Exemple #1
0
/*
 * Build the initial pagetable.
 */
static void build_pagetable(unsigned long *start_pfn, unsigned long *max_pfn)
{
    unsigned long start_address, end_address;
    unsigned long pfn_to_map, pt_pfn = *start_pfn;
    static mmu_update_t mmu_updates[L1_PAGETABLE_ENTRIES + 1];
    pgentry_t *tab = (pgentry_t *)start_info.pt_base, page;
    unsigned long pt_mfn = pfn_to_mfn(virt_to_pfn(start_info.pt_base));
    unsigned long offset;
    int count = 0;
    int rc;

    /* Be conservative: even if we know there will be more pages already
       mapped, start the loop at the very beginning. */
    pfn_to_map = *start_pfn;

    if ( *max_pfn >= virt_to_pfn(HYPERVISOR_VIRT_START) )
    {
        minios_printk("WARNING: Mini-OS trying to use Xen virtual space. "
               "Truncating memory from %dMB to ",
               ((unsigned long)pfn_to_virt(*max_pfn) -
                (unsigned long)&_text)>>20);
        *max_pfn = virt_to_pfn(HYPERVISOR_VIRT_START - PAGE_SIZE);
        minios_printk("%dMB\n",
               ((unsigned long)pfn_to_virt(*max_pfn) - 
                (unsigned long)&_text)>>20);
    }
Exemple #2
0
/*
 * Build the initial pagetable.
 */
static void build_pagetable(unsigned long *start_pfn, unsigned long *max_pfn)
{
    unsigned long start_address, end_address;
    unsigned long pfn_to_map, pt_pfn = *start_pfn;
    static mmu_update_t mmu_updates[L1_PAGETABLE_ENTRIES + 1];
    pgentry_t *tab = (pgentry_t *)start_info.pt_base, page;
    unsigned long pt_mfn = pfn_to_mfn(virt_to_pfn(start_info.pt_base));
    unsigned long offset;
    int count = 0;
    int rc;

    pfn_to_map = 
        (start_info.nr_pt_frames - NOT_L1_FRAMES) * L1_PAGETABLE_ENTRIES;

    if ( *max_pfn >= virt_to_pfn(HYPERVISOR_VIRT_START) )
    {
        printk("WARNING: Mini-OS trying to use Xen virtual space. "
               "Truncating memory from %dMB to ",
               ((unsigned long)pfn_to_virt(*max_pfn) -
                (unsigned long)&_text)>>20);
        *max_pfn = virt_to_pfn(HYPERVISOR_VIRT_START - PAGE_SIZE);
        printk("%dMB\n",
               ((unsigned long)pfn_to_virt(*max_pfn) - 
                (unsigned long)&_text)>>20);
    }
Exemple #3
0
void arch_mm_init(unsigned long *pt_pfn,
	unsigned long pt_base, unsigned long nr_pt_frames, unsigned long nr_pages)
{
	unsigned long start_pfn = (nr_pt_frames - NOT_L1_FRAMES) * L1_PAGETABLE_ENTRIES;
	unsigned long end_pfn = nr_pages;	

	build_page_tables((pgentry_t *)pt_base,
		pt_pfn, pfn_to_virt(start_pfn), pfn_to_virt(end_pfn));
}
Exemple #4
0
static void *hexagon_dma_alloc_coherent(struct device *dev, size_t size,
				 dma_addr_t *dma_addr, gfp_t flag,
				 unsigned long attrs)
{
	void *ret;

	/*
	 * Our max_low_pfn should have been backed off by 16MB in
	 * mm/init.c to create DMA coherent space.  Use that as the VA
	 * for the pool.
	 */

	if (coherent_pool == NULL) {
		coherent_pool = gen_pool_create(PAGE_SHIFT, -1);

		if (coherent_pool == NULL)
			panic("Can't create %s() memory pool!", __func__);
		else
			gen_pool_add(coherent_pool,
				pfn_to_virt(max_low_pfn),
				hexagon_coherent_pool_size, -1);
	}

	ret = (void *) gen_pool_alloc(coherent_pool, size);

	if (ret) {
		memset(ret, 0, size);
		*dma_addr = (dma_addr_t) virt_to_phys(ret);
	} else
		*dma_addr = ~0;

	return ret;
}
Exemple #5
0
void init_mm(void)
{
    unsigned long start_pfn, max_pfn;

    printk("go_mm: initializing\n");

    arch_init_mm(&start_pfn, &max_pfn);

    printk("go_mm: initializing best fit page allocator for %lx-%lx\n",
        (unsigned long)pfn_to_virt(start_pfn),
        (unsigned long)pfn_to_virt(max_pfn));
    init_page_allocator(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn));
    printk("go_mm: done\n");

    arch_init_p2m(max_pfn);
    arch_init_demand_mapping_area(max_pfn);
}
Exemple #6
0
static pgentry_t new_pt_page(unsigned long *pt_pfn,
	pgentry_t *higher_tab, unsigned int higher_off, int level)
{
	// *pt_pfn is already mapped by domain builder
	// remap *pt_pfn as readonly, suitable for page table/directory
	// update higher_tab[higher_off] with reference to *pt_pfn
	// (*pt_pfn)++;

	pgentry_t prot_e, prot_t;
	prot_e = prot_t = 0;

    switch ( level )
    {
    case L1_FRAME:
        prot_e = L1_PROT;
        prot_t = L2_PROT;
        break;
    case L2_FRAME:
        prot_e = L2_PROT;
        prot_t = L3_PROT;
        break;
#if defined(__x86_64__)
	case L3_FRAME:
		prot_e = L3_PROT;
		prot_t = L4_PROT;
		break;
#endif
    default:
    	fatal_error("new_pt_page: level?");
    }

	void *pt_va = pfn_to_virt(*pt_pfn);
	memset(pt_va, 0, PAGE_SIZE);	// all entries not present
	
	unsigned long pte0 = pfn_to_mfn(*pt_pfn) << PAGE_SHIFT | (prot_e & ~_PAGE_RW);
	HYPERVISOR_update_va_mapping((unsigned long)pt_va, __pte(pte0), UVMF_INVLPG);
	
	pgentry_t pte = (pfn_to_mfn(*pt_pfn) << PAGE_SHIFT) | prot_t;
	
	struct mmu_update mu;
	mu.ptr = (virt_to_mfn(higher_tab) << PAGE_SHIFT) + sizeof(pgentry_t)*higher_off;
	mu.val = pte;
	HYPERVISOR_mmu_update(&mu, 1, 0, DOMID_SELF);
	
	(*pt_pfn)++;

	return pte;
}
Exemple #7
0
unsigned long alloc_num_pages_aligned(unsigned long c, int zero_bits) {
    unsigned long i, l, virt, align_mask;

    i = 0;
    align_mask = ~((1 << zero_bits) - 1);

    while(i + c < mm.num_pages) {
        virt = (unsigned long)pfn_to_virt(i);
        if(virt != (virt & align_mask)) {
            i++;
            continue;
        }

        l = bitmap_num_free(i, c);
        if(l == c) {
            bitmap_set(i, c);
            return virt;
        }
        i += l + 1;
    }

    printk("Cannot allocate %lu pages\n", c);
    return 0;
}
Exemple #8
0
/*
 * Make pt_pfn a new 'level' page table frame and hook it into the page
 * table at offset in previous level MFN (pref_l_mfn). pt_pfn is a guest
 * PFN.
 */
static void new_pt_frame(unsigned long *pt_pfn, unsigned long prev_l_mfn, 
                         unsigned long offset, unsigned long level)
{   
    pgentry_t *tab = (pgentry_t *)start_info.pt_base;
    unsigned long pt_page = (unsigned long)pfn_to_virt(*pt_pfn); 
    pgentry_t prot_e, prot_t;
    mmu_update_t mmu_updates[1];
    int rc;
    
    prot_e = prot_t = 0;
    DEBUG("Allocating new L%d pt frame for pfn=%lx, "
          "prev_l_mfn=%lx, offset=%lx", 
          level, *pt_pfn, prev_l_mfn, offset);

    /* We need to clear the page, otherwise we might fail to map it
       as a page table page */
    memset((void*) pt_page, 0, PAGE_SIZE);  
 
    switch ( level )
    {
    case L1_FRAME:
        prot_e = L1_PROT;
        prot_t = L2_PROT;
        break;
    case L2_FRAME:
        prot_e = L2_PROT;
        prot_t = L3_PROT;
        break;
#if defined(__x86_64__)
    case L3_FRAME:
        prot_e = L3_PROT;
        prot_t = L4_PROT;
        break;
#endif
    default:
        printk("new_pt_frame() called with invalid level number %d\n", level);
        do_exit();
        break;
    }

    /* Make PFN a page table page */
#if defined(__x86_64__)
    tab = pte_to_virt(tab[l4_table_offset(pt_page)]);
#endif
    tab = pte_to_virt(tab[l3_table_offset(pt_page)]);

    mmu_updates[0].ptr = (tab[l2_table_offset(pt_page)] & PAGE_MASK) + 
        sizeof(pgentry_t) * l1_table_offset(pt_page);
    mmu_updates[0].val = (pgentry_t)pfn_to_mfn(*pt_pfn) << PAGE_SHIFT | 
        (prot_e & ~_PAGE_RW);
    
    if ( (rc = HYPERVISOR_mmu_update(mmu_updates, 1, NULL, DOMID_SELF)) < 0 )
    {
        printk("ERROR: PTE for new page table page could not be updated\n");
        printk("       mmu_update failed with rc=%d\n", rc);
        do_exit();
    }

    /* Hook the new page table page into the hierarchy */
    mmu_updates[0].ptr =
        ((pgentry_t)prev_l_mfn << PAGE_SHIFT) + sizeof(pgentry_t) * offset;
    mmu_updates[0].val = (pgentry_t)pfn_to_mfn(*pt_pfn) << PAGE_SHIFT | prot_t;

    if ( (rc = HYPERVISOR_mmu_update(mmu_updates, 1, NULL, DOMID_SELF)) < 0 ) 
    {
        printk("ERROR: mmu_update failed with rc=%d\n", rc);
        do_exit();
    }

    *pt_pfn += 1;
}
Exemple #9
0
    pfn_to_map = 
        (start_info.nr_pt_frames - NOT_L1_FRAMES) * L1_PAGETABLE_ENTRIES;

    if ( *max_pfn >= virt_to_pfn(HYPERVISOR_VIRT_START) )
    {
        printk("WARNING: Mini-OS trying to use Xen virtual space. "
               "Truncating memory from %dMB to ",
               ((unsigned long)pfn_to_virt(*max_pfn) -
                (unsigned long)&_text)>>20);
        *max_pfn = virt_to_pfn(HYPERVISOR_VIRT_START - PAGE_SIZE);
        printk("%dMB\n",
               ((unsigned long)pfn_to_virt(*max_pfn) - 
                (unsigned long)&_text)>>20);
    }

    start_address = (unsigned long)pfn_to_virt(pfn_to_map);
    end_address = (unsigned long)pfn_to_virt(*max_pfn);

    /* We worked out the virtual memory range to map, now mapping loop */
    printk("Mapping memory range 0x%lx - 0x%lx\n", start_address, end_address);

    while ( start_address < end_address )
    {
        tab = (pgentry_t *)start_info.pt_base;
        pt_mfn = pfn_to_mfn(virt_to_pfn(start_info.pt_base));

#if defined(__x86_64__)
        offset = l4_table_offset(start_address);
        /* Need new L3 pt frame */
        if ( !(start_address & L3_MASK) )
            if ( need_pt_frame(start_address, L3_FRAME) ) 
Exemple #10
0
/*
 * This routine handles page faults.  It determines the address and the
 * problem, and then passes it off to one of the appropriate routines.
 */
asmlinkage void do_page_fault(struct pt_regs *regs)
{
	struct task_struct *tsk;
	struct vm_area_struct *vma;
	struct mm_struct *mm;
	unsigned long addr, cause;
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
	int fault, code = SEGV_MAPERR;

	cause = regs->scause;
	addr = regs->sbadaddr;

	tsk = current;
	mm = tsk->mm;

	/*
	 * Fault-in kernel-space virtual memory on-demand.
	 * The 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 */
	if (unlikely((addr >= VMALLOC_START) && (addr <= VMALLOC_END)))
		goto vmalloc_fault;

	/* Enable interrupts if they were enabled in the parent context. */
	if (likely(regs->sstatus & SR_PIE))
		local_irq_enable();

	/*
	 * If we're in an interrupt, have no user context, or are running
	 * in an atomic region, then we must not take the fault.
	 */
	if (unlikely(in_atomic() || !mm))
		goto no_context;

	if (user_mode(regs))
		flags |= FAULT_FLAG_USER;

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

retry:
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, addr);
	if (unlikely(!vma))
		goto bad_area;
	if (likely(vma->vm_start <= addr))
		goto good_area;
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
		goto bad_area;
	if (unlikely(expand_stack(vma, addr)))
		goto bad_area;

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it.
	 */
good_area:
	code = SEGV_ACCERR;

	switch (cause) {
	case EXC_INST_ACCESS:
		if (!(vma->vm_flags & VM_EXEC))
			goto bad_area;
		break;
	case EXC_LOAD_ACCESS:
		if (!(vma->vm_flags & VM_READ))
			goto bad_area;
		break;
	case EXC_STORE_ACCESS:
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
		flags |= FAULT_FLAG_WRITE;
		break;
	default:
		panic("%s: unhandled cause %lu", __func__, cause);
	}

	/*
	 * If for any reason at all we could not handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
	fault = handle_mm_fault(mm, vma, addr, flags);

	/*
	 * If we need to retry but a fatal signal is pending, handle the
	 * signal first. We do not need to release the mmap_sem because it
	 * would already be released in __lock_page_or_retry in mm/filemap.c.
	 */
	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(tsk))
		return;

	if (unlikely(fault & VM_FAULT_ERROR)) {
		if (fault & VM_FAULT_OOM)
			goto out_of_memory;
		else if (fault & VM_FAULT_SIGBUS)
			goto do_sigbus;
		BUG();
	}

	/*
	 * Major/minor page fault accounting is only done on the
	 * initial attempt. If we go through a retry, it is extremely
	 * likely that the page will be found in page cache at that point.
	 */
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		if (fault & VM_FAULT_MAJOR) {
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, addr);
		}
		if (fault & VM_FAULT_RETRY) {
			/*
			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
			 * of starvation.
			 */
			flags &= ~(FAULT_FLAG_ALLOW_RETRY);
			flags |= FAULT_FLAG_TRIED;

			/*
			 * No need to up_read(&mm->mmap_sem) as we would
			 * have already released it in __lock_page_or_retry
			 * in mm/filemap.c.
			 */
			goto retry;
		}
	}

	up_read(&mm->mmap_sem);
	return;

	/*
	 * Something tried to access memory that isn't in our memory map.
	 * Fix it, but check if it's kernel or user first.
	 */
bad_area:
	up_read(&mm->mmap_sem);
	/* User mode accesses just cause a SIGSEGV */
	if (user_mode(regs)) {
		do_trap(regs, SIGSEGV, code, addr, tsk);
		return;
	}

no_context:
	/* Are we prepared to handle this kernel fault? */
	if (fixup_exception(regs)) {
		return;
	}

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
	 * terminate things with extreme prejudice.
	 */
	bust_spinlocks(1);
	pr_alert("Unable to handle kernel %s at virtual address " REG_FMT "\n",
		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
		"paging request", addr);
	die(regs, "Oops");
	do_exit(SIGKILL);

	/*
	 * We ran out of memory, call the OOM killer, and return the userspace
	 * (which will retry the fault, or kill us if we got oom-killed).
	 */
out_of_memory:
	up_read(&mm->mmap_sem);
	if (!user_mode(regs))
		goto no_context;
	pagefault_out_of_memory();
	return;

do_sigbus:
	up_read(&mm->mmap_sem);
	/* Kernel mode? Handle exceptions or die */
	if (!user_mode(regs))
		goto no_context;
	do_trap(regs, SIGBUS, BUS_ADRERR, addr, tsk);
	return;

vmalloc_fault:
	{
		pgd_t *pgd, *pgd_k;
		pud_t *pud, *pud_k;
		pmd_t *pmd, *pmd_k;
		pte_t *pte_k;
		int index;

	        if (user_mode(regs))
			goto bad_area;

		/*
		 * Synchronize this task's top level page-table
		 * with the 'reference' page table.
		 *
		 * Do _not_ use "tsk->active_mm->pgd" here.
		 * We might be inside an interrupt in the middle
		 * of a task switch.
		 */
		index = pgd_index(addr);
		pgd = (pgd_t *)pfn_to_virt(csr_read(sptbr)) + index;
		pgd_k = init_mm.pgd + index;

		if (!pgd_present(*pgd_k))
			goto no_context;
		set_pgd(pgd, *pgd_k);

		pud = pud_offset(pgd, addr);
		pud_k = pud_offset(pgd_k, addr);
		if (!pud_present(*pud_k))
			goto no_context;

		/* Since the vmalloc area is global, it is unnecessary
		   to copy individual PTEs */
		pmd = pmd_offset(pud, addr);
		pmd_k = pmd_offset(pud_k, addr);
		if (!pmd_present(*pmd_k))
			goto no_context;
		set_pmd(pmd, *pmd_k);

		/* Make sure the actual PTE exists as well to
		 * catch kernel vmalloc-area accesses to non-mapped
		 * addresses. If we don't do this, this will just
		 * silently loop forever.
		 */
		pte_k = pte_offset_kernel(pmd_k, addr);
		if (!pte_present(*pte_k))
			goto no_context;
		return;
	}
}