void inicializa_PM(void)
	{

		// Activa el oscilador Osc0
		pm_switch_to_osc0(&AVR32_PM,12000000,6);

		//_______________________________________________________________________________
		//Establece la frecuencia  del VCO
		//Si DIV>1           Fvco=((MUL+1)/DIV)*Fosc
		//Si DIV=0           Fvco=2*(MUL+1)*Fosc

		pm_pll_setup(&AVR32_PM,0,7,0,0,16); // lockcount in main clock for the PLL wait lock

		//_______________________________________________________________________________
		// Establece la frecuencia de salida del PLL
		pm_pll_set_option(&AVR32_PM,0,1,1,0);//1 Star-up faster, Start-up normal
		//_______________________________________________________________________________
		//Habilita el PLL 0
		pm_pll_enable(&AVR32_PM,0);
		//_______________________________________________________________________________
		//Espera a que se establesca el PLL
		pm_wait_for_pll0_locked(&AVR32_PM) ;
		//_______________________________________________________________________________
		// Set one wait-state (WS) for flash controller
		flashc_set_wait_state(1);

		//habilita la salida del PLL0 con 2 y el OSC0 con 1
		pm_switch_to_clock(&AVR32_PM, 2);
		



	}
Exemple #2
0
/*! \brief Initializes the MCU system clocks.
 */
static void init_sys_clocks(void)
{
    // Switch to OSC0 to speed up the booting
    pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

    // Start oscillator1
    pm_enable_osc1_crystal(&AVR32_PM, FOSC1);
    //
    pm_enable_clk1(&AVR32_PM, OSC1_STARTUP);

    // Set PLL0 (fed from OSC1 = 11.2896 MHz) to 112.896 MHz
    // We use OSC1 since we need a correct master clock for the SSC module to generate
    // the correct sample rate
    pm_pll_setup(&AVR32_PM, 0,  // pll.
                 SYS_CLOCK_PLL_MUL-1,   // mul.
                 1,   // div.
                 1,   // osc.
                 16); // lockcount.

    // Set PLL operating range and divider (fpll = fvco/2)
    // -> PLL0 output = 62.0928 MHz
    pm_pll_set_option(&AVR32_PM, 0, // pll.
                      1,  // pll_freq.
                      1,  // pll_div2.
                      0); // pll_wbwdisable.

    // start PLL0 and wait for the lock
    pm_pll_enable(&AVR32_PM, 0);
    pm_wait_for_pll0_locked(&AVR32_PM);
    // Set all peripheral clocks torun at master clock rate
    pm_cksel(&AVR32_PM,
             0,   // pbadiv.
             0,   // pbasel.
             0,   // pbbdiv.
             0,   // pbbsel.
             0,   // hsbdiv.
             0);  // hsbsel.

    // Set one waitstate for the flash
    flashc_set_wait_state(1);

    // Switch to PLL0 as the master clock
    pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

#if (defined USB_RESYNC_METHOD) && (USB_RESYNC_METHOD == USB_RESYNC_METHOD_EXT_CLOCK_SYNTHESIZER)
    // Holds frequencies parameters
    g_fcpu_hz = g_fhsb_hz = g_fpba_hz = g_fpbb_hz = FMCK_HZ(11289600);
#endif

#if (defined __GNUC__) && (defined __AVR32__)
    // Give the used PBA clock frequency to Newlib, so it can work properly.
    set_cpu_hz(FPBA_HZ);
#endif
    init_usb_clock();
    init_codec_gclk();
}
Exemple #3
0
/*! \brief Initializes the MCU system clocks.
 */
void init_sys_clocks(void)
{
  // Switch to OSC0 to speed up the booting
  pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

  // Start oscillator1
  pm_enable_osc1_crystal(&AVR32_PM, FOSC1);
  pm_enable_clk1(&AVR32_PM, OSC1_STARTUP);

  // Set PLL0 (fed from OSC0 = 12 MHz) to 132 MHz
  // We use OSC1 since we need a correct master clock for the SSC module to generate
  // the correct sample rate
  pm_pll_setup(&AVR32_PM, 0,  // pll.
    10,  // mul.
    1,   // div.
    0,   // osc.
    16); // lockcount.

  // Set PLL operating range and divider (fpll = fvco/2)
  // -> PLL0 output = 66 MHz
  pm_pll_set_option(&AVR32_PM, 0, // pll.
    1,  // pll_freq.
    1,  // pll_div2.
    0); // pll_wbwdisable.

  // start PLL0 and wait for the lock
  pm_pll_enable(&AVR32_PM, 0);
  pm_wait_for_pll0_locked(&AVR32_PM);
  // Set all peripheral clocks torun at master clock rate

  // Set one waitstate for the flash
  flashc_set_wait_state(1);

  // Switch to PLL0 as the master clock
  pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

  // Use 12MHz from OSC0 and generate 96 MHz
  pm_pll_setup(&AVR32_PM, 1,  // pll.
	  7,   // mul.
	  1,   // div.
	  0,   // osc.
	  16); // lockcount.

  pm_pll_set_option(&AVR32_PM, 1, // pll.
	  1,  // pll_freq: choose the range 80-180MHz.
	  1,  // pll_div2.
	  0); // pll_wbwdisable.

  // start PLL1 and wait forl lock
  pm_pll_enable(&AVR32_PM, 1);

  // Wait for PLL1 locked.
  pm_wait_for_pll1_locked(&AVR32_PM);

}
void displayOnOff(void){
	static uint32_t j=0;
	static int32_t SEL =4;
			
			
				   display(15);
				   delay_s(100);
				   display(0);
				   delay_s(100);
				   if (j>6) {
				   pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
				   pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
				   
				   pm_pll_setup(&AVR32_PM,0,SEL,1,0,16); // lockcount in main clock for the PLL wait lock

				   //_______________________________________________________________________________
				   // Establece la frecuencia de salida del PLL
				   pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
				   //_______________________________________________________________________________
				   //Habilita el PLL 0
				   pm_pll_enable(&AVR32_PM,0);
				   //_______________________________________________________________________________
				   //Espera a que se establesca el PLL
				   pm_wait_for_pll0_locked(&AVR32_PM) ;
				   //_______________________________________________________________________________
				   // Set one wait-state (WS) for flash controller
				   flashc_set_wait_state(1);

				   //habilita la salida del PLL0 con 2 y el OSC0 con 1
				   pm_switch_to_clock(&AVR32_PM, 2);
				   SEL-=2;
				   if (SEL<2)
				   {
					   SEL=6;
				   }
				j=0;
			}
			j++;
		
	
	
}
/*! \brief Initializes the MCU system clocks.
 */
void init_sys_clocks(void)
{
  // Switch to OSC0 to speed up the booting
  pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

  // Start oscillator1
  pm_enable_osc1_crystal(&AVR32_PM, FOSC1);
  //
  pm_enable_clk1(&AVR32_PM, OSC1_STARTUP);

  // Set PLL0 (fed from OSC1 = 11.2896 MHz) to 124.1856 MHz
  // We use OSC1 since we need a correct master clock for the SSC module to generate
  // the correct sample rate
  pm_pll_setup(&AVR32_PM, 0,  // pll.
    10,  // mul.
    1,   // div.
    1,   // osc.
    16); // lockcount.

  // Set PLL operating range and divider (fpll = fvco/2)
  // -> PLL0 output = 62.0928 MHz
  pm_pll_set_option(&AVR32_PM, 0, // pll.
    1,  // pll_freq.
    1,  // pll_div2.
    0); // pll_wbwdisable.

  // start PLL0 and wait for the lock
  pm_pll_enable(&AVR32_PM, 0);
  pm_wait_for_pll0_locked(&AVR32_PM);
  // Set all peripheral clocks to run at master clock rate
  pm_cksel(&AVR32_PM,
    0,   // pbadiv.
    0,   // pbasel.
    0,   // pbbdiv.
    0,   // pbbsel.
    0,   // hsbdiv.
    0);  // hsbsel.

  // Set one waitstate for the flash
  flashc_set_wait_state(1);

  // Switch to PLL0 as the master clock
  pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

  init_usb_clock();
  init_codec_gclk();
}
void systemInit(void)
{
   //Low-level initialization
   _init_startup();

   //Switch main clock to OSC0 (12MHz)
   pm_switch_to_osc0(&AVR32_PM, OSC0_FREQ, AVR32_PM_OSCCTRL1_STARTUP_2048_RCOSC);

   //Start OSC1 (11.2896MHz)
   pm_enable_osc1_crystal(&AVR32_PM, OSC1_FREQ);
   pm_enable_clk1(&AVR32_PM, AVR32_PM_OSCCTRL1_STARTUP_2048_RCOSC);

   //Configure PLL0 (132MHz)
   pm_pll_setup(&AVR32_PM, 0, 10, 1, 0, 16);
   //Set PLL operating range (80 to 180MHz) and output divider (2)
   pm_pll_set_option(&AVR32_PM, 0, 1, 1, 0);

   //Start PLL0
   pm_pll_enable(&AVR32_PM, 0);
   //Wait for the PLL to lock
   pm_wait_for_pll0_locked(&AVR32_PM);

   //Set FLASH wait-state
   flashc_set_wait_state(1);

   //Switch main clock to PLL0
   pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

   //Configure PLL1 (96MHz)
   pm_pll_setup(&AVR32_PM, 1, 7, 1, 0, 16);
   //Set PLL operating range (80 to 180MHz) and output divider (2)
   pm_pll_set_option(&AVR32_PM, 1, 1, 1, 0);

   //Start PLL1
   pm_pll_enable(&AVR32_PM, 1);
   //Wait for the PLL to lock
   pm_wait_for_pll1_locked(&AVR32_PM);

   //Set clock dividers for PBA, PBB and HSB clocks
   pm_cksel(&AVR32_PM, 0, 0, 0, 0, 0, 0);

   //Initialize SDRAM memory
   sdramc_init(HSB_FREQ);
}
Exemple #7
0
/* \brief This is an example that shows:
 *  - how to configure OSC0
 *  - how to set the main clock to use OSC0 as input
 *  - how to configure a generic clock GCLK to use OSC0 as input
 *  - how to output a generic clock to a pin (GLCK_0_1 for EVK1100 or GCLK_2 for
 *    EVK1101 or GLCK_1_0 for EVK1104+UC3_A3_XPLAINED or GLCK_1_0 for STK600+RCUC3L0
      or GLCK_0 for STK600+RCUC3D)
 *  - how to go into a sleep mode (while still maintaining GCLK output)
 *
 */
int main(void)
{
	volatile avr32_pm_t* pm = &AVR32_PM;

#if ( BOARD == STK600_RCUC3L0 ) || ( BOARD == UC3C_EK ) || (BOARD == STK600_RCUC3D)
	// Note: for UC3 C, D and L series, the osc configurations are handled by the SCIF module
	// and the synchronous clocks used to clock the main digital logic are handled
	// by the PM module.
	// 1) Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
	scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);

	// 2) Enable the OSC0
	scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);

	// 3) Set the main clock source as being OSC0.
	pm_set_mclk_source(PM_CLK_SRC_OSC0);
#else
	// 1) Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
	pm_enable_osc0_crystal(pm, FOSC0);

	// 2) Enable the OSC0
	pm_enable_clk0(pm, OSC0_STARTUP);

	// 3) Set the main clock source as being OSC0.
	pm_switch_to_clock(pm, AVR32_PM_MCSEL_OSC0);
#endif

	// - Configure a generic clock GCLK to use OSC0 as input
	// - Output that generic clock to a pin
	local_enable_gclk_on_gpio(pm);

	//*** Sleep mode
	// If there is a chance that any PB write operations are incomplete, the CPU
	// should perform a read operation from any register on the PB bus before
	// executing the sleep instruction.
	AVR32_INTC.ipr[0];  // Dummy read

	// - Go into a sleep mode (while still maintaining GCLK output)
	SLEEP(AVR32_PM_SMODE_FROZEN);

	while (true);
}
Exemple #8
0
int main()
{
    pm_enable_osc0_crystal (&AVR32_PM, FOSC0);
    pm_enable_clk0 (&AVR32_PM, OSC0_STARTUP);
    pm_switch_to_clock (&AVR32_PM, AVR32_PM_MCSEL_OSC0);

    USART_Initialize ();

    usart_write_line (&AVR32_USART0, "USART initialized\n");
    usart_write_line (&AVR32_USART0, "DIP204 initialized\n");


    Item_Available_Count = xSemaphoreCreateCounting (Item_Buffer_Count, 0);
    Space_Available_Count = xSemaphoreCreateCounting (Item_Buffer_Count, Item_Buffer_Count - 1);

    xTaskCreate (Producer_Task_Function, "Producer", 512, NULL, tskIDLE_PRIORITY + 4, &Producer_Task_Handle);
    xTaskCreate (Consumer_Task_Function, "Consumer", 512, NULL, tskIDLE_PRIORITY + 4, &Consumer_Task_Handle);
    xTaskCreate (Blinker_Task_Function, "Blinker", 512, NULL, tskIDLE_PRIORITY + 4, NULL);


    vTaskStartScheduler ();
}
static void clockfrequencies_configure(void)
{
#if UC3L
    static scif_gclk_opt_t gc_dfllif_ref_opt = { SCIF_GCCTRL_SLOWCLOCK, 0, false };
    static pcl_freq_param_t pcl_dfll_freq_param =
    {
      .main_clk_src = PCL_MC_DFLL0,
      .cpu_f        = EXAMPLE_MCUCLK_HZ,
      .pba_f        = EXAMPLE_MCUCLK_HZ,
      .pbb_f        = EXAMPLE_MCUCLK_HZ,
      .dfll_f       = EXAMPLE_FDFLL_HZ,
      .pextra_params = &gc_dfllif_ref_opt
    };
// Implementation for UC3L
    // Note: on the AT32UC3L-EK board, there is no crystal/external clock connected
    // to the OSC0 pinout XIN0/XOUT0. We shall then program the DFLL and switch the
    // main clock source to the DFLL.
    pcl_configure_clocks(&pcl_dfll_freq_param);
    // Note: since it is dynamically computing the appropriate field values of the
    // configuration registers from the parameters structure, this function is not
    // optimal in terms of code size. For a code size optimal solution, it is better
    // to create a new function from pcl_configure_clocks_dfll0() and modify it
    // to use preprocessor computation from pre-defined target frequencies.
#elif UC3C
    // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
    scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);
    // Enable the OSC0
    scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);
    // Set the main clock source as being OSC0.
    pm_set_mclk_source(PM_CLK_SRC_OSC0);

    scif_pll_opt_t opt;

    // Setup PLL0 on Osc0, mul=7 ,no divisor, lockcount=16: (16Mhzx8)/2 = 64MHz output
    opt.osc = SCIF_OSC0;     // Sel Osc0 or Osc1
    opt.lockcount = 16;      // lockcount in main clock for the PLL wait lock
    opt.div = 1;             // DIV=1 in the formula
    opt.mul = 7;             // MUL=7 in the formula
    opt.pll_div2 = 1;        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
    opt.pll_wbwdisable = 0;  //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
    opt.pll_freq = 1;        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.

    scif_pll_setup(SCIF_PLL0, &opt); // lockcount in main clock for the PLL wait lock

    /* Enable PLL0 */
    scif_pll_enable(SCIF_PLL0);

    /* Wait for PLL0 locked */
    scif_wait_for_pll_locked(SCIF_PLL0) ;

    // Divide PLL0 output by 2 for CPU, HSB and PBx clocks = 32MHz
    pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) 0); // CPU
    pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) 0); // HSB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) 0); // PBB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) 0); // PBA
    pm_set_clk_domain_div(PM_CLK_DOMAIN_4, (pm_divratio_t) 0); // PBC

    /* Set the main clock source as being PLL0. */
    pm_set_mclk_source(PM_CLK_SRC_PLL0);

#elif UC3D
    // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
    scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);
    // Enable the OSC0
    scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);
    // Set the main clock source as being OSC0.
    pm_set_mclk_source(PM_CLK_SRC_OSC0);

    scif_pll_opt_t opt;

    // Setup PLL0 on Osc0, mul=10 ,no divisor, lockcount=16: (12Mhzx11)/2 = 66MHz output
    opt.osc = SCIF_OSC0;     // Sel Osc0 or Osc1
    opt.lockcount = 16;      // lockcount in main clock for the PLL wait lock
    opt.div = 1;             // DIV=1 in the formula
    opt.mul = 10;            // MUL=10 in the formula
    opt.pll_div2 = 1;        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
    opt.pll_wbwdisable = 0;  // pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
    opt.pll_freq = 1;        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.

    scif_pll_setup(SCIF_PLL0, &opt); // lockcount in main clock for the PLL wait lock

    /* Enable PLL0 */
    scif_pll_enable(SCIF_PLL0);

    /* Wait for PLL0 locked */
    scif_wait_for_pll_locked(SCIF_PLL0) ;

    // Divide PLL0 output by 2 for CPU, HSB and PBx clocks = 33MHz
    pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) 0); // CPU
    pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) 0); // HSB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) 0); // PBB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) 0); // PBA

    /* Set the main clock source as being PLL0. */
    pm_set_mclk_source(PM_CLK_SRC_PLL0);

#else // UC3A and UC3B series
  // Switch the main clock source to Osc0.
  pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

  // Setup PLL0 on Osc0, mul=10 ,no divisor, lockcount=16: 12Mhzx11 = 132MHz output
  pm_pll_setup(&AVR32_PM, 0,  // pll.
               10,  // mul.
               1,   // div.
               0,   // osc.
               16); // lockcount.
  // PLL output VCO frequency is 132MHz.
  // We divide it by 2 with the pll_div2=1 to get a main clock at 66MHz.
  pm_pll_set_option(&AVR32_PM, 0, // pll.
                    1,  // pll_freq.
                    1,  // pll_div2.
                    0); // pll_wbwdisable.
  // Enable the PLL.
  pm_pll_enable(&AVR32_PM, 0);
  // Wait until the PLL output is stable.
  pm_wait_for_pll0_locked(&AVR32_PM);
  // Configure each clock domain to use the main clock divided by 2
  // => fCPU = fPBA = fPBB = 33MHz.
  pm_cksel(&AVR32_PM,
           1,   // pbadiv.
           0,   // pbasel.
           1,   // pbbdiv.
           0,   // pbbsel.
           1,   // hsbdiv=cpudiv
           0);  // hsbsel=cpusel
  // Switch the main clock source to PLL0.
  pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);
#endif
}
Exemple #10
0
void pm_switch_to_osc0(volatile avr32_pm_t *pm, unsigned int fosc0, unsigned int startup)
{
  pm_enable_osc0_crystal(pm, fosc0);            // Enable the Osc0 in crystal mode
  pm_enable_clk0(pm, startup);                  // Crystal startup time - This parameter is critical and depends on the characteristics of the crystal
  pm_switch_to_clock(pm, AVR32_PM_MCSEL_OSC0);  // Then switch main clock to Osc0
}
Exemple #11
0
void usb_suspend_action(void)
{
#if (UC3A || UC3B)
   volatile avr32_pm_t *pm = &AVR32_PM;
   unsigned long clock;
   unsigned long cksel_save;
   U32 startup;

   pm->AWEN.usb_waken = 1;

   // Save the clock source, Clock Select (CKSEL) and startup time since we will reconfigure them
   clock = pm_get_clock(&AVR32_PM);
   startup = AVR32_PM.OSCCTRL0.startup;
   pm_cksel_get(&AVR32_PM, &cksel_save);

   // Setup a long startup time. We will control it with a software delay.
   // Moreover, this also ensures that the PLL0 will not be blocked due to a
   // bad oscillator state/frequency in the case of a short startup (0 or 1.1 ms).
   AVR32_PM.OSCCTRL0.startup = AVR32_PM_OSCCTRL0_STARTUP_2048_RCOSC;

   // Switch on the internal RC oscillator
   pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCSEL_SLOW);

   // Reset the Clock Select in order to ensure we are running on
   // the internal RC osc at full speed.
   pm_cksel(&AVR32_PM
   , 0, 0 // PBA
   , 0, 0 // PBB
   , 0, 0 // HSB
   );

   // If there is a chance that any PB write operations are incomplete, the CPU
   // should perform a read operation from any register on the PB bus before
   // executing the sleep instruction.
   AVR32_INTC.ipr[0];  // Dummy read

   // Entering into Sleep mode.
   SLEEP(AVR32_PM_SMODE_STATIC);
   // Exit from Sleep mode.

   // The host may start using the USB 10 ms (FS) or 3 ms (HS) after the RESUME.
   // Waits for oscillator startup with a time lower than USB requirements.
   cpu_delay_us(1400, AVR32_PM_RCOSC_FREQUENCY);

   // Restore CKSEL
   pm_cksel_set(&AVR32_PM, cksel_save);

   // Shorten the startup time, since OSC0 is ready.
   AVR32_PM.OSCCTRL0.startup = AVR32_PM_OSCCTRL0_STARTUP_0_RCOSC;

   // Switch back to the previous clock.
   pm_switch_to_clock(&AVR32_PM, clock);

   // Restore startup time
   AVR32_PM.OSCCTRL0.startup = startup;
   pm->AWEN.usb_waken = 0;
#else
  Enable_global_interrupt();
  //! @todo Implement this on the silicon version
  //Enter_power_down_mode();  // For example...
#if 0
   pm->AWEN.usb_waken = 1;

   // If there is a chance that any PB write operations are incomplete, the CPU
   // should perform a read operation from any register on the PB bus before
   // executing the sleep instruction.
   AVR32_INTC.ipr[0];  // Dummy read

   // Entering into Sleep mode.
   SLEEP(AVR32_PM_SMODE_STATIC);
   // Exit from Sleep mode.

   pm->AWEN.usb_waken = 0;
#endif
#endif
}
int pm_configure_clocks(pm_freq_param_t *param)
{
  // Supported frequencies:
  // Fosc0 mul div PLL div2_en cpu_f pba_f   Comment
  //  12   15   1  192     1     12    12
  //  12    9   3   40     1     20    20    PLL out of spec
  //  12   15   1  192     1     24    12
  //  12    9   1  120     1     30    15
  //  12    9   3   40     0     40    20    PLL out of spec
  //  12   15   1  192     1     48    12
  //  12   15   1  192     1     48    24
  //  12    8   1  108     1     54    27
  //  12    9   1  120     1     60    15
  //  12    9   1  120     1     60    30
  //  12   10   1  132     1     66    16.5
  //
  unsigned long in_cpu_f  = param->cpu_f;
  unsigned long in_osc0_f = param->osc0_f;
  unsigned long mul, div, div2_en = 0, div2_cpu = 0, div2_pba = 0;
  unsigned long pll_freq, rest;
  Bool b_div2_pba, b_div2_cpu;

  // Switch to external Oscillator 0
  pm_switch_to_osc0(&AVR32_PM, in_osc0_f, param->osc0_startup);

  // Start with CPU freq config
  if (in_cpu_f == in_osc0_f)
  {
    param->cpu_f = in_osc0_f;
    param->pba_f = in_osc0_f;
    return PM_FREQ_STATUS_OK;
  }
  else if (in_cpu_f < in_osc0_f)
  {
    // TBD
  }

  rest = in_cpu_f % in_osc0_f;

  for (div = 1; div < 32; div++)
  {
    if ((div * rest) % in_osc0_f == 0)
      break;
  }
  if (div == 32)
    return PM_FREQ_STATUS_FAIL;

  mul = (in_cpu_f * div) / in_osc0_f;

  if (mul > PM_MAX_MUL)
    return PM_FREQ_STATUS_FAIL;

  // export 2power from PLL div to div2_cpu
  while (!(div % 2))
  {
    div /= 2;
    div2_cpu++;
  }

  // Here we know the mul and div parameter of the PLL config.
  // . Check out if the PLL has a valid in_cpu_f.
  // . Try to have for the PLL frequency (VCO output) the highest possible value
  //   to reduce jitter.
  while (in_osc0_f * 2 * mul / div < AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ)
  {
    if (2 * mul > PM_MAX_MUL)
      break;
    mul *= 2;
    div2_cpu++;
  }

  if (div2_cpu != 0)
  {
    div2_cpu--;
    div2_en = 1;
  }

  pll_freq = in_osc0_f * mul / (div * (1 << div2_en));

  // Update real CPU Frequency
  param->cpu_f = pll_freq / (1 << div2_cpu);
  mul--;

  pm_pll_setup(&AVR32_PM
  , 0   // pll
  , mul // mul
  , div // div
  , 0   // osc
  , 16  // lockcount
  );

  pm_pll_set_option(&AVR32_PM
  , 0 // pll
  // PLL clock is lower than 160MHz: need to set pllopt.
  , (pll_freq < AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ) ? 1 : 0 // pll_freq
  , div2_en // pll_div2
  , 0 // pll_wbwdisable
  );

  rest = pll_freq;
  while (rest > AVR32_PM_PBA_MAX_FREQ ||
         rest != param->pba_f)
  {
    div2_pba++;
    rest = pll_freq / (1 << div2_pba);
    if (rest < param->pba_f)
      break;
  }

  // Update real PBA Frequency
  param->pba_f = pll_freq / (1 << div2_pba);

  // Enable PLL0
  pm_pll_enable(&AVR32_PM, 0);

  // Wait for PLL0 locked
  pm_wait_for_pll0_locked(&AVR32_PM);

  if (div2_cpu)
  {
    b_div2_cpu = TRUE;
    div2_cpu--;
  }
  else
    b_div2_cpu = FALSE;

  if (div2_pba)
  {
    b_div2_pba = TRUE;
    div2_pba--;
  }
  else
    b_div2_pba = FALSE;

  pm_cksel(&AVR32_PM
  , b_div2_pba, div2_pba // PBA
  , b_div2_cpu, div2_cpu // PBB
  , b_div2_cpu, div2_cpu // HSB
  );

  if (param->cpu_f > AVR32_FLASHC_FWS_0_MAX_FREQ)
  {
    flashc_set_wait_state(1);
#if (defined AVR32_FLASHC_210_H_INCLUDED)
    if (param->cpu_f > AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ)
      flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1);
    else
      flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
#endif
  }
  else
  {
    flashc_set_wait_state(0);
#if (defined AVR32_FLASHC_210_H_INCLUDED)
    if (param->cpu_f > AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ)
      flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1);
    else
      flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
#endif
  }

  pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);

  return PM_FREQ_STATUS_OK;
}
Exemple #13
0
/* \brief Start PLL0, switch main clock to PLL0 output.
 *
 *
 */
static void local_start_highfreq_clock(void)
{
#if BOARD == STK600_RCUC3L0 || BOARD == UC3L_EK
  scif_dfll_openloop_conf_t dfllconfig = {EXAMPLE_DFLL_FINE_FDFLL96, EXAMPLE_DFLL_COARSE_FDFLL96};

  // Configure and start the DFLL0 in open loop mode to generate a frequency of 96MHz.
  scif_dfll0_openloop_start(&dfllconfig);

  // Since our target is to set the CPU&HSB frequency domains to 48MHz, we must
  // set one wait-state and enable the High-speed read mode on the flash controller.
  flashcdw_set_flash_waitstate_and_readmode(EXAMPLE_CPUCLK_HZ);

  // Set the CPU clock domain to 48MHz (by applying a division ratio = 2).
  pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_CPU, PM_CKSEL_DIVRATIO_2);

  // Set the PBA clock domain to 24MHz (by applying a division ratio = 4).
  pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBA, PM_CKSEL_DIVRATIO_4);

  // Set the PBB clock domain to 48MHz (by applying a division ratio = 2).
  pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBB, PM_CKSEL_DIVRATIO_2);

  // Set the main clock source to be DFLL0.
  pm_set_mclk_source(PM_CLK_SRC_DFLL0);
#elif BOARD == UC3C_EK || BOARD == STK600_RCUC3D

  scif_pll_opt_t opt;

  // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
  scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);

  // Enable the OSC0
  scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);

  // Set the main clock source as being OSC0.
  pm_set_mclk_source(PM_CLK_SRC_OSC0);

  opt.osc = SCIF_OSC0;     // Sel Osc0 or Osc1
  opt.lockcount = 16;      // lockcount in main clock for the PLL wait lock
  opt.div = 1;             // DIV=1 in the formula
  opt.mul = 5;             // MUL=6 in the formula
  opt.pll_div2 = 1;        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
  opt.pll_wbwdisable = 0;  //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
  opt.pll_freq = 1;        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.

  scif_pll_setup(SCIF_PLL0, &opt); // lockcount in main clock for the PLL wait lock

  /* Enable PLL0 */
  scif_pll_enable(SCIF_PLL0);

  /* Wait for PLL0 locked */
  scif_wait_for_pll_locked(SCIF_PLL0) ;

  /* Divide PBA clock by 2 from main clock (PBA clock = 48MHz/2 = 24MHz).
     Peripheral Bus A clock divisor enable = 1
     Peripheral Bus A select = 0
     Peripheral Bus B clock divisor enable = 0
     Peripheral Bus B select = 0
     High Speed Bus clock divisor enable = 0
     High Speed Bus select = 0
  */
  pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) 0); // PBA

  // Set one wait-state (WS) for flash controller. 0 WS access is up to 30MHz for HSB/CPU clock.
  // As we want to have 48MHz on HSB/CPU clock, we need to set 1 WS on flash controller.
#if UC3D
  flashcdw_set_wait_state(1);
#else
  flashc_set_wait_state(1);
#endif

  // Set the main clock source as being PLL0.
  pm_set_mclk_source(PM_CLK_SRC_PLL0);

#else
  volatile avr32_pm_t* pm = &AVR32_PM;
  /* \note All calculations here suppose that the Osc0 frequency is 12MHz. */

  pm_switch_to_osc0(pm, FOSC0, OSC0_STARTUP);  // Switch main clock to Osc0.

  /* Setup PLL0 on Osc0, mul=7 ,no divisor, lockcount=16, ie. 12Mhzx8 = 96MHz output */
  /*void pm_pll_setup(volatile avr32_pm_t* pm,
                  unsigned int pll,
                  unsigned int mul,
                  unsigned int div,
                  unsigned int osc,
                  unsigned int lockcount) {
   */
  pm_pll_setup(pm,
               0,   // use PLL0
               7,   // MUL=7 in the formula
               1,   // DIV=1 in the formula
               0,   // Sel Osc0/PLL0 or Osc1/PLL1
               16); // lockcount in main clock for the PLL wait lock

  /*
   This function will set a PLL option.
   *pm Base address of the Power Manager (i.e. &AVR32_PM)
   pll PLL number 0
   pll_freq Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
   pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
   pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
  */
  /* PLL output VCO frequency is 96MHz. We divide it by 2 with the pll_div2=1. This enable to get later main clock to 48MHz */
  pm_pll_set_option(pm, 0, 1, 1, 0);

  /* Enable PLL0 */
  /*
    void pm_pll_enable(volatile avr32_pm_t* pm,
                  unsigned int pll) {
  */
  pm_pll_enable(pm,0);

  /* Wait for PLL0 locked */
  pm_wait_for_pll0_locked(pm) ;

  /* Divide PBA clock by 2 from main clock (PBA clock = 48MHz/2 = 24MHz).
     Peripheral Bus A clock divisor enable = 1
     Peripheral Bus A select = 0
     Peripheral Bus B clock divisor enable = 0
     Peripheral Bus B select = 0
     High Speed Bus clock divisor enable = 0
     High Speed Bus select = 0
  */
  pm_cksel(pm, 1, 0, 0, 0, 0, 0);

  // Set one wait-state (WS) for flash controller. 0 WS access is up to 30MHz for HSB/CPU clock.
  // As we want to have 48MHz on HSB/CPU clock, we need to set 1 WS on flash controller.
  flashc_set_wait_state(1);

  pm_switch_to_clock(pm, AVR32_PM_MCSEL_PLL0); /* Switch main clock to 48MHz */
#endif
}
/**
 * @brief Start PLL @ 48Mhz to run with
 */
void Start_PLL(void)
{
    volatile avr32_pm_t *pm = &AVR32_PM;

    // Switch the main clock to OSC0
    pm_switch_to_osc0(pm, BOARD_OSC0_HZ, BOARD_OSC0_STARTUP_US);

    // For FOSC0 = 12.288 MHz:
    // Setup PLL0 on OSC0, mul=15 ,no divisor, lockcount=16, ie. 12 MHz x 16 = 196.608 MHz output.
	// Division by 2 (in options) yields PLL0 output as 98.304 MHz.
    // The formula is here:
    // if (PLLDIV > 0)
    //     fVCO = (PLLMUL+1)/(PLLDIV) • fOSC;
    // else
    //     fVCO = 2*(PLLMUL+1) • fOSC;
	// Lock count defines the PLL settling time (0x00 .. 0x3F.)
    pm_pll_setup(
        pm,     // volatile avr32_pm_t *pm
        0,      // PLL number(0 for PLL0, 1 for PLL1)
        15,     // PLL MUL in the PLL formula
        1,      // PLL DIV in the PLL formula
        0,      // OSC number (0 for osc0, 1 for osc1)
        16);    // unsigned int lockcount

    // Set PLL options to run @ 96 MHz
    pm_pll_set_option(
        pm,     // volatile avr32_pm_t *pm
        0,      // PLL number(0 for PLL0, 1 for PLL1)
        0,      // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz
        1,      // Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
        0);     // 1 Disable the Wide-Bandwidth Mode (Wide-Bandwidth mode allow a faster startup time and
                // out-of-lock time). 0 to enable the Wide-Bandwidth Mode.

    // Enable PLL0 and wait for it to lock.
    pm_pll_enable(pm, 0);
    pm_wait_for_pll0_locked(pm);
#if 0
#if defined(BOARD_OSC1_HZ)
    // We need to enable the crystal by hand. We didn't need to do that for OSC0
	// because the call to pm_switch_to_osc0() contains all that housekeeping.
	// But here we don't want to "switch to" the crystal.
    pm_enable_osc1_crystal(pm, BOARD_OSC1_HZ);      // Enable the OSC1 in crystal mode
    pm_enable_clk1(pm, BOARD_OSC1_STARTUP_US);

    // For FOSC1 = 12.000 MHz:
    // Setup PLL1 on OSC1, mul=15 ,no divisor, ie. 12 MHz x 15 = 180 MHz output.
	// Division by 2 (in options) yields PLL0 output as 96.000 MHz.
	// Lock count defines the PLL settling time (0x00 .. 0x3F.)
    // The formula is here:
    // if (PLLDIV > 0)
    //     fVCO = (PLLMUL+1)/(PLLDIV) • fOSC;
    // else
    //     fVCO = 2*(PLLMUL+1) • fOSC;
    pm_pll_setup(
        pm,     // volatile avr32_pm_t *pm
        1,      // PLL number(0 for PLL0, 1 for PLL1)
        15,     // PLL MUL in the PLL formula
        1,      // PLL DIV in the PLL formula
        1,      // OSC number (0 for osc0, 1 for osc1)
        16);    // unsigned int lockcount

    // Set PLL options to run @ 96.000 MHz
    pm_pll_set_option(
        pm,     // volatile avr32_pm_t *pm
        1,      // PLL number(0 for PLL0, 1 for PLL1)
        0,      // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz
        1,      // Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
        0);     // 1 Disable the Wide-Bandwidth Mode (Wide-Bandwidth mode allow a faster startup time and
                // out-of-lock time). 0 to enable the Wide-Bandwidth Mode.

    // Enable PLL1 and wait for it to lock.
    pm_pll_enable(pm, 1);
    pm_wait_for_pll1_locked(pm);

#endif /* defined(BOARD_OSC1_HZ) */
#endif
    // Select clocks as follows, considering that we are fed with PLL0 (98.304 MHz)
    // fHSB = fMain/2, or 49.152 MHz
    // fPBA = fMain/8, or 12.288 MHz
    // fPBB = fMain/2, or 49.152 MHz
    // ========================================
    // The formula (applies to all three channels, they are the same.)
    //
    // if (xDIV)  // Is the divisor enabled?
    //     fBUS = fMain / 2^(xSEL+1);   // Yes
    // else
    //     fBUS = fMain;                // No
    pm_cksel(
        pm,     // volatile avr32_pm_t *pm
        true,   // PBADIV: Peripheral Bus A clock divisor enable
        0,      // PBASEL: Peripheral Bus A divisor tap (fPBA = fMain/2, or 49.152 MHz)
        true,   // PBBDIV: Peripheral Bus B clock divisor enable
        0,      // PBBSEL: Peripheral Bus B select (fPBB = fMain/2, or 49.152 MHz)
        1,      // CPUDIV: CPU/HSB clock divisor enable
        0);     // CPUSEL: CPU/HSB clock divisor tap (fHSB = fMain/2, or 49.152 MHz)

    // One wait state at 48 MHz (required at fHSB > 33 MHz)
    flashc_set_wait_state(1);

    // Select the PLL0 as the clock source.
    pm_switch_to_clock(pm, AVR32_PM_MCCTRL_MCSEL_PLL0);
#if 0
#if defined(BOARD_OSC1_HZ)
    // Timers, communication modules, and other modules connected to external circuitry may require
    // specific clock frequencies to operate correctly. The Power Manager contains an implementation
    // defined number of generic clocks that can provide a wide range of accurate clock frequencies.
    // Each generic clock module runs from either Oscillator 0 or 1, or PLL0 or 1. The selected source
    // can optionally be divided by any even integer up to 512. Each clock can be independently
    // enabled and disabled, and is also automatically disabled along with peripheral clocks by the
    // Sleep Controller.

    // Setup generic clock number 0 on PLL, with OSC0/PLL0, no divisor.
    // A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
    // either Oscillator 0 or 1 or PLL0 or 1 as source, as selected by the PLLSEL and OSCSEL bits.
    // The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
    // resulting in the output frequency:
    //
    // fGCLK = fSRC / (2*(DIV+1))
    //
	// In this particular case we enable the generic clock to the USB module. Since the PLL1 is
	// producing 96.000 MHz we want to divide it by 2 to whittle it down to 48.000 +/- 0.25%.
	// The 48 MHz is the only clock that the USB module can use.
	//
    pm_gc_setup(
        pm,     // volatile avr32_pm_t *pm
        AVR32_PM_GCLK_USBB, // Generic clock number
        1,      // Use Osc (=0) or PLL (=1)
        1,      // Select Osc0/PLL0 or Osc1/PLL1
        1,      // DIVEN: Generic clock divisor enable
        0);     // DIV: Generic clock divisor (divide by 2)

    // Enable Generic clock 4 */
    pm_gc_enable(pm, AVR32_PM_GCLK_USBB);

#endif
#endif
#if 0 // Enable only for debugging, or if you really need to output the generic clock...
    pm_gc_setup(
        pm,     // volatile avr32_pm_t *pm
        AVR32_PM_GCLK_GCLK0, // Generic clock number
        1,      // Use Osc (=0) or PLL (=1)
        0,      // Select Osc0/PLL0 or Osc1/PLL1
        0,      // DIVEN: Generic clock divisor enable
        1);     // DIV: Generic clock divisor (divide by 0)

    // Enable Generic clock 0 */
    pm_gc_enable(pm, AVR32_PM_GCLK_GCLK0);

    /* Output the clock AVR32_PM_GCLK_GCLK0 to a GPIO (PB19) */
    gpio_enable_module_pin(AVR32_PM_GCLK_0_1_PIN, AVR32_PM_GCLK_0_1_FUNCTION);
#endif
}
	void Actividad1(void){
		pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP); //osc0 a 12Mhz
	   while (1)
	   {
		   
		  if (debounce2(QT1081_TOUCH_SENSOR_LEFT))
		   {
			   pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP); 
			  
			
			 
			 while(gpio_get_pin_value(QT1081_TOUCH_SENSOR_ENTER)==0)
			 {
				
			 gpio_tgl_gpio_pin(LED3_GPIO);
			 
				delay_s(50);			 
				   
			   }
			   
			   display(0);
			   
		  }
		   
		   
		   if (debounce2(QT1081_TOUCH_SENSOR_RIGHT))
		   {
			   pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP); 
			   
			   while (gpio_get_pin_value(QT1081_TOUCH_SENSOR_ENTER)==0)
			   {
				   
				   displayPrimo();
				   delay_s(50);
				   
			   }
			   
		   }
		   
		   if (debounce2(QT1081_TOUCH_SENSOR_UP))
		   {
			   pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
			   pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
			   
			   pm_pll_setup(&AVR32_PM,0,2,1,0,16); // lockcount in main clock for the PLL wait lock

			   //_______________________________________________________________________________
			   // Establece la frecuencia de salida del PLL
			   pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
			   //_______________________________________________________________________________
			   //Habilita el PLL 0
			   pm_pll_enable(&AVR32_PM,0);
			   //_______________________________________________________________________________
			   //Espera a que se establesca el PLL
			   pm_wait_for_pll0_locked(&AVR32_PM) ;
			   //_______________________________________________________________________________
			   // Set one wait-state (WS) for flash controller
			   flashc_set_wait_state(1);

			   //habilita la salida del PLL0 con 2 y el OSC0 con 1
			   pm_switch_to_clock(&AVR32_PM, 2);
			   
			   while (gpio_get_pin_value(QT1081_TOUCH_SENSOR_ENTER)==0)
			   {
				   
				   displayA1();
					delay_s(50);
				   
			   }
			   display(0);
			   
		   }
		   
		   if (debounce2(QT1081_TOUCH_SENSOR_DOWN))
		   {
			   pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
			   pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
			   
			   pm_pll_setup(&AVR32_PM,0,6,1,0,16); // lockcount in main clock for the PLL wait lock

			   //_______________________________________________________________________________
			   // Establece la frecuencia de salida del PLL
			   pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
			   //_______________________________________________________________________________
			   //Habilita el PLL 0
			   pm_pll_enable(&AVR32_PM,0);
			   //_______________________________________________________________________________
			   //Espera a que se establesca el PLL
			   pm_wait_for_pll0_locked(&AVR32_PM) ;
			   //_______________________________________________________________________________
			   // Set one wait-state (WS) for flash controller
			   flashc_set_wait_state(1);

			   //habilita la salida del PLL0 con 2 y el OSC0 con 1
			   pm_switch_to_clock(&AVR32_PM, 2);
			   	
			   while (gpio_get_pin_value(QT1081_TOUCH_SENSOR_ENTER)==0)
			   {
				   displayOnOff();
				   
			   }
			   display(0);
			   
		   }
	  
	   }
		
		
	}
void displayA1(void){
	static uint32_t i=0;
	static uint32_t j=0;
	static uint32_t SEL =4;
	uint32_t arr[]={0,6,15,6};
		
		display(arr[i]);
		i++;
		if (i>3)
		{
			i=0;
			
			
			
			if (j>6)
			{/*
				pm_cksel(&AVR32_PM,//CAMBIA FREQ DEL CPU
				0,//PBA DIV
				0,//PBA SEL
				0,//PBB DIV
				0,//PBB SEL
				1,//CPU DIV
				SEL);//CPU SEL 2^(SEL+1)
				SEL++;
				if (SEL>2)
				{
					SEL=0;
				}*/
			
			pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
			pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
			
			pm_pll_setup(&AVR32_PM,0,SEL,1,0,16); // lockcount in main clock for the PLL wait lock

			//_______________________________________________________________________________
			// Establece la frecuencia de salida del PLL
			pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
			//_______________________________________________________________________________
			//Habilita el PLL 0
			pm_pll_enable(&AVR32_PM,0);
			//_______________________________________________________________________________
			//Espera a que se establesca el PLL
			pm_wait_for_pll0_locked(&AVR32_PM) ;
			//_______________________________________________________________________________
			// Set one wait-state (WS) for flash controller
			flashc_set_wait_state(1);

			//habilita la salida del PLL0 con 2 y el OSC0 con 1
			pm_switch_to_clock(&AVR32_PM, 2);
			SEL+=2;
			if (SEL>=8)
			{
				SEL=2;
			}
			
			
			
			
				j=0;
			}
			j++;
			
			

			
		}
	
}
__attribute__ ((__interrupt__)) void touch_button_isr(void){
	
	eic_clear_interrupt_line(&AVR32_EIC, QT1081_EIC_EXTINT_INT);
	// UP
	if(gpio_get_pin_value(QT1081_TOUCH_SENSOR_UP))
	{
		//gpio_clear_pin_interrupt_flag(QT1081_TOUCH_SENSOR_UP);
		//gpio_tgl_gpio_pin(LED0_GPIO);
		pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
			   pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
			   
			   pm_pll_setup(&AVR32_PM,0,vel++,1,0,16); // lockcount in main clock for the PLL wait lock

			   //_______________________________________________________________________________
			   // Establece la frecuencia de salida del PLL
			   pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
			   //_______________________________________________________________________________
			   //Habilita el PLL 0
			   pm_pll_enable(&AVR32_PM,0);
			   //_______________________________________________________________________________
			   //Espera a que se establesca el PLL
			   pm_wait_for_pll0_locked(&AVR32_PM) ;
			   //_______________________________________________________________________________
			   // Set one wait-state (WS) for flash controller
			   flashc_set_wait_state(1);

			   //habilita la salida del PLL0 con 2 y el OSC0 con 1
			   pm_switch_to_clock(&AVR32_PM, 2);
			   if (vel>=6)
			   {
				   vel=6;
			   }
			   
			   
	}
	// DOWN
	if(gpio_get_pin_value(QT1081_TOUCH_SENSOR_DOWN))
	{
		
		//gpio_tgl_gpio_pin(LED1_GPIO);
		pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
			   pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
			   
			   pm_pll_setup(&AVR32_PM,0,vel--,1,0,16); // lockcount in main clock for the PLL wait lock

			   //_______________________________________________________________________________
			   // Establece la frecuencia de salida del PLL
			   pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
			   //_______________________________________________________________________________
			   //Habilita el PLL 0
			   pm_pll_enable(&AVR32_PM,0);
			   //_______________________________________________________________________________
			   //Espera a que se establesca el PLL
			   pm_wait_for_pll0_locked(&AVR32_PM) ;
			   //_______________________________________________________________________________
			   // Set one wait-state (WS) for flash controller
			   flashc_set_wait_state(1);

			   //habilita la salida del PLL0 con 2 y el OSC0 con 1
			   pm_switch_to_clock(&AVR32_PM, 2);
			   
			  if (vel<=2)
			  {
				  vel=2;
			  }
	}
}
Exemple #18
0
/**
 * Initializes the MCU system clocks.
 */
static void
init_sys_clocks(void)
{

        /* if we don't run on OSC0 don't switch to it since we don't know
         * what kind of oscillator we have here
         */
          
#if OSC == 0
        /* switch to OSC0 to speed up the booting */
        pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);
#endif

        
#ifndef USE_PLL
        return;
#endif
        
        /* For audio, ee have to use OSC1 on to generate the correct clockrate
         * for the SSC
         */
#if OSC == 1
        /* start oscillator1 */
        pm_enable_osc1_crystal(&AVR32_PM, FOSC1);
        pm_enable_clk1(&AVR32_PM, OSC1_STARTUP);
#endif

        /* configure pll multipliers */
        pm_pll_setup(&AVR32_PM,
                     0,          /* pll */
                     PLL_MUL,    /* mul */
                     1,          /* div */
                     OSC,        /* osc */
                     16);        /* lockcount */

        /* set PLL operating range and divider (fpll = fvco/2)
         * this gives PLL output = 66 MHz (62.0928 MHz for EVK1105/OSC1)
         */
        pm_pll_set_option(&AVR32_PM,
                          0,  /* pll */
                          1,  /* pll_freq */
                          1,  /* pll_div2 */
                          0); /* pll_wbwdisable. */
  

        /* start PLL0 and wait for the lock */
        pm_pll_enable(&AVR32_PM, 0);
        pm_wait_for_pll0_locked(&AVR32_PM);
        
        /* Set all peripheral clocks torun at master clock rate */
        pm_cksel(&AVR32_PM,
                 0,   /* pbadiv */
                 0,   /* pbasel */
                 0,   /* pbbdiv */
                 0,   /* pbbsel */
                 0,   /* hsbdiv */
                 0);  /* hsbsel */ 
        
        /* Set one waitstate for the flash */
        flashc_set_wait_state(1);
        
        /* Switch to PLL0 as the master clock */
        pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);
}
Exemple #19
0
void board_init(void)
{
	
		// first change to OSC0 (12MHz)
		pm_enable_osc0_crystal(& AVR32_PM, FOSC0);            // Enable the Osc0 in crystal mode
		pm_enable_clk0(& AVR32_PM, OSC0_STARTUP);                  // Crystal startup time
		pm_switch_to_clock(& AVR32_PM, AVR32_PM_MCSEL_OSC0);  // Then switch main clock to Osc0
		
		
		
		pm_enable_osc1_ext_clock(& AVR32_PM);  // ocs1 is external clock
		pm_enable_clk1(& AVR32_PM, OSC1_STARTUP);
		
		pm_pll_setup(&AVR32_PM
		, 0   // pll
		, 3 // mul
		, 0 // div  ->  f_vfo = 16.384 MHz * 8 = 131.072 MHz
		, 1   // osc
		, 16  // lockcount
		);
		
		pm_pll_set_option(&AVR32_PM
		, 0 // pll
		, 1 // pll_freq  (f_vfo range 80MHz - 180 MHz)
		, 1 // pll_div2  (f_pll1 = f_vfo / 2)
		, 0 // pll_wbwdisable
		);
		
		pm_pll_enable(&AVR32_PM, 0);
		
		pm_wait_for_pll0_locked(&AVR32_PM);
		
		pm_cksel(&AVR32_PM
		, 1, 1 // PBA  (CPU / 4) = 16.384 MHz
		, 0, 0 // PBB  65.536 MHz
		, 0, 0 // HSB	 = CPU 65.536 MHz
		);
		
		flashc_set_wait_state(1);  // one wait state if CPU clock > 33 MHz
		
		pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0); // switch to PLL0
		
		
		// --------------------------------------
		
		// USB clock
		
		// Use 12MHz from OSC0 and generate 96 MHz
		pm_pll_setup(&AVR32_PM, 1,  // pll.
		7,   // mul.
		1,   // div.
		0,   // osc.
		16); // lockcount.

		pm_pll_set_option(&AVR32_PM, 1, // pll.
		1,  // pll_freq: choose the range 80-180MHz.
		1,  // pll_div2.
		0); // pll_wbwdisable.

		// start PLL1 and wait forl lock
		pm_pll_enable(&AVR32_PM, 1);

		// Wait for PLL1 locked.
		pm_wait_for_pll1_locked(&AVR32_PM);

		pm_gc_setup(&AVR32_PM, AVR32_PM_GCLK_USBB,  // gc.
		1,  // osc_or_pll: use Osc (if 0) or PLL (if 1).
		1,  // pll_osc: select Osc0/PLL0 or Osc1/PLL1.
		0,  // diven.
		0); // div.
		pm_gc_enable(&AVR32_PM, AVR32_PM_GCLK_USBB);
		
		// --------------------------------------
	
	// LCD display
	
	gpio_enable_gpio( lcd_gpio_map, sizeof( lcd_gpio_map ) / sizeof( lcd_gpio_map[0] ) );
	
	int i;
	
	for (i=0; i < (sizeof( lcd_gpio_map ) / sizeof( lcd_gpio_map[0] )); i++)
	{
		gpio_configure_pin( lcd_gpio_map[i].pin, lcd_gpio_map[i].function);
	}
	
	
	gpio_enable_module( lcd_pwm_gpio_map, sizeof( lcd_pwm_gpio_map ) / sizeof( lcd_pwm_gpio_map[0] ) );
	
	
	// Backlight
	AVR32_PWM.channel[6].CMR.cpre = 3;
	AVR32_PWM.channel[6].cprd = 1000;
	AVR32_PWM.channel[6].cdty = 500;
	
	AVR32_PWM.ENA.chid6 = 1;
	
	// contrast
	AVR32_PWM.channel[0].CMR.cpre = 3;
	AVR32_PWM.channel[0].cprd = 1000;
	AVR32_PWM.channel[0].cdty = 520;
	
	AVR32_PWM.ENA.chid0 = 1;
	
	
	

	// switches

	gpio_enable_gpio( switch_gpio_map, sizeof( switch_gpio_map ) / sizeof( switch_gpio_map[0] ) );
	
	for (i=0; i < (sizeof( switch_gpio_map ) / sizeof( switch_gpio_map[0] )); i++)
	{
		gpio_configure_pin( switch_gpio_map[i].pin, switch_gpio_map[i].function);
	}
	
	
	// USART
	
	gpio_enable_module( usart_gpio_map, sizeof( usart_gpio_map ) / sizeof( usart_gpio_map[0] ) );
	
	
	
}
//!
//! \fn     main
//! \brief  start the software here
//!         1) Initialize the microcontroller and the shared hardware resources
//!         of the board.
//!         2) Launch the IP modules.
//!         3) Start FreeRTOS.
//! \return 42, which should never occur.
//! \note
//!
int main( void )
{
volatile avr32_pm_t* pm = &AVR32_PM;

	/* 1) Initialize the microcontroller and the shared hardware resources of the board. */

	/* Switch to external oscillator 0 */
	pm_switch_to_osc0( pm, FOSC0, OSC0_STARTUP );

	/* Setup PLL0 on OSC0, mul+1=16 ,divisor by 1, lockcount=16, ie. 12Mhzx16/1 = 192MHz output.
	   Extra div by 2 => 96MHz */
	pm_pll_setup(pm,	/* volatile avr32_pm_t* pm */
				0,		/* unsigned int pll */
				15,		/* unsigned int mul */
				1,		/* unsigned int div, Sel Osc0/PLL0 or Osc1/Pll1 */
				0,		/* unsigned int osc */
				16);		/* unsigned int lockcount */

	pm_pll_set_option( pm, 0,   // pll0
	                       0,   // Choose the range 160-240MHz.
	                       1,   // div2
	                       0 ); // wbwdisable

	/* Enable PLL0 */
	pm_pll_enable(pm,0);

	/* Wait for PLL0 locked */
	pm_wait_for_pll0_locked(pm) ;

	/* Setup generic clock number 2 on PLL, with OSC0/PLL0, no divisor */
	pm_gc_setup(pm,
				0,
				1, /* Use Osc (=0) or PLL (=1) */
				0, /* Sel Osc0/PLL0 or Osc1/Pll1 */
				0,
				1);

	/* Enable Generic clock 0*/
	pm_gc_enable(pm, 0);

	/* switch to clock */
	pm_cksel( pm, 1, 1, 1, 0, 1, 0 );
	flashc_set_wait_state( 1 );
	pm_switch_to_clock( pm, AVR32_PM_MCCTRL_MCSEL_PLL0 );

	/* Setup the LED's for output. */
	vParTestInitialise();

	/* Start the flash tasks just to provide visual feedback that the demo is
	executing. */
	vStartLEDFlashTasks( mainLED_TASK_PRIORITY );

	/* 2) Start ethernet task. */
	vStartEthernetTask( mainETH_TASK_PRIORITY );

	/* 3) Start FreeRTOS. */
	vTaskStartScheduler();

	/* Will only reach here if there was insufficient memory to create the idle task. */

	return 0;
}
__attribute__ ((__interrupt__)) void tecla_lrc_isr(void){//handler teclas left, right o center
	
	
	if (gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_ENTER))
	{
		gpio_clear_pin_interrupt_flag(QT1081_TOUCH_SENSOR_ENTER);
	}
	

	if (gpio_get_pin_interrupt_flag (QT1081_TOUCH_SENSOR_LEFT))
	{
		
		gpio_clear_pin_interrupt_flag(QT1081_TOUCH_SENSOR_LEFT);
		pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP); 
		
		while(gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_ENTER)==0){
			
			gpio_tgl_gpio_pin(LED3_GPIO);
			delay_s(50);
			
		}
		display(0);
	}

	if (gpio_get_pin_interrupt_flag (QT1081_TOUCH_SENSOR_RIGHT))
	{
		
		gpio_clear_pin_interrupt_flag(QT1081_TOUCH_SENSOR_RIGHT);
		pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP); 
		while(gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_ENTER)==0){
			displayPrimo();
			delay_s(50);
			
		}
	}
	if (gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_UP))
	{
				gpio_clear_pin_interrupt_flag(QT1081_TOUCH_SENSOR_UP);
		       pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
			   pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
			   
			   pm_pll_setup(&AVR32_PM,0,2,1,0,16); // lockcount in main clock for the PLL wait lock

			   //_______________________________________________________________________________
			   // Establece la frecuencia de salida del PLL
			   pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
			   //_______________________________________________________________________________
			   //Habilita el PLL 0
			   pm_pll_enable(&AVR32_PM,0);
			   //_______________________________________________________________________________
			   //Espera a que se establesca el PLL
			   pm_wait_for_pll0_locked(&AVR32_PM) ;
			   //_______________________________________________________________________________
			   // Set one wait-state (WS) for flash controller
			   flashc_set_wait_state(1);

			   //habilita la salida del PLL0 con 2 y el OSC0 con 1
			   pm_switch_to_clock(&AVR32_PM, 2);
			   
			   while (gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_ENTER)==0)
			   {
				   
				   displayA1();
				    /*for (uint32_t j =0; j<18000; j++)//300ms 12Mhz
				    {
						delay_ms(10);
				    }*/
					delay_s(50);
				   
			   }
			   display(0);
			   
		
	}
	
	if (gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_DOWN))
	{
		gpio_clear_pin_interrupt_flag(QT1081_TOUCH_SENSOR_DOWN);
		pm_switch_to_clock(&AVR32_PM,0); //cambia al RC
		pm_pll_disable(&AVR32_PM,0); // deshabilita el el PLL 0
		
		pm_pll_setup(&AVR32_PM,0,6,1,0,16); // lockcount in main clock for the PLL wait lock

		//_______________________________________________________________________________
		// Establece la frecuencia de salida del PLL
		pm_pll_set_option(&AVR32_PM,0,1,0,0);//1 Star-up faster, Start-up normal
		//_______________________________________________________________________________
		//Habilita el PLL 0
		pm_pll_enable(&AVR32_PM,0);
		//_______________________________________________________________________________
		//Espera a que se establesca el PLL
		pm_wait_for_pll0_locked(&AVR32_PM) ;
		//_______________________________________________________________________________
		// Set one wait-state (WS) for flash controller
		flashc_set_wait_state(1);

		//habilita la salida del PLL0 con 2 y el OSC0 con 1
		pm_switch_to_clock(&AVR32_PM, 2);
		
		while (gpio_get_pin_interrupt_flag(QT1081_TOUCH_SENSOR_ENTER)==0)
		{
			displayOnOff();
			
		}
		display(0);
		
		
	}
	
	
	
	

}