColor");
	glClear( GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
	checkGlError("glClear");

	glUseProgram(gProgram);
	checkGlError("glUseProgram");

#if USE_MESH
	glVertexAttribPointer(gvPositionHandle, 4, GL_FLOAT, GL_FALSE, 0, gpMesh->m_pTriangleList);
#else
	glVertexAttribPointer(gvPositionHandle, 3, GL_FLOAT, GL_FALSE, 0, gCubeVertices);
#endif

	glEnableVertexAttribArray(gvPositionHandle);
	checkGlError("glEnableVertexAttribArray");

#if USE_MESH
	glVertexAttribPointer(gvColorHandle, 3, GL_FLOAT, GL_FALSE, 0, gpMesh->m_pVertexColor);
	checkGlError("glVertexAttribPointer");
#else
	glVertexAttribPointer(gvColorHandle, 3, GL_FLOAT, GL_FALSE, 0, gCubeColors);
	checkGlError("glVertexAttribPointer");
#endif

	glEnableVertexAttribArray(gvColorHandle);
	checkGlError("glEnableVertexAttribArray");

    
	//rotate - begin
	rotate_matrix(iXangle, 1.0, 0.0, 0.0, aModelView);
	rotate_matrix(iYangle, 0.0, 1.0, 0.0, aRotate);
	
	multiply_matrix(aRotate, aModelView, aModelView);

	rotate_matrix(iZangle, 0.0, 0.0, 1.0, aRotate);

	multiply_matrix(aRotate, aModelView, aModelView);

	//Pull the camera back from the geometry
	aModelView[14] -= 3.5;
	
#if USE_MESH
	//translate to lower left of geometry to lower-left of screen 	
	aModelView[12] -= 1.0;
	aModelView[13] -= 1.7;	
#endif
	perspective_matrix(45.0, (double)uiWidth/(double)uiHeight, 0.01, 100.0, aPerspective);
	multiply_matrix(aPerspective, aModelView, aMVP);

	glUniformMatrix4fv(gmvP, 1, GL_FALSE, aMVP);
	
	glUniform1f(gAHandle, -1.0*(1.0 - animParam));
	glUniform1f(gThetaHandle, animParam*_HALF_PI);
	
	animParam -= 0.01;
	if(animParam < 0.0) animParam = 1.0f;

#if !USE_MESH
	//Comment the lines below to disable rotation
	iZangle += 2;
	iYangle += 2;
#endif
	if(iXangle >= 360) iXangle -= 360;
	if(iXangle < 0) iXangle += 360;
	if(iYangle >= 360) iYangle -= 360;
	if(iYangle < 0) iYangle += 360;
	if(iZangle >= 360) iZangle -= 360;
	if(iZangle < 0) iZangle += 360;
	//rotate - end

#if USE_MESH
	glDrawArrays(GL_TRIANGLES, 0, gpMesh->m_numTriangles);
#else
	glDrawArrays(GL_TRIANGLES, 0, 36);
#endif
	checkGlError("glDrawArrays");
}
Exemple #4
0
// Usage: ./Volumetricd.exe ../../data/monkey.obj 256 4 2 90
int main(int argc, char **argv)
{
	if (argc < 6)
	{
		std::cerr << "Missing parameters. Abort." 
			<< std::endl
			<< "Usage:  ./Volumetricd.exe ../../data/monkey.obj 256 8 2 90"
			<< std::endl;
		return EXIT_FAILURE;
	}
	Timer timer;
	const std::string filepath = argv[1];
	const int vol_size = atoi(argv[2]);
	const int vx_size = atoi(argv[3]);
	const int cloud_count = atoi(argv[4]);
	const int rot_interval = atoi(argv[5]);

	std::pair<std::vector<double>, std::vector<double>> depth_buffer;

	//
	// Projection and Modelview Matrices
	//
	Eigen::Matrix4d K = perspective_matrix(fov_y, aspect_ratio, near_plane, far_plane);
	std::pair<Eigen::Matrix4d, Eigen::Matrix4d>	T(Eigen::Matrix4d::Identity(), Eigen::Matrix4d::Identity());


	//
	// Creating volume
	//
	Eigen::Vector3d voxel_size(vx_size, vx_size, vx_size);
	Eigen::Vector3d volume_size(vol_size, vol_size, vol_size);
	Eigen::Vector3d voxel_count(volume_size.x() / voxel_size.x(), volume_size.y() / voxel_size.y(), volume_size.z() / voxel_size.z());
	//
	Eigen::Affine3d grid_affine = Eigen::Affine3d::Identity();
	grid_affine.translate(Eigen::Vector3d(0, 0, -256));
	grid_affine.scale(Eigen::Vector3d(1, 1, -1));	// z is negative inside of screen


	Grid grid(volume_size, voxel_size, grid_affine.matrix());


	//
	// Importing .obj
	//
	timer.start();
	std::vector<Eigen::Vector3d> points3DOrig, pointsTmp;
	import_obj(filepath, points3DOrig);
	timer.print_interval("Importing monkey    : ");
	std::cout << "Monkey point count  : " << points3DOrig.size() << std::endl;

	// 
	// Translating and rotating monkey point cloud 
	std::pair<std::vector<Eigen::Vector3d>, std::vector<Eigen::Vector3d>> cloud;
	//
	Eigen::Affine3d rotate = Eigen::Affine3d::Identity();
	Eigen::Affine3d translate = Eigen::Affine3d::Identity();
	translate.translate(Eigen::Vector3d(0, 0, -256));


	// 
	// Compute first cloud
	//
	for (Eigen::Vector3d p3d : points3DOrig)
	{
		Eigen::Vector4d rot = translate.matrix() * rotate.matrix() * p3d.homogeneous();
		rot /= rot.w();
		cloud.first.push_back(rot.head<3>());
	}
	//
	// Update grid with first cloud
	//
	timer.start();
	create_depth_buffer<double>(depth_buffer.first, cloud.first, K, Eigen::Matrix4d::Identity(), far_plane);
	timer.print_interval("CPU compute depth   : ");

	timer.start();
	update_volume(grid, depth_buffer.first, K, T.first);
	timer.print_interval("CPU Update volume   : ");

	//
	// Compute next clouds
	Eigen::Matrix4d cloud_mat = Eigen::Matrix4d::Identity();
	Timer iter_timer;
	for (int i = 1; i < cloud_count; ++i)
	{
		std::cout << std::endl << i << " : " << i * rot_interval << std::endl;
		iter_timer.start();

		// Rotation matrix
		rotate = Eigen::Affine3d::Identity();
		rotate.rotate(Eigen::AngleAxisd(DegToRad(i * rot_interval), Eigen::Vector3d::UnitY()));

		cloud.second.clear();
		for (Eigen::Vector3d p3d : points3DOrig)
		{
			Eigen::Vector4d rot = translate.matrix() * rotate.matrix() * p3d.homogeneous();
			rot /= rot.w();
			cloud.second.push_back(rot.head<3>());
		}

		//export_obj("../../data/cloud_cpu_2.obj", cloud.second);

		timer.start();
		create_depth_buffer<double>(depth_buffer.second, cloud.second, K, Eigen::Matrix4d::Identity(), far_plane);
		timer.print_interval("Compute depth buffer: ");

		//export_depth_buffer("../../data/cpu_depth_buffer_2.obj", depth_buffer.second);

		timer.start();
		Eigen::Matrix4d icp_mat;
		ComputeRigidTransform(cloud.first, cloud.second, icp_mat);
		timer.print_interval("Compute rigid transf: ");

		//std::cout << std::fixed << std::endl << "icp_mat " << std::endl << icp_mat << std::endl;

		// accumulate matrix
		cloud_mat = cloud_mat * icp_mat;

		//std::cout << std::fixed << std::endl << "cloud_mat " << std::endl << cloud_mat << std::endl;

		timer.start();
		//update_volume(grid, depth_buffer.second, K, cloud_mat.inverse());
		update_volume(grid, depth_buffer.second, K, cloud_mat.inverse());
		timer.print_interval("Update volume       : ");


		// copy second point cloud to first
		cloud.first = cloud.second;
		//depth_buffer.first = depth_buffer.second;

		iter_timer.print_interval("Iteration time      : ");
	}


	//std::cout << "------- // --------" << std::endl;
	//for (int i = 0; i <  grid.data.size(); ++i)
	//{
	//	const Eigen::Vector3d& point = grid.data[i].point;

	//	std::cout << point.transpose() << "\t\t" << grid.data[i].tsdf << " " << grid.data[i].weight << std::endl;
	//}
	//std::cout << "------- // --------" << std::endl;

//	timer.start();
//	export_volume("../../data/grid_volume_cpu.obj", grid.data);
//	timer.print_interval("Exporting volume    : ");
//	return 0;


	QApplication app(argc, argv);

	//
	// setup opengl viewer
	// 
	GLModelViewer glwidget;
	glwidget.resize(640, 480);
	glwidget.setPerspective(60.0f, 0.1f, 10240.0f);
	glwidget.move(320, 0);
	glwidget.setWindowTitle("Point Cloud");
	glwidget.setWeelSpeed(0.1f);
	glwidget.setDistance(-0.5f);
	glwidget.show();

	
	Eigen::Matrix4d to_origin = Eigen::Matrix4d::Identity();
	to_origin.col(3) << -(volume_size.x() / 2.0), -(volume_size.y() / 2.0), -(volume_size.z() / 2.0), 1.0;	// set translate


	std::vector<Eigen::Vector4f> vertices, colors;

	int i = 0;
	for (int z = 0; z <= volume_size.z(); z += voxel_size.z())
	{
		for (int y = 0; y <= volume_size.y(); y += voxel_size.y())
		{
			for (int x = 0; x <= volume_size.x(); x += voxel_size.x(), i++)
			{
				const float tsdf = grid.data.at(i).tsdf;

				//Eigen::Vector4d p = grid_affine.matrix() * to_origin * Eigen::Vector4d(x, y, z, 1);
				Eigen::Vector4d p = to_origin * Eigen::Vector4d(x, y, z, 1);
				p /= p.w();

				if (tsdf > 0.1)
				{
					vertices.push_back(p.cast<float>());
					colors.push_back(Eigen::Vector4f(0, 1, 0, 1));
				}
				else if (tsdf < -0.1)
				{
					vertices.push_back(p.cast<float>());
					colors.push_back(Eigen::Vector4f(1, 0, 0, 1));
				}
			}
		}
	}




	//
	// setup model
	// 
	std::shared_ptr<GLModel> model(new GLModel);
	model->initGL();
	model->setVertices(&vertices[0][0], vertices.size(), 4);
	model->setColors(&colors[0][0], colors.size(), 4);
	glwidget.addModel(model);


	//
	// setup kinect shader program
	// 
	std::shared_ptr<GLShaderProgram> kinectShaderProgram(new GLShaderProgram);
	if (kinectShaderProgram->build("color.vert", "color.frag"))
		model->setShaderProgram(kinectShaderProgram);

	return app.exec();
}
Exemple #5
0
void viewer::init_program()
{
  offx = 0.35f;
  offy = -0.0f;
  offz = -2.5f;
  rot_x = 0.0f;
  rot_y = 0.0f;
  rot_z = 0.0f;

  mouse_move_x = 0;
  mouse_move_y = 0;
  last_mouse_x = 0;
  last_mouse_y = 0;
  mouse_click = false;

  active_shader_set = ShaderSet::all_white;

  {
    std::vector<GLuint> shaderList;
    shaderList.push_back(LoadShader(GL_VERTEX_SHADER, "shaders/all_white.vert"));
    shaderList.push_back(LoadShader(GL_FRAGMENT_SHADER, "shaders/all_white.frag"));
    shader_programs[ShaderSet::all_white] = CreateProgram(shaderList);
  }

  {
    std::vector<GLuint> shaderList;
    shaderList.push_back(LoadShader(GL_VERTEX_SHADER, "shaders/normals.vert"));
    shaderList.push_back(LoadShader(GL_GEOMETRY_SHADER, "shaders/normals.geom"));
    shaderList.push_back(LoadShader(GL_FRAGMENT_SHADER, "shaders/normals.frag"));
    shader_programs[ShaderSet::normals] = CreateProgram(shaderList);
  }

  {
    std::vector<GLuint> shaderList;
    shaderList.push_back(LoadShader(GL_VERTEX_SHADER, "shaders/height_map.vert"));
    shaderList.push_back(LoadShader(GL_FRAGMENT_SHADER, "shaders/height_map.frag"));
    shader_programs[ShaderSet::height_map] = CreateProgram(shaderList);

  }
  for(int i = 0; i < 3; ++i)
  {
    perspectiveMatrixUnif[i] = glGetUniformLocation(shader_programs[i], "perspectiveMatrix");
    translationMatrixUnif[i] = glGetUniformLocation(shader_programs[i], "translationMatrix");
    rotationXMatrixUnif[i] = glGetUniformLocation(shader_programs[i], "rotationXMatrix");
    rotationYMatrixUnif[i] = glGetUniformLocation(shader_programs[i], "rotationYMatrix");
    rotationZMatrixUnif[i] = glGetUniformLocation(shader_programs[i], "rotationZMatrix");
    dirLightsUnif[i] = glGetUniformLocation(shader_programs[i], "dir_lights");
    numLightsUnif[i] = glGetUniformLocation(shader_programs[i], "num_lights");

    glUseProgram(shader_programs[i]);
    glUniformMatrix4fv(perspectiveMatrixUnif[i], 1, GL_FALSE, &perspective_matrix()[0]);

    float lights[] =
      {
        0.5, 0.7, 0.3,
        -0.5, -0.7, -0.3,
        0.5, -0.7, 0.3,
        0.5, 0.7, -0.3
      };
    const int num_lights = sizeof(lights) / sizeof(float) / 3;
    glUniform3fv(dirLightsUnif[i], num_lights, lights);
    glUniform1i(numLightsUnif[i], num_lights);
    
    glUseProgram(0);
  }
}
int main(int argc, char **argv) {
    EGLDisplay	sEGLDisplay;
    EGLContext	sEGLContext;
    EGLSurface	sEGLSurface;

    /* EGL Configuration */

    EGLint aEGLAttributes[] = {
        EGL_RED_SIZE, 8,
        EGL_GREEN_SIZE, 8,
        EGL_BLUE_SIZE, 8,
        EGL_DEPTH_SIZE, 16,
        EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
        EGL_NONE
    };

    EGLint aEGLContextAttributes[] = {
        EGL_CONTEXT_CLIENT_VERSION, 2,
        EGL_NONE
    };

    EGLConfig	aEGLConfigs[1];
    EGLint		cEGLConfigs;

#ifdef _WIN32
    MSG sMessage;
#else
    XSetWindowAttributes win_attrs;
    int attrs[64], idx = 0, num_config = 0;
    int major, minor;
    Colormap colormap;
    XVisualInfo *pVisual;
    XEvent e;
#endif

    GLint iLocPosition = 0;

    GLint iLocColour, iLocTexCoord, iLocNormal, iLocMVP;
    GLint iLocXangle, iLocYangle, iLocZangle;
    GLint iLocAspect, iLocLightPos, iLocSampler, iLocSampler2;

    GLuint uiProgram, uiFragShader, uiVertShader;

    GLenum myTex, myTex2;

    int bDone = 0;

    const unsigned int uiWidth  = 640;
    const unsigned int uiHeight = 480;

    int iXangle = 0, iYangle = 0, iZangle = 0;

    float aTBNmatrix1[9], aTBNmatrix2[9];

    float aLightPos[] = { 0.0f, 0.0f, -1.0f }; // Light is nearest camera.

    unsigned char *myPixels = calloc(1, 128*128*4); // Holds texture data.
    unsigned char *myPixels2 = calloc(1, 128*128*4); // Holds texture data.

    float aRotate[16], aModelView[16], aPerspective[16], aMVP[16];

    int i;

    /* EGL Init */

#ifdef _WIN32
    hDisplay = EGL_DEFAULT_DISPLAY;
#else
    hDisplay = XOpenDisplay(NULL);

    if (!hDisplay) {
        printf("Could not open display\n");
        exit(-1);
    }
#endif

    sEGLDisplay = EGL_CHECK(eglGetDisplay(hDisplay));

    EGL_CHECK(eglInitialize(sEGLDisplay, NULL, NULL));
    EGL_CHECK(eglChooseConfig(sEGLDisplay, aEGLAttributes, aEGLConfigs, 1, &cEGLConfigs));

    if (cEGLConfigs == 0) {
        printf("No EGL configurations were returned.\n");
        exit(-1);
    }

#ifdef _WIN32
    hWindow = create_window(uiWidth, uiHeight);
#else
    hWindow = create_window("OpenGL ES 2.0 Example on a Linux Desktop", uiWidth,
        uiHeight, hDisplay, sEGLDisplay, aEGLConfigs[0], &colormap, &pVisual);
#endif

    sEGLSurface = EGL_CHECK(eglCreateWindowSurface(sEGLDisplay, aEGLConfigs[0], (EGLNativeWindowType)hWindow, NULL));

    if (sEGLSurface == EGL_NO_SURFACE) {
        printf("Failed to create EGL surface.\n");
        exit(-1);
    }

    sEGLContext = EGL_CHECK(eglCreateContext(sEGLDisplay, aEGLConfigs[0], EGL_NO_CONTEXT, aEGLContextAttributes));

    if (sEGLContext == EGL_NO_CONTEXT) {
        printf("Failed to create EGL context.\n");
        exit(-1);
    }

    EGL_CHECK(eglMakeCurrent(sEGLDisplay, sEGLSurface, sEGLSurface, sEGLContext));

    /* Shader Initialisation */
    process_shader(&uiVertShader, "shader.vert", GL_VERTEX_SHADER);
    process_shader(&uiFragShader, "shader.frag", GL_FRAGMENT_SHADER);

    /* Create uiProgram (ready to attach shaders) */
    uiProgram = GL_CHECK(glCreateProgram());

    /* Attach shaders and link uiProgram */
    GL_CHECK(glAttachShader(uiProgram, uiVertShader));
    GL_CHECK(glAttachShader(uiProgram, uiFragShader));
    GL_CHECK(glLinkProgram(uiProgram));

    /* Get attribute locations of non-fixed attributes like colour and texture coordinates. */
    iLocPosition = GL_CHECK(glGetAttribLocation(uiProgram, "av4position"));
    iLocColour = GL_CHECK(glGetAttribLocation(uiProgram, "av3colour"));

#ifdef DEBUG
    printf("iLocPosition = %i\n", iLocPosition);
    printf("iLocColour   = %i\n", iLocColour);
#endif

    /* Get uniform locations */
    iLocMVP = GL_CHECK(glGetUniformLocation(uiProgram, "mvp"));

#ifdef DEBUG
    printf("iLocMVP      = %i\n", iLocMVP);
#endif

    GL_CHECK(glUseProgram(uiProgram));

    /* Enable attributes for position, colour and texture coordinates etc. */
    GL_CHECK(glEnableVertexAttribArray(iLocPosition));
    GL_CHECK(glEnableVertexAttribArray(iLocColour));

    /* Populate attributes for position, colour and texture coordinates etc. */
    GL_CHECK(glVertexAttribPointer(iLocPosition, 3, GL_FLOAT, GL_FALSE, 0, aVertices));
    GL_CHECK(glVertexAttribPointer(iLocColour, 3, GL_FLOAT, GL_FALSE, 0, aColours));

    GL_CHECK(glEnable(GL_CULL_FACE));
    GL_CHECK(glEnable(GL_DEPTH_TEST));

#ifndef _WIN32
    XSelectInput(hDisplay, hWindow, KeyPressMask | ExposureMask | EnterWindowMask
        | LeaveWindowMask | PointerMotionMask | VisibilityChangeMask | ButtonPressMask
        | ButtonReleaseMask | StructureNotifyMask);
#endif

    /* Enter event loop */
    while (!bDone) {
#ifdef _WIN32
        if(PeekMessage(&sMessage, NULL, 0, 0, PM_REMOVE)) {
            if(sMessage.message == WM_QUIT) {
                bDone = 1;
            } else {
                TranslateMessage(&sMessage);
                DispatchMessage(&sMessage);
            }
        }
#else
        while (XPending(hDisplay) > 0) {
            XNextEvent(hDisplay, &e);

            if (e.type == ButtonPress) {
                bDone = 1;
            }
        }
#endif

        /* 
        * Do some rotation with Euler angles. It is not a fixed axis as
        * quaterions would be, but the effect is cool. 
        */
        rotate_matrix(iXangle, 1.0, 0.0, 0.0, aModelView);
        rotate_matrix(iYangle, 0.0, 1.0, 0.0, aRotate);

        multiply_matrix(aRotate, aModelView, aModelView);

        rotate_matrix(iZangle, 0.0, 1.0, 0.0, aRotate);

        multiply_matrix(aRotate, aModelView, aModelView);

        /* Pull the camera back from the cube */
        aModelView[14] -= 2.5;

        perspective_matrix(45.0, (double)uiWidth/(double)uiHeight, 0.01, 100.0, aPerspective);
        multiply_matrix(aPerspective, aModelView, aMVP);

        GL_CHECK(glUniformMatrix4fv(iLocMVP, 1, GL_FALSE, aMVP));

        iXangle += 3;
        iYangle += 2;
        iZangle += 1;

        if(iXangle >= 360) iXangle -= 360;
        if(iXangle < 0) iXangle += 360;
        if(iYangle >= 360) iYangle -= 360;
        if(iYangle < 0) iYangle += 360;
        if(iZangle >= 360) iZangle -= 360;
        if(iZangle < 0) iZangle += 360;

        GL_CHECK(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT));
        GL_CHECK(glDrawArrays(GL_TRIANGLES, 0, 36));

        if (!eglSwapBuffers(sEGLDisplay, sEGLSurface)) {
            printf("Failed to swap buffers.\n");
        }

#ifdef _WIN32
        Sleep(20);
#else
        usleep(20000);
#endif
    }

    /* Cleanup shaders */
    GL_CHECK(glUseProgram(0));
    GL_CHECK(glDeleteShader(uiVertShader));
    GL_CHECK(glDeleteShader(uiFragShader));
    GL_CHECK(glDeleteProgram(uiProgram));

    /* EGL clean up */
    EGL_CHECK(eglMakeCurrent(sEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT));
    EGL_CHECK(eglDestroySurface(sEGLDisplay, sEGLSurface));
    EGL_CHECK(eglDestroyContext(sEGLDisplay, sEGLContext));
    EGL_CHECK(eglTerminate(sEGLDisplay));

#ifndef _WIN32
    /* X windows clean up */
    XDestroyWindow(hDisplay, hWindow);
    XFreeColormap(hDisplay, colormap);
    XFree(pVisual);
    XCloseDisplay(hDisplay);
#endif

    return 0;
}