Exemple #1
0
static int socfpga_dwmac_resume(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct stmmac_priv *priv = netdev_priv(ndev);

	socfpga_dwmac_set_phy_mode(priv->plat->bsp_priv);

	/* Before the enet controller is suspended, the phy is suspended.
	 * This causes the phy clock to be gated. The enet controller is
	 * resumed before the phy, so the clock is still gated "off" when
	 * the enet controller is resumed. This code makes sure the phy
	 * is "resumed" before reinitializing the enet controller since
	 * the enet controller depends on an active phy clock to complete
	 * a DMA reset. A DMA reset will "time out" if executed
	 * with no phy clock input on the Synopsys enet controller.
	 * Verified through Synopsys Case #8000711656.
	 *
	 * Note that the phy clock is also gated when the phy is isolated.
	 * Phy "suspend" and "isolate" controls are located in phy basic
	 * control register 0, and can be modified by the phy driver
	 * framework.
	 */
	if (priv->phydev)
		phy_resume(priv->phydev);

	return stmmac_resume(dev);
}
Exemple #2
0
int dsa_slave_resume(struct net_device *slave_dev)
{
	struct dsa_slave_priv *p = netdev_priv(slave_dev);

	netif_device_attach(slave_dev);

	if (p->phy) {
		phy_resume(p->phy);
		phy_start(p->phy);
	}

	return 0;
}
static int socfpga_dwmac_init(struct platform_device *pdev, void *priv)
{
	struct socfpga_dwmac	*dwmac = priv;
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct stmmac_priv *stpriv = NULL;
	int ret = 0;

	if (ndev)
		stpriv = netdev_priv(ndev);

	/* Assert reset to the enet controller before changing the phy mode */
	if (dwmac->stmmac_rst)
		reset_control_assert(dwmac->stmmac_rst);

	/* Setup the phy mode in the system manager registers according to
	 * devicetree configuration
	 */
	ret = socfpga_dwmac_setup(dwmac);

	/* Deassert reset for the phy configuration to be sampled by
	 * the enet controller, and operation to start in requested mode
	 */
	if (dwmac->stmmac_rst)
		reset_control_deassert(dwmac->stmmac_rst);

	/* Before the enet controller is suspended, the phy is suspended.
	 * This causes the phy clock to be gated. The enet controller is
	 * resumed before the phy, so the clock is still gated "off" when
	 * the enet controller is resumed. This code makes sure the phy
	 * is "resumed" before reinitializing the enet controller since
	 * the enet controller depends on an active phy clock to complete
	 * a DMA reset. A DMA reset will "time out" if executed
	 * with no phy clock input on the Synopsys enet controller.
	 * Verified through Synopsys Case #8000711656.
	 *
	 * Note that the phy clock is also gated when the phy is isolated.
	 * Phy "suspend" and "isolate" controls are located in phy basic
	 * control register 0, and can be modified by the phy driver
	 * framework.
	 */
	if (stpriv && stpriv->phydev)
		phy_resume(stpriv->phydev);

	return ret;
}
Exemple #4
0
static int hns_nic_config_phy_loopback(struct phy_device *phy_dev, u8 en)
{
	int err;

	if (en) {
		/* Doing phy loopback in offline state, phy resuming is
		 * needed to power up the device.
		 */
		err = phy_resume(phy_dev);
		if (err)
			goto out;

		err = phy_loopback(phy_dev, true);
	} else {
		err = phy_loopback(phy_dev, false);
		if (err)
			goto out;

		err = phy_suspend(phy_dev);
	}

out:
	return err;
}