static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys, unsigned long virt, phys_addr_t size, pgprot_t prot, phys_addr_t (*alloc)(void)) { init_pgd(pgd_offset_raw(pgdir, virt), phys, virt, size, prot, alloc); }
/* * Copy the current shadow region into a new pgdir. */ void __init kasan_copy_shadow(pgd_t *pgdir) { pgd_t *pgd, *pgd_new, *pgd_end; pgd = pgd_offset_k(KASAN_SHADOW_START); pgd_end = pgd_offset_k(KASAN_SHADOW_END); pgd_new = pgd_offset_raw(pgdir, KASAN_SHADOW_START); do { set_pgd(pgd_new, *pgd); } while (pgd++, pgd_new++, pgd != pgd_end); }
/* * Copy the current shadow region into a new pgdir. */ void __init kasan_copy_shadow(pgd_t *pgdir) { pgd_t *pgdp, *pgdp_new, *pgdp_end; pgdp = pgd_offset_k(KASAN_SHADOW_START); pgdp_end = pgd_offset_k(KASAN_SHADOW_END); pgdp_new = pgd_offset_raw(pgdir, KASAN_SHADOW_START); do { set_pgd(pgdp_new, READ_ONCE(*pgdp)); } while (pgdp++, pgdp_new++, pgdp != pgdp_end); }
static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start, unsigned long end) { unsigned long next; unsigned long addr = start; pgd_t *src_pgdp = pgd_offset_k(start); dst_pgdp = pgd_offset_raw(dst_pgdp, start); do { next = pgd_addr_end(addr, end); if (pgd_none(READ_ONCE(*src_pgdp))) continue; if (copy_pud(dst_pgdp, src_pgdp, addr, next)) return -ENOMEM; } while (dst_pgdp++, src_pgdp++, addr = next, addr != end); return 0; }
/* * Copies length bytes, starting at src_start into an new page, * perform cache maintentance, then maps it at the specified address low * address as executable. * * This is used by hibernate to copy the code it needs to execute when * overwriting the kernel text. This function generates a new set of page * tables, which it loads into ttbr0. * * Length is provided as we probably only want 4K of data, even on a 64K * page system. */ static int create_safe_exec_page(void *src_start, size_t length, unsigned long dst_addr, phys_addr_t *phys_dst_addr, void *(*allocator)(gfp_t mask), gfp_t mask) { int rc = 0; pgd_t *pgdp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; unsigned long dst = (unsigned long)allocator(mask); if (!dst) { rc = -ENOMEM; goto out; } memcpy((void *)dst, src_start, length); flush_icache_range(dst, dst + length); pgdp = pgd_offset_raw(allocator(mask), dst_addr); if (pgd_none(READ_ONCE(*pgdp))) { pudp = allocator(mask); if (!pudp) { rc = -ENOMEM; goto out; } pgd_populate(&init_mm, pgdp, pudp); } pudp = pud_offset(pgdp, dst_addr); if (pud_none(READ_ONCE(*pudp))) { pmdp = allocator(mask); if (!pmdp) { rc = -ENOMEM; goto out; } pud_populate(&init_mm, pudp, pmdp); } pmdp = pmd_offset(pudp, dst_addr); if (pmd_none(READ_ONCE(*pmdp))) { ptep = allocator(mask); if (!ptep) { rc = -ENOMEM; goto out; } pmd_populate_kernel(&init_mm, pmdp, ptep); } ptep = pte_offset_kernel(pmdp, dst_addr); set_pte(ptep, pfn_pte(virt_to_pfn(dst), PAGE_KERNEL_EXEC)); /* * Load our new page tables. A strict BBM approach requires that we * ensure that TLBs are free of any entries that may overlap with the * global mappings we are about to install. * * For a real hibernate/resume cycle TTBR0 currently points to a zero * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI * runtime services), while for a userspace-driven test_resume cycle it * points to userspace page tables (and we must point it at a zero page * ourselves). Elsewhere we only (un)install the idmap with preemption * disabled, so T0SZ should be as required regardless. */ cpu_set_reserved_ttbr0(); local_flush_tlb_all(); write_sysreg(phys_to_ttbr(virt_to_phys(pgdp)), ttbr0_el1); isb(); *phys_dst_addr = virt_to_phys((void *)dst); out: return rc; }