void generate_stellar_system()
{
     planet_pointer planet;
     radians_per_rotation = 2.0 * PI;
     stellar_mass_ratio = random_number(0.6,1.3);
     stellar_luminosity_ratio = luminosity(stellar_mass_ratio);
     planet = distribute_planetary_masses(stellar_mass_ratio,stellar_luminosity_ratio,0.0,stellar_dust_limit(stellar_mass_ratio));
     main_seq_life = 1.0E10 * (stellar_mass_ratio / stellar_luminosity_ratio);
     if ((main_seq_life >= 6.0E9))
	  age = random_number(1.0E9,6.0E9);
     else
	  age = random_number(1.0E9,main_seq_life);
     r_ecosphere = sqrt(stellar_luminosity_ratio);
     r_greenhouse = r_ecosphere * GREENHOUSE_EFFECT_CONST;
     while (planet != NULL)
     {
	  planet->orbit_zone = orbital_zone(planet->a);
	  if (planet->gas_giant)
	  {
	       planet->density = empirical_density(planet->mass,planet->a,planet->gas_giant);
	       planet->radius = volume_radius(planet->mass,planet->density);
	  }
	  else
	  {
	       planet->radius = kothari_radius(planet->mass,planet->a,planet->gas_giant,planet->orbit_zone);
	       planet->density = volume_density(planet->mass,planet->radius);
	  }
	  planet->orbital_period = period(planet->a,planet->mass,stellar_mass_ratio);
	  planet->day = day_length(planet->mass,planet->radius,planet->orbital_period,planet->e,planet->gas_giant);
	  planet->resonant_period = spin_resonance;
	  planet->axial_tilt = inclination(planet->a);
	  planet->escape_velocity = escape_vel(planet->mass,planet->radius);
	  planet->surface_accel = acceleration(planet->mass,planet->radius);
	  planet->rms_velocity = rms_vel(MOLECULAR_NITROGEN,planet->a);
	  planet->molecule_weight = molecule_limit(planet->a,planet->mass,planet->radius);
	  if ((planet->gas_giant))
	  {
	       planet->surface_grav = INCREDIBLY_LARGE_NUMBER;
	       planet->greenhouse_effect = FALSE;
	       planet->volatile_gas_inventory = INCREDIBLY_LARGE_NUMBER;
	       planet->surface_pressure = INCREDIBLY_LARGE_NUMBER;
	       planet->boil_point = INCREDIBLY_LARGE_NUMBER;
	       planet->hydrosphere = INCREDIBLY_LARGE_NUMBER;
	       planet->albedo = about(GAS_GIANT_ALBEDO,0.1);
	       planet->surface_temp = INCREDIBLY_LARGE_NUMBER;
	  }
	  else
	  {
	       planet->surface_grav = gravity(planet->surface_accel);
	       planet->greenhouse_effect = greenhouse(planet->orbit_zone,planet->a,r_greenhouse);
	       planet->volatile_gas_inventory = vol_inventory(planet->mass,planet->escape_velocity,planet->rms_velocity,stellar_mass_ratio,planet->orbit_zone,planet->greenhouse_effect);
	       planet->surface_pressure = pressure(planet->volatile_gas_inventory,planet->radius,planet->surface_grav);
	       if ((planet->surface_pressure == 0.0))
		    planet->boil_point = 0.0;
	       else
		    planet->boil_point = boiling_point(planet->surface_pressure);
	       iterate_surface_temp(&(planet));
	  }
	  planet = planet->next_planet;
     }
     display_system( );
}
timeVaryingSolidTractionFvPatchVectorField::
timeVaryingSolidTractionFvPatchVectorField
(
    const fvPatch& p,
    const DimensionedField<vector, volMesh>& iF,
    const dictionary& dict
)
:
solidTractionFvPatchVectorField(p, iF),
timeSeries_(dict)
{
    fieldName() = dimensionedInternalField().name();
    traction() = vector::zero;
    pressure() = 0.0;

    nonLinear() =
        nonLinearGeometry::nonLinearNames_.read(dict.lookup("nonLinear"));

    //- the leastSquares has zero non-orthogonal correction
    //- on the boundary
    //- so the gradient scheme should be extendedLeastSquares
    if
    (
      Foam::word
      (
          dimensionedInternalField().mesh().schemesDict().gradScheme
          (
              "grad(" + fieldName() + ")"
          )
      ) != "extendedLeastSquares"
    )
    {
        Warning << "The gradScheme for " << fieldName()
            << " should be \"extendedLeastSquares 0\" for the boundary "
            << "non-orthogonal correction to be right" << endl;
    }
}
void main ()
{
  char buf[20];
  int i;
  int buflen;
 ADCON1= 0x20;       // CONFIGURE ADC --- AN2
 TRISA = 0xFF;       // MAKE PORTA AS INPUT
 usart_init(2400);   // initialize the usart

do
{ 

 depth=pressure();
 itoa(buf, depth);
 buflen=strlen(buf);
for(i=buflen-1; i>=0; i--)
{
 Usart_Write(buf[i]); // write the data 
} 
Usart_Write(0x0D);
Usart_Write(0x0A) ;
 
} while(1);
}
doublereal MixtureFugacityTP::z() const
{
    return pressure() * meanMolecularWeight() / (density() * _RT());
}
void MetalSHEelectrons::getEntropy_R(doublereal* sr) const
{
    getEntropy_R_ref(sr);
    doublereal tmp = log(pressure() / m_p0);
    sr[0] -= tmp;
}
Exemple #6
0
/*
 * Format a summary of the mixture state for output.
 */
void MolalityVPSSTP::reportCSV(std::ofstream& csvFile) const
{


    csvFile.precision(3);
    int tabS = 15;
    int tabM = 30;
    int tabL = 40;
    try {
        if (name() != "") {
            csvFile << "\n"+name()+"\n\n";
        }
        csvFile << setw(tabL) << "temperature (K) =" << setw(tabS) << temperature() << endl;
        csvFile << setw(tabL) << "pressure (Pa) =" << setw(tabS) << pressure() << endl;
        csvFile << setw(tabL) << "density (kg/m^3) =" << setw(tabS) << density() << endl;
        csvFile << setw(tabL) << "mean mol. weight (amu) =" << setw(tabS) << meanMolecularWeight() << endl;
        csvFile << setw(tabL) << "potential (V) =" << setw(tabS) << electricPotential() << endl;
        csvFile << endl;

        csvFile << setw(tabL) << "enthalpy (J/kg) = " << setw(tabS) << enthalpy_mass() << setw(tabL) << "enthalpy (J/kmol) = " << setw(tabS) << enthalpy_mole() << endl;
        csvFile << setw(tabL) << "internal E (J/kg) = " << setw(tabS) << intEnergy_mass() << setw(tabL) << "internal E (J/kmol) = " << setw(tabS) << intEnergy_mole() << endl;
        csvFile << setw(tabL) << "entropy (J/kg) = " << setw(tabS) << entropy_mass() << setw(tabL) << "entropy (J/kmol) = " << setw(tabS) << entropy_mole() << endl;
        csvFile << setw(tabL) << "Gibbs (J/kg) = " << setw(tabS) << gibbs_mass() << setw(tabL) << "Gibbs (J/kmol) = " << setw(tabS) << gibbs_mole() << endl;
        csvFile << setw(tabL) << "heat capacity c_p (J/K/kg) = " << setw(tabS) << cp_mass() << setw(tabL) << "heat capacity c_p (J/K/kmol) = " << setw(tabS) << cp_mole() << endl;
        csvFile << setw(tabL) << "heat capacity c_v (J/K/kg) = " << setw(tabS) << cv_mass() << setw(tabL) << "heat capacity c_v (J/K/kmol) = " << setw(tabS) << cv_mole() << endl;

        csvFile.precision(8);

        vector<std::string> pNames;
        vector<vector_fp> data;
        vector_fp temp(nSpecies());

        getMoleFractions(&temp[0]);
        pNames.push_back("X");
        data.push_back(temp);
        try {
            getMolalities(&temp[0]);
            pNames.push_back("Molal");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getChemPotentials(&temp[0]);
            pNames.push_back("Chem. Pot. (J/kmol)");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getStandardChemPotentials(&temp[0]);
            pNames.push_back("Chem. Pot. SS (J/kmol)");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getMolalityActivityCoefficients(&temp[0]);
            pNames.push_back("Molal Act. Coeff.");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getActivities(&temp[0]);
            pNames.push_back("Molal Activity");
            data.push_back(temp);
            size_t iHp = speciesIndex("H+");
            if (iHp != npos) {
                double pH = -log(temp[iHp]) / log(10.0);
                csvFile << setw(tabL) << "pH = " << setw(tabS) << pH << endl;
            }
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getPartialMolarEnthalpies(&temp[0]);
            pNames.push_back("Part. Mol Enthalpy (J/kmol)");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getPartialMolarEntropies(&temp[0]);
            pNames.push_back("Part. Mol. Entropy (J/K/kmol)");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getPartialMolarIntEnergies(&temp[0]);
            pNames.push_back("Part. Mol. Energy (J/kmol)");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getPartialMolarCp(&temp[0]);
            pNames.push_back("Part. Mol. Cp (J/K/kmol");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }
        try {
            getPartialMolarVolumes(&temp[0]);
            pNames.push_back("Part. Mol. Cv (J/K/kmol)");
            data.push_back(temp);
        } catch (CanteraError& err) {
            err.save();
        }

        csvFile << endl << setw(tabS) << "Species,";
        for (size_t i = 0; i < pNames.size(); i++) {
            csvFile << setw(tabM) << pNames[i] << ",";
        }
        csvFile << endl;
        /*
        csvFile.fill('-');
        csvFile << setw(tabS+(tabM+1)*pNames.size()) << "-\n";
        csvFile.fill(' ');
        */
        for (size_t k = 0; k < nSpecies(); k++) {
            csvFile << setw(tabS) << speciesName(k) + ",";
            if (data[0][k] > SmallNumber) {
                for (size_t i = 0; i < pNames.size(); i++) {
                    csvFile << setw(tabM) << data[i][k] << ",";
                }
                csvFile << endl;
            } else {
                for (size_t i = 0; i < pNames.size(); i++) {
                    csvFile << setw(tabM) << 0 << ",";
                }
                csvFile << endl;
            }
        }
    } catch (CanteraError& err) {
        err.save();
    }
}
Exemple #7
0
int main(int argc, char* argv[])
{
    // Load the mesh.
    Mesh mesh;
    H2DReader mloader;
    mloader.load("channel.mesh", &mesh);

    // Perform initial mesh refinements.
    for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(2);
    //mesh.refine_towards_boundary(BDY_SOLID_WALL_BOTTOM, 2);

    // Initialize boundary condition types and spaces with default shapesets.
    L2Space space_rho(&mesh, P_INIT);
    L2Space space_rho_v_x(&mesh, P_INIT);
    L2Space space_rho_v_y(&mesh, P_INIT);
    L2Space space_e(&mesh, P_INIT);
    int ndof = Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));
    info("ndof: %d", ndof);

    // Initialize solutions, set initial conditions.
    InitialSolutionEulerDensity prev_rho(&mesh, RHO_EXT);
    InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh, RHO_EXT * V1_EXT);
    InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh, RHO_EXT * V2_EXT);
    InitialSolutionEulerDensityEnergy prev_e(&mesh, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));

    // Numerical flux.
    StegerWarmingNumericalFlux num_flux(KAPPA);

    // Initialize weak formulation.
    EulerEquationsWeakFormExplicitMultiComponentSemiImplicit wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM, BDY_SOLID_WALL_TOP,
            BDY_INLET, BDY_OUTLET, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e);

    // Initialize the FE problem.
    bool is_linear = true;
    DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e), is_linear);

    // If the FE problem is in fact a FV problem.
    //if(P_INIT == 0) dp.set_fvm();

    // Filters for visualization of Mach number, pressure and entropy.
    MachNumberFilter Mach_number(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
    PressureFilter pressure(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
    EntropyFilter entropy(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

    ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
    ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
    ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));


    ScalarView s1("1", new WinGeom(0, 0, 600, 300));
    ScalarView s2("2", new WinGeom(700, 0, 600, 300));
    ScalarView s3("3", new WinGeom(0, 400, 600, 300));
    ScalarView s4("4", new WinGeom(700, 400, 600, 300));


    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Set up CFL calculation class.
    CFLCalculation CFL(CFL_NUMBER, KAPPA);

    int iteration = 0;
    double t = 0;
    for(t = 0.0; t < 3.0; t += time_step) {
        info("---- Time step %d, time %3.5f.", iteration++, t);

        // Set the current time step.
        wf.set_time_step(time_step);

        bool rhs_only = (iteration == 1 ? false : true);
        // Assemble stiffness matrix and rhs or just rhs.
        if (rhs_only == false) {
            info("Assembling the stiffness matrix and right-hand side vector.");
            dp.assemble(matrix, rhs);
        }

        else {
            info("Assembling the right-hand side vector (only).");
            dp.assemble(NULL, rhs);
        }

        // Solve the matrix problem.
        info("Solving the matrix problem.");
        scalar* solution_vector = NULL;
        if(solver->solve()) {
            solution_vector = solver->get_solution();
            Solution::vector_to_solutions(solution_vector, Hermes::vector<Space *>(&space_rho, &space_rho_v_x,
                                          &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
        }
        else
            error ("Matrix solver failed.\n");

        if(SHOCK_CAPTURING) {
            DiscontinuityDetector discontinuity_detector(Hermes::vector<Space *>(&space_rho, &space_rho_v_x,
                    &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

            std::set<int> discontinuous_elements = discontinuity_detector.get_discontinuous_element_ids(DISCONTINUITY_DETECTOR_PARAM);

            FluxLimiter flux_limiter(solution_vector, Hermes::vector<Space *>(&space_rho, &space_rho_v_x,
                                     &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

            flux_limiter.limit_according_to_detector(discontinuous_elements);
        }

        if((iteration - 1) % CFL_CALC_FREQ == 0)
            CFL.calculate(Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), &mesh, time_step);

        // Visualization.
        /*
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure);
        entropy_production_view.show(&entropy);
        Mach_number_view.show(&Mach_number);
        */

        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);

        View::wait();

    }

    pressure_view.close();
    entropy_production_view.close();
    Mach_number_view.close();


    s1.close();
    s2.close();
    s3.close();
    s4.close();


    return 0;
}
Exemple #8
0
doublereal IdealGasPhase::entropy_mole() const
{
    return GasConstant * (mean_X(entropy_R_ref()) - sum_xlogx() - std::log(pressure() / m_spthermo->refPressure()));
}
void  ZeroLengthInterface2D::formLocalResidAndTangent( int tang_flag , int slave, int master1, int master2, int stage)
{
	// trial frictional force vectors (in local coordinate)
    double t_trial;
    double TtrNorm;
    // Coulomb friction law surface
	double Phi;
	int i, j;

	// set the first value to zero
	pressure(slave) = 0;
    t_trial=0;

	// int IsContact;
	// detect contact and set flag
    ContactFlag = contactDetect(slave,master1,master2, stage);

	if (ContactFlag == 1) // contacted
	{
	    // create a vector for converting local matrix to global
        GlobalResidAndTangentOrder(slave, master1, master2);

		// contact presure;
	    pressure(slave) = Kn * normal_gap(slave);  // pressure is positive if in contact

	    double ng = normal_gap(slave);

		t_trial = Kt * (shear_gap(slave) - stored_shear_gap(slave));  // trial shear force

        // Coulomb friction law, trial state
		//TtrNorm=t_trial.Norm();
		TtrNorm = sqrt(t_trial * t_trial);
		Phi = TtrNorm - fc * pressure(slave);

		if (Phi <= 0 ) { // stick case
 			if ( tang_flag == 1 ) {
		    // stiff
				for (i = 0; i < 6; i++) {
					for (j = 0; j < 6; j++) {
                        stiff(loctoglob[i],loctoglob[j]) +=   Kn * (N(i) * N(j)) + Kt * (T(i) * T(j));	//2D
					}
				}
			} //endif tang_flag
			// force
			for (i = 0; i < 6; i++) resid(loctoglob[i]) += pressure(slave) * N(i) + t_trial * T(i);    //2D
		} // end if stick
		else {           // slide case, non-symmetric stiff
            ContactFlag=2;  // set the contactFlag for sliding
            if ( tang_flag == 1 ) {
				// stiff
				for (i = 0; i < 6; i++) {
					for (j = 0; j < 6; j++) {
					stiff(loctoglob[i],loctoglob[j]) += Kn * (N(i) * N(j)) - fc * Kn * (t_trial / TtrNorm) * T(i) * N(j); //2D
					} //endfor i
				} //endfor j
   			    // force
			} // endif tang_flag
            double shear = fc * pressure(slave) * (t_trial/TtrNorm);
			for (i = 0; i < 6; i++) resid(loctoglob[i]) += (pressure(slave) * N(i)) + (shear * T(i)) ;      //2D
		} //endif slide
	}  // endif ContactFlag==1
}
Exemple #10
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("GAMM-channel.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(1, 1);
  mesh.refine_element(1053);
  mesh.refine_element(1054);
  mesh.refine_element(1087);
  mesh.refine_element(1088);
  mesh.refine_element(1117);
  mesh.refine_element(1118);
  mesh.refine_element(1151);
  mesh.refine_element(1152);

  // Enter boundary markers.  
  BCTypes bc_types;
  bc_types.add_bc_neumann(Hermes::Tuple<int>(BDY_SOLID_WALL, BDY_INLET_OUTLET));

  // Create L2 spaces with default shapesets.
  L2Space space_rho(&mesh, &bc_types, P_INIT);
  L2Space space_rho_v_x(&mesh, &bc_types, P_INIT);
  L2Space space_rho_v_y(&mesh, &bc_types, P_INIT);
  L2Space space_e(&mesh, &bc_types, P_INIT);

  // Initialize solutions, set initial conditions.
  Solution sln_rho, sln_rho_v_x, sln_rho_v_y, sln_e, prev_rho, prev_rho_v_x, prev_rho_v_y, prev_e;
  sln_rho.set_exact(&mesh, ic_density);
  sln_rho_v_x.set_exact(&mesh, ic_density_vel_x);
  sln_rho_v_y.set_exact(&mesh, ic_density_vel_y);
  sln_e.set_exact(&mesh, ic_energy);
  prev_rho.set_exact(&mesh, ic_density);
  prev_rho_v_x.set_exact(&mesh, ic_density_vel_x);
  prev_rho_v_y.set_exact(&mesh, ic_density_vel_y);
  prev_e.set_exact(&mesh, ic_energy);

  // Initialize weak formulation.
  WeakForm wf(4);

  // Bilinear forms coming from time discretization by explicit Euler's method.
  wf.add_matrix_form(0, 0, callback(bilinear_form_0_0_time));
  wf.add_matrix_form(1, 1, callback(bilinear_form_1_1_time));
  wf.add_matrix_form(2, 2, callback(bilinear_form_2_2_time));
  wf.add_matrix_form(3, 3, callback(bilinear_form_3_3_time));

  // Volumetric linear forms.
  // Linear forms coming from the linearization by taking the Eulerian fluxes' Jacobian matrices 
  // from the previous time step.
  // First flux.
  // Unnecessary for FVM.
  if(P_INIT.order_h > 0 || P_INIT.order_v > 0) {
    wf.add_vector_form(0, callback(linear_form_0_1), HERMES_ANY, Hermes::Tuple<MeshFunction*>(&prev_rho_v_x));
    
    wf.add_vector_form(1, callback(linear_form_1_0_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_1_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_2_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_3_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(2, callback(linear_form_2_0_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_1_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_2_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_3_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_0_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_1_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_2_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_3_first_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    // Second flux.
    
    wf.add_vector_form(0, callback(linear_form_0_2), HERMES_ANY, Hermes::Tuple<MeshFunction*>(&prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_0_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_1_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_2_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_3_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(2, callback(linear_form_2_0_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_1_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_2_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_3_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_0_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_1_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_2_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_3_second_flux), HERMES_ANY, 
                       Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  }

  // Volumetric linear forms coming from the time discretization.
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
  wf.add_vector_form(0, linear_form_vector, linear_form_order, HERMES_ANY, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form(1, linear_form_vector, linear_form_order, HERMES_ANY, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form(2, linear_form_vector, linear_form_order, HERMES_ANY, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form(3, linear_form_vector, linear_form_order, HERMES_ANY, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#else
  wf.add_vector_form(0, linear_form, linear_form_order, HERMES_ANY, &prev_rho);
  wf.add_vector_form(1, linear_form, linear_form_order, HERMES_ANY, &prev_rho_v_x);
  wf.add_vector_form(2, linear_form, linear_form_order, HERMES_ANY, &prev_rho_v_y);
  wf.add_vector_form(3, linear_form, linear_form_order, HERMES_ANY, &prev_e);
#endif

  // Surface linear forms - inner edges coming from the DG formulation.
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
  wf.add_vector_form_surf(0, linear_form_interface_vector, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, linear_form_interface_vector, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, linear_form_interface_vector, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, linear_form_interface_vector, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#else
  wf.add_vector_form_surf(0, linear_form_interface_0, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, linear_form_interface_1, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, linear_form_interface_2, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, linear_form_interface_3, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#endif

  // Surface linear forms - inlet / outlet edges.
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
  wf.add_vector_form_surf(0, bdy_flux_inlet_outlet_comp_vector, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_inlet_outlet_comp_vector, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_inlet_outlet_comp_vector, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_inlet_outlet_comp_vector, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#else
  wf.add_vector_form_surf(0, bdy_flux_inlet_outlet_comp_0, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_inlet_outlet_comp_1, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_inlet_outlet_comp_2, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_inlet_outlet_comp_3, linear_form_order, BDY_INLET_OUTLET, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#endif
  
  // Surface linear forms - Solid wall edges.
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
  wf.add_vector_form_surf(0, bdy_flux_solid_wall_comp_vector, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_solid_wall_comp_vector, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_solid_wall_comp_vector, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_solid_wall_comp_vector, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#else
  wf.add_vector_form_surf(0, bdy_flux_solid_wall_comp_0, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_solid_wall_comp_1, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_solid_wall_comp_2, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_solid_wall_comp_3, linear_form_order, BDY_SOLID_WALL, 
                          Hermes::Tuple<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
#endif

  // Initialize the FE problem.
  bool is_linear = true;
  
  DiscreteProblem dp(&wf, Hermes::Tuple<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e), is_linear);
  
  // If the FE problem is in fact a FV problem.
  if(P_INIT.order_h == 0 && P_INIT.order_v == 0)
    dp.set_fvm();
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
  dp.use_vector_valued_forms();
#endif

  // Filters for visualization of pressure and the two components of velocity.
  SimpleFilter pressure(calc_pressure_func, Hermes::Tuple<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter u(calc_u_func, Hermes::Tuple<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter w(calc_w_func, Hermes::Tuple<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter Mach_number(calc_Mach_func, Hermes::Tuple<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter entropy_estimate(calc_entropy_estimate_func, Hermes::Tuple<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));
  VectorView vview("Velocity", new WinGeom(700, 400, 600, 300));

  // Iteration number.
  int iteration = 0;
  
  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Output of the approximate time derivative.
  std::ofstream time_der_out("time_der");

  for(t = 0.0; t < 10; t += TAU)
  {
    info("---- Time step %d, time %3.5f.", iteration, t);

    iteration++;

    bool rhs_only = (iteration == 1 ? false : true);
    // Assemble stiffness matrix and rhs or just rhs.
    if (rhs_only == false) info("Assembling the stiffness matrix and right-hand side vector.");
    else info("Assembling the right-hand side vector (only).");
    dp.assemble(matrix, rhs, rhs_only);

        
    // Solve the matrix problem.
    info("Solving the matrix problem.");
    if(solver->solve())
      Solution::vector_to_solutions(solver->get_solution(), Hermes::Tuple<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), Hermes::Tuple<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
    else
    error ("Matrix solver failed.\n");

    // Approximate the time derivative of the solution.
    if(CALC_TIME_DER) {
      Adapt *adapt_for_time_der_calc = new Adapt(Hermes::Tuple<Space *>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));
      bool solutions_for_adapt = false;
      double difference = iteration == 1 ? 0 : 
        adapt_for_time_der_calc->calc_err_est(Hermes::Tuple<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), 
					      Hermes::Tuple<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), 
                                              (Hermes::Tuple<double>*) NULL, solutions_for_adapt, 
                                              HERMES_TOTAL_ERROR_ABS | HERMES_ELEMENT_ERROR_ABS) / TAU;
      delete adapt_for_time_der_calc;

      // Info about the approximate time derivative.
      if(iteration > 1)
      {
        info("Approximate the norm time derivative : %g.", difference);
        time_der_out << iteration << '\t' << difference << std::endl;
      }
    }

    // Determine the time step according to the CFL condition.
    // Only mean values on an element of each solution component are taken into account.
    double *solution_vector = solver->get_solution();
    double min_condition = 0;
    Element *e;
    for (int _id = 0, _max = mesh.get_max_element_id(); _id < _max; _id++) \
          if (((e) = mesh.get_element_fast(_id))->used) \
            if ((e)->active)
    {
      AsmList al;
      space_rho.get_element_assembly_list(e, &al);
      double rho = solution_vector[al.dof[0]];
      space_rho_v_x.get_element_assembly_list(e, &al);
      double v1 = solution_vector[al.dof[0]] / rho;
      space_rho_v_y.get_element_assembly_list(e, &al);
      double v2 = solution_vector[al.dof[0]] / rho;
      space_e.get_element_assembly_list(e, &al);
      double energy = solution_vector[al.dof[0]];
      
      double condition = e->get_area() / (std::sqrt(v1*v1 + v2*v2) + calc_sound_speed(rho, rho*v1, rho*v2, energy));
      
      if(condition < min_condition || min_condition == 0.)
        min_condition = condition;
    }
    if(TAU > min_condition)
      TAU = min_condition;
    if(TAU < min_condition * 0.9)
      TAU = min_condition;

    // Copy the solutions into the previous time level ones.
    prev_rho.copy(&sln_rho);
    prev_rho_v_x.copy(&sln_rho_v_x);
    prev_rho_v_y.copy(&sln_rho_v_y);
    prev_e.copy(&sln_e);

    // Visualization.
    pressure.reinit();
    u.reinit();
    w.reinit();
    Mach_number.reinit();
    entropy_estimate.reinit();
    pressure_view.show(&pressure);
    entropy_production_view.show(&entropy_estimate);
    Mach_number_view.show(&Mach_number);
    vview.show(&u, &w);

    // If used, we need to clean the vector valued form caches.
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
    DiscreteProblem::empty_form_caches();
#endif
  }
  
  time_der_out.close();
  return 0;
}
Exemple #11
0
float MS5837::altitude() {
    return (1-pow((pressure()/1013.25),.190284))*145366.45*.3048;
}
Exemple #12
0
float MS5837::depth() {
    return (pressure(MS5837::Pa)-101300)/(fluidDensity*9.80665);
}
 doublereal ConstDensityThermo::enthalpy_mole() const {
     doublereal p0 = m_spthermo->refPressure();
     return GasConstant * temperature() * 
         mean_X(&enthalpy_RT()[0]) 
         + (pressure() - p0)/molarDensity();
 }
Exemple #14
0
 int main(int argc, char** argv) {

#ifdef HAVE_LIBMESH
   libMesh::LibMeshInit init(argc,argv);
#else   
   FemusInit init(argc,argv);
#endif
   
 // ======= Files ========================
  Files files; 
        files.ConfigureRestart();
        files.CheckIODirectories();
        files.CopyInputFiles();
        files.RedirectCout();

  // ======= Physics Input Parser ========================
  FemusInputParser<double> physics_map("Physics",files.GetOutputPath());

  const double rhof   = physics_map.get("rho0");
  const double Uref   = physics_map.get("Uref");
  const double Lref   = physics_map.get("Lref");
  const double  muf   = physics_map.get("mu0");

  const double  _pref = rhof*Uref*Uref;           physics_map.set("pref",_pref);
  const double   _Re  = (rhof*Uref*Lref)/muf;     physics_map.set("Re",_Re);
  const double   _Fr  = (Uref*Uref)/(9.81*Lref);  physics_map.set("Fr",_Fr);
  const double   _Pr  = muf/rhof;                 physics_map.set("Pr",_Pr);

  // ======= Mesh =====
  const unsigned NoLevels = 3;
  const unsigned dim = 2;
  const GeomElType geomel_type = QUAD;
  GenCase mesh(NoLevels,dim,geomel_type,"inclQ2D2x2.gam");
          mesh.SetLref(1.);  
	  
  // ======= MyDomainShape  (optional, implemented as child of Domain) ====================
  FemusInputParser<double> box_map("Box",files.GetOutputPath());
  Box mybox(mesh.get_dim(),box_map);
      mybox.InitAndNondimensionalize(mesh.get_Lref());

          mesh.SetDomain(&mybox);    
	  
          mesh.GenerateCase(files.GetOutputPath());

          mesh.SetLref(Lref);
      mybox.InitAndNondimensionalize(mesh.get_Lref());
	  
          XDMFWriter::ReadMeshAndNondimensionalizeBiquadraticHDF5(files.GetOutputPath(),mesh); 
	  XDMFWriter::PrintMeshXDMF(files.GetOutputPath(),mesh,BIQUADR_FE);
          XDMFWriter::PrintMeshLinear(files.GetOutputPath(),mesh);
	  
  //gencase is dimensionalized, meshtwo is nondimensionalized
  //since the meshtwo is nondimensionalized, all the BC and IC are gonna be implemented on a nondimensionalized mesh
  //now, a mesh may or may not have an associated domain
  //moreover, a mesh may or may not be read from file
  //the generation is dimensional, the nondimensionalization occurs later
  //Both the Mesh and the optional domain must be nondimensionalized
  //first, we have to say if the mesh has a shape or not
  //that depends on the application, it must be put at the main level
  //then, after you know the shape, you may or may not generate the mesh with that shape 
  //the two things are totally independent, and related to the application, not to the library

  // ===== QuantityMap : this is like the MultilevelSolution =========================================
  QuantityMap  qty_map;
  qty_map.SetMeshTwo(&mesh);
  qty_map.SetInputParser(&physics_map);

  Pressure       pressure("Qty_Pressure",qty_map,1,LL);             qty_map.AddQuantity(&pressure);
  VelocityX     velocityX("Qty_Velocity0",qty_map,1,QQ);            qty_map.AddQuantity(&velocityX);
  VelocityY     velocityY("Qty_Velocity1",qty_map,1,QQ);            qty_map.AddQuantity(&velocityY);
  Temperature temperature("Qty_Temperature",qty_map,1,QQ);          qty_map.AddQuantity(&temperature);
  TempLift       templift("Qty_TempLift",qty_map,1,QQ);             qty_map.AddQuantity(&templift);  
  TempAdj         tempadj("Qty_TempAdj",qty_map,1,QQ);              qty_map.AddQuantity(&tempadj);  
  // ===== end QuantityMap =========================================
  
  // ====== Start new main =================================
  
  MultiLevelMesh ml_msh;
  ml_msh.GenerateCoarseBoxMesh(8,8,0,0,1,0,2,0,0,QUAD9,"fifth"); //   ml_msh.GenerateCoarseBoxMesh(numelemx,numelemy,numelemz,xa,xb,ya,yb,za,zb,elemtype,"fifth");
  ml_msh.RefineMesh(NoLevels,NoLevels,NULL);
  ml_msh.PrintInfo();
  
  ml_msh.SetWriter(XDMF);
  //ml_msh.GetWriter()->write(files.GetOutputPath(),"biquadratic");
  
  ml_msh.SetDomain(&mybox);    
	  
  MultiLevelSolution ml_sol(&ml_msh);
  ml_sol.AddSolution("Qty_Temperature",LAGRANGE,SECOND,0);
  ml_sol.AddSolution("Qty_TempLift",LAGRANGE,SECOND,0);
  ml_sol.AddSolution("Qty_TempAdj",LAGRANGE,SECOND,0);
  ml_sol.AddSolutionVector(ml_msh.GetDimension(),"Qty_Velocity",LAGRANGE,SECOND,0);
  ml_sol.AddSolution("Qty_Pressure",LAGRANGE,FIRST,0);
  ml_sol.AddSolution("Qty_TempDes",LAGRANGE,SECOND,0,false); //this is not going to be an Unknown! //moreover, this is not going to need any BC (i think they are excluded with "false") // I would like to have a Solution that is NOT EVEN related to the mesh at all... just like a function "on-the-fly"

  // ******* Set problem *******
  MultiLevelProblem ml_prob(&ml_sol);
  ml_prob.SetMeshTwo(&mesh);
  ml_prob.SetQruleAndElemType("fifth");
  ml_prob.SetInputParser(&physics_map);
  ml_prob.SetQtyMap(&qty_map); 
  
  // ******* Initial condition *******
  ml_sol.InitializeMLProb(&ml_prob,"Qty_Temperature",SetInitialCondition);  
  ml_sol.InitializeMLProb(&ml_prob,"Qty_TempLift",SetInitialCondition);  
  ml_sol.InitializeMLProb(&ml_prob,"Qty_TempAdj",SetInitialCondition);  
  ml_sol.InitializeMLProb(&ml_prob,"Qty_Velocity0",SetInitialCondition);  
  ml_sol.InitializeMLProb(&ml_prob,"Qty_Velocity1",SetInitialCondition);  
  ml_sol.InitializeMLProb(&ml_prob,"Qty_Pressure",SetInitialCondition); 
  ml_sol.InitializeMLProb(&ml_prob,"Qty_TempDes",SetInitialCondition); 

  /// @todo you have to call this before you can print 
  /// @todo I can also call it after instantiation MLProblem  
  /// @todo I cannot call it with "All" and with a FUNCTION, because I need the string for "All" as a variable
  /// @todo Have to say that you have to call this initialize BEFORE the generation of the boundary conditions;
  /// if you called this after, it would superimpose the BOUNDARY VALUES 
  /// @todo you have to initialize also those variables which are NOT unknowns!
  
  // ******* Set boundary function function *******
  ml_sol.AttachSetBoundaryConditionFunctionMLProb(SetBoundaryCondition);
  
  // ******* Generate boundary conditions *******
  ml_sol.GenerateBdc("Qty_Temperature","Steady",&ml_prob);
  ml_sol.GenerateBdc("Qty_TempLift","Steady",&ml_prob);
  ml_sol.GenerateBdc("Qty_TempAdj","Steady",&ml_prob);
  ml_sol.GenerateBdc("Qty_Velocity0","Steady",&ml_prob);
  ml_sol.GenerateBdc("Qty_Velocity1","Steady",&ml_prob);
  ml_sol.GenerateBdc("Qty_Pressure","Steady",&ml_prob);

  
  // ******* Debug *******
  ml_sol.SetWriter(VTK);
  std::vector<std::string> print_vars(1); print_vars[0] = "All"; // we should find a way to make this easier
  ml_sol.GetWriter()->write(files.GetOutputPath(),"biquadratic",print_vars);

  
//===============================================
//================== Add EQUATIONS AND ======================
//========= associate an EQUATION to QUANTITIES ========
//========================================================
// not all the Quantities need to be unknowns of an equation

  SystemTwo & eqnNS = ml_prob.add_system<SystemTwo>("Eqn_NS");
  
          eqnNS.AddSolutionToSystemPDEVector(ml_msh.GetDimension(),"Qty_Velocity");
          eqnNS.AddSolutionToSystemPDE("Qty_Pressure");
	  
          eqnNS.AddUnknownToSystemPDE(&velocityX); 
          eqnNS.AddUnknownToSystemPDE(&velocityY); 
          eqnNS.AddUnknownToSystemPDE(&pressure);
	  
	  eqnNS.SetAssembleFunction(GenMatRhsNS);
  

  SystemTwo & eqnT = ml_prob.add_system<SystemTwo>("Eqn_T");
  
         eqnT.AddSolutionToSystemPDE("Qty_Temperature");
         eqnT.AddSolutionToSystemPDE("Qty_TempLift");
         eqnT.AddSolutionToSystemPDE("Qty_TempAdj");
	 
         eqnT.AddUnknownToSystemPDE(&temperature);
         eqnT.AddUnknownToSystemPDE(&templift);
         eqnT.AddUnknownToSystemPDE(&tempadj); //the order in which you add defines the order in the matrix as well, so it is in tune with the assemble function
	 
	 eqnT.SetAssembleFunction(GenMatRhsT);
  
//================================ 
//========= End add EQUATIONS  and ========
//========= associate an EQUATION to QUANTITIES ========
//================================

//Ok now that the mesh file is there i want to COMPUTE the MG OPERATORS... but I want to compute them ONCE and FOR ALL,
//not for every equation... but the functions belong to the single equation... I need to make them EXTERNAL
// then I'll have A from the equation, PRL and REST from a MG object.
//So somehow i'll have to put these objects at a higher level... but so far let us see if we can COMPUTE and PRINT from HERE and not from the gencase
	 
 
//once you have the list of the equations, you loop over them to initialize everything

   for (MultiLevelProblem::const_system_iterator eqn = ml_prob.begin(); eqn != ml_prob.end(); eqn++) {
     
   SystemTwo* sys = static_cast<SystemTwo*>(eqn->second);
   
  // ******* set MG-Solver *******
  sys->SetMgType(F_CYCLE);
  sys->SetLinearConvergenceTolerance(1.e-10);
  sys->SetNonLinearConvergenceTolerance(1.e-10);//1.e-5
  sys->SetNumberPreSmoothingStep(1);
  sys->SetNumberPostSmoothingStep(1);
  sys->SetMaxNumberOfLinearIterations(8);     //2
  sys->SetMaxNumberOfNonLinearIterations(15); //10
  
  // ******* Set Preconditioner *******
  sys->SetMgSmoother(GMRES_SMOOTHER);//ASM_SMOOTHER,VANKA_SMOOTHER
   
  // ******* init *******
  sys->init();
  
  // ******* Set Smoother *******
  sys->SetSolverFineGrids(GMRES);
  sys->SetPreconditionerFineGrids(ILU_PRECOND); 
  sys->SetTolerances(1.e-12,1.e-20,1.e+50,20);   /// what the heck do these parameters mean?

    // ******* Add variables to be solved *******  /// do we always need this?
  sys->ClearVariablesToBeSolved();
  sys->AddVariableToBeSolved("All");
  
    
  // ******* For Gmres Preconditioner only *******
  sys->SetDirichletBCsHandling(ELIMINATION);
  
  // ******* For Gmres Preconditioner only *******
//   sys->solve();

//=====================
    sys -> init_two();     //the dof map is built here based on all the solutions associated with that system
    sys -> _LinSolver[0]->set_solver_type(GMRES);  //if I keep PREONLY it doesn't run

//=====================
    sys -> init_unknown_vars();
//=====================
    sys -> _dofmap.ComputeMeshToDof();
//=====================
    sys -> initVectors();
//=====================
    sys -> Initialize();
///=====================
    sys -> _bcond.GenerateBdc();
//=====================
    GenCase::ReadMGOps(files.GetOutputPath(),sys);
    
    } 
	 
  // ======== Loop ===================================
  FemusInputParser<double> loop_map("TimeLoop",files.GetOutputPath());
  OptLoop opt_loop(files, loop_map); 
   
  opt_loop.TransientSetup(ml_prob);  // reset the initial state (if restart) and print the Case

  opt_loop.optimization_loop(ml_prob);

// at this point, the run has been completed 
  files.PrintRunForRestart(DEFAULT_LAST_RUN);
  files.log_petsc();
  
// ============  clean ================================
  ml_prob.clear();
  mesh.clear();
  
  
  return 0;
}
std::string MolarityIonicVPSSTP::report(bool show_thermo) const
{
    char p[800];
    string s = "";
    try {
        if (name() != "") {
            sprintf(p, " \n  %s:\n", name().c_str());
            s += p;
        }
        sprintf(p, " \n       temperature    %12.6g  K\n", temperature());
        s += p;
        sprintf(p, "          pressure    %12.6g  Pa\n", pressure());
        s += p;
        sprintf(p, "           density    %12.6g  kg/m^3\n", density());
        s += p;
        sprintf(p, "  mean mol. weight    %12.6g  amu\n", meanMolecularWeight());
        s += p;

        doublereal phi = electricPotential();
        sprintf(p, "         potential    %12.6g  V\n", phi);
        s += p;

        size_t kk = nSpecies();
        vector_fp x(kk);
        vector_fp molal(kk);
        vector_fp mu(kk);
        vector_fp muss(kk);
        vector_fp acMolal(kk);
        vector_fp actMolal(kk);
        getMoleFractions(&x[0]);

        getChemPotentials(&mu[0]);
        getStandardChemPotentials(&muss[0]);
        getActivities(&actMolal[0]);


        if (show_thermo) {
            sprintf(p, " \n");
            s += p;
            sprintf(p, "                          1 kg            1 kmol\n");
            s += p;
            sprintf(p, "                       -----------      ------------\n");
            s += p;
            sprintf(p, "          enthalpy    %12.6g     %12.4g     J\n",
                    enthalpy_mass(), enthalpy_mole());
            s += p;
            sprintf(p, "   internal energy    %12.6g     %12.4g     J\n",
                    intEnergy_mass(), intEnergy_mole());
            s += p;
            sprintf(p, "           entropy    %12.6g     %12.4g     J/K\n",
                    entropy_mass(), entropy_mole());
            s += p;
            sprintf(p, "    Gibbs function    %12.6g     %12.4g     J\n",
                    gibbs_mass(), gibbs_mole());
            s += p;
            sprintf(p, " heat capacity c_p    %12.6g     %12.4g     J/K\n",
                    cp_mass(), cp_mole());
            s += p;
            try {
                sprintf(p, " heat capacity c_v    %12.6g     %12.4g     J/K\n",
                        cv_mass(), cv_mole());
                s += p;
            } catch (CanteraError& e) {
                e.save();
                sprintf(p, " heat capacity c_v    <not implemented>       \n");
                s += p;
            }
        }

    } catch (CanteraError& e) {
        e.save();
    }
    return s;
}
Exemple #16
0
/* Construct Packet */
void Construct_Packet(void)
{
  //Serial.println("construct packet top");

  //Variable for Index and uptime
  unsigned long uptime_ms;

  //Put schema number in packet
  G_packet.schema = 297;

  //Update data
  uptime_ms = millis();

  //Put uptime in packet
  G_packet.uptime_ms = uptime_ms;

  //Poll and put battery and panel data in packet
  for(int p = 0; p < 6; p++)
  { G_packet.batt_mv[p] = battery();
    G_packet.panel_mv[p] = panel();
    delay(400);
  }
  
  //Poll and put panel data in packet
  /*for(int p = 0; p < 6; p++)
  { G_packet.panel_mv[p] = panel();
    delay(400);
  }*/
  
  G_packet.bmp185_press_pa = pressure();
  G_packet.bmp185_temp_decic = temp();
  G_packet.humidity_centi_pct = humidity();

  //Poll and put irradiance data in packet
  for(int i = 0; i < 20; i++)
  { G_packet.solar_irr_w_m2[i] = irradiance();
    delay(300);
  }
  
  /*//Hardcoded Test Packet
  G_packet.uptime_ms = 1;
  for(int p = 0; p <= 4; p++)
  { G_packet.batt_mv[p] = 1;
    Serial.print("Battery");
    Serial.println(G_packet.batt_mv[p]);
    delay(400);
  }
  for(int p = 0; p <= 4; p++)
  { G_packet.panel_mv[p] = 2;
    Serial.print("Panel");
    Serial.println(G_packet.panel_mv[p]);
    delay(400);
  }
  
  G_packet.bmp185_press_pa = 3;
  Serial.print("Pressure");
  Serial.println(G_packet.bmp185_press_pa);
  G_packet.bmp185_temp_decic = 4;
  Serial.print("Temp");
  Serial.println(G_packet.bmp185_temp_decic);
  G_packet.humidity_centi_pct = 5;
  Serial.print("Humidity");
  Serial.println(G_packet.humidity_centi_pct);
  for(int i = 0; i <= 14; i++)
  { G_packet.solar_irr_w_m2[i] = 6;
    Serial.print("Solar");
    Serial.println(G_packet.solar_irr_w_m2[i]);
    delay(1000);
  }*/
}
void Hydrostatic_Velocity<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  time = workset.current_time; 

#ifndef ALBANY_KOKKOS_UNDER_DEVELOPMENT
  //*out << "Aeras::Hydrostatic_Velocity time = " << time << std::endl; 
  switch (adv_type) {
    case UNKNOWN: //velocity is an unknown that we solve for (not prescribed)
    {
      for (int cell=0; cell < workset.numCells; ++cell) 
        for (int node=0; node < numNodes; ++node) 
          for (int level=0; level < numLevels; ++level) 
            for (int dim=0; dim < numDims; ++dim)  
              Velocity(cell,node,level,dim) = Velx(cell,node,level,dim); 
    } 
    break; 

    case PRESCRIBED_1_1: //velocity is prescribed to that of 1-1 test
    {
      for (int cell=0; cell < workset.numCells; ++cell) { 
        for (int node=0; node < numNodes; ++node) {

          const MeshScalarT lambda = sphere_coord(cell, node, 0);
          const MeshScalarT theta = sphere_coord(cell, node, 1);
          ScalarT lambdap = lambda - 2.0*PI*time/tau;

          for (int level=0; level < numLevels; ++level) {

              ScalarT Ua = k*sin(lambdap)*sin(lambdap)*sin(2.0*theta)*cos(PI*time/tau)
                         + (2.0*PI*earthRadius/tau)*cos(theta);
    
              ScalarT Va = k*sin(2.0*lambdap)*cos(theta)*cos(PI*time/tau);

              ScalarT B = E.B(level);
              ScalarT p = pressure(cell,node,level);

              ScalarT taper = - exp( (p    - p0)/(B*ptop) )
                              + exp( (ptop - p )/(B*ptop) );

              ScalarT Ud = (omega0*earthRadius)/(B*ptop)
                           *cos(lambdap)*cos(theta)*cos(theta)*cos(2.0*PI*time/tau)*taper;

              Velocity(cell,node,level,0) = Ua + Ud; 
              Velocity(cell,node,level,1) = Va; 
          }
        }
      }
    }
    break; 

    case PRESCRIBED_1_2: //velocity is prescribed to that of 1-2 test
    {
      //FIXME: Pete, Tom - please fill in
      for (int cell=0; cell < workset.numCells; ++cell) { 
        for (int node=0; node < numNodes; ++node) {
          const MeshScalarT lambda = sphere_coord(cell, node, 0);
          const MeshScalarT theta = sphere_coord(cell, node, 1);
          for (int level=0; level < numLevels; ++level) {
            for (int dim=0; dim < numDims; ++dim) {
              Velocity(cell,node,level,dim) = 0.0; //FIXME  
            }
          }
        }
      }
    }
    break; 
  }

#else
  switch (adv_type) {
    case UNKNOWN: //velocity is an unknown that we solve for (not prescribed)
    {
      Kokkos::parallel_for(Hydrostatic_Velocity_Policy(0,workset.numCells),*this);
      cudaCheckError();
      break; 
    } 

    case PRESCRIBED_1_1: //velocity is prescribed to that of 1-1 test
    {
      Kokkos::parallel_for(Hydrostatic_Velocity_PRESCRIBED_1_1_Policy(0,workset.numCells),*this);
      cudaCheckError();
      break; 
    }

    case PRESCRIBED_1_2: //velocity is prescribed to that of 1-2 test
    {
      Kokkos::parallel_for(Hydrostatic_Velocity_PRESCRIBED_1_2_Policy(0,workset.numCells),*this);
      cudaCheckError();
      break; 
    }
  }

#endif
}
doublereal LatticePhase::enthalpy_mole() const
{
    return RT() * mean_X(enthalpy_RT_ref()) +
            (pressure() - m_Pref)/molarDensity();
}
std::string ThermoPhase::report(bool show_thermo, doublereal threshold) const
{
    fmt::MemoryWriter b;
    try {
        if (name() != "") {
            b.write("\n  {}:\n", name());
        }
        b.write("\n");
        b.write("       temperature    {:12.6g}  K\n", temperature());
        b.write("          pressure    {:12.6g}  Pa\n", pressure());
        b.write("           density    {:12.6g}  kg/m^3\n", density());
        b.write("  mean mol. weight    {:12.6g}  amu\n", meanMolecularWeight());

        doublereal phi = electricPotential();
        if (phi != 0.0) {
            b.write("         potential    {:12.6g}  V\n", phi);
        }
        if (show_thermo) {
            b.write("\n");
            b.write("                          1 kg            1 kmol\n");
            b.write("                       -----------      ------------\n");
            b.write("          enthalpy    {:12.5g}     {:12.4g}     J\n",
                    enthalpy_mass(), enthalpy_mole());
            b.write("   internal energy    {:12.5g}     {:12.4g}     J\n",
                    intEnergy_mass(), intEnergy_mole());
            b.write("           entropy    {:12.5g}     {:12.4g}     J/K\n",
                    entropy_mass(), entropy_mole());
            b.write("    Gibbs function    {:12.5g}     {:12.4g}     J\n",
                    gibbs_mass(), gibbs_mole());
            b.write(" heat capacity c_p    {:12.5g}     {:12.4g}     J/K\n",
                    cp_mass(), cp_mole());
            try {
                b.write(" heat capacity c_v    {:12.5g}     {:12.4g}     J/K\n",
                        cv_mass(), cv_mole());
            } catch (NotImplementedError&) {
                b.write(" heat capacity c_v    <not implemented>       \n");
            }
        }

        vector_fp x(m_kk);
        vector_fp y(m_kk);
        vector_fp mu(m_kk);
        getMoleFractions(&x[0]);
        getMassFractions(&y[0]);
        getChemPotentials(&mu[0]);
        int nMinor = 0;
        doublereal xMinor = 0.0;
        doublereal yMinor = 0.0;
        b.write("\n");
        if (show_thermo) {
            b.write("                           X     "
                    "            Y          Chem. Pot. / RT\n");
            b.write("                     -------------     "
                    "------------     ------------\n");
            for (size_t k = 0; k < m_kk; k++) {
                if (abs(x[k]) >= threshold) {
                    if (abs(x[k]) > SmallNumber) {
                        b.write("{:>18s}   {:12.6g}     {:12.6g}     {:12.6g}\n",
                                speciesName(k), x[k], y[k], mu[k]/RT());
                    } else {
                        b.write("{:>18s}   {:12.6g}     {:12.6g}\n",
                                speciesName(k), x[k], y[k]);
                    }
                } else {
                    nMinor++;
                    xMinor += x[k];
                    yMinor += y[k];
                }
            }
        } else {
            b.write("                           X                 Y\n");
            b.write("                     -------------     ------------\n");
            for (size_t k = 0; k < m_kk; k++) {
                if (abs(x[k]) >= threshold) {
                    b.write("{:>18s}   {:12.6g}     {:12.6g}\n",
                            speciesName(k), x[k], y[k]);
                } else {
                    nMinor++;
                    xMinor += x[k];
                    yMinor += y[k];
                }
            }
        }
        if (nMinor) {
            b.write("     [{:+5d} minor]   {:12.6g}     {:12.6g}\n",
                    nMinor, xMinor, yMinor);
        }
    } catch (CanteraError& err) {
        return b.str() + err.what();
    }
    return b.str();
}
Exemple #20
0
EXPORT void g_verbose_fprint_state(
	FILE	   *file,
	const char *name,
	Locstate   state)
{
	bool		bin_out;
	int		i, dim;
	float		p, c, S, v[SMAXD], speed;
	static	char	vname[3][3] = { "vx", "vy", "vz"};
	static	char	mname[3][3] = { "mx", "my", "mz"};

	if (name == NULL)
	    name = "";
	(void) fprintf(file,"\n%s:\n",name);
	(void) fprintf(file,"address %p\n",state);
	if (state == NULL || is_obstacle_state(state))
	{
	    (void) fprintf(file,"(OBSTACLE STATE)\n\n");
	    return;
	}
	dim = Params(state)->dim;

	p = pressure(state);
	c = sound_speed(state);
	S = entropy(state);

	(void) fprintf(file,"%-24s = %-"FFMT" %-24s = %-"FFMT"\n",
		       "density",Dens(state),
		       "specific internal energy",
		       specific_internal_energy(state));
	(void) fprintf(file,"%-24s = %-"FFMT" %-24s = %-"FFMT"\n","pressure",p,
		       "sound speed",c);
	(void) fprintf(file,"%-24s = %-"FFMT" %-24s = %-"FFMT"\n","temperature",
		       temperature(state),"specific entropy",S);

	speed = 0.0;
	for (i = 0; i < dim; i++)
	{
	    v[i] = vel(i,state);	speed += sqr(v[i]);
	    (void) fprintf(file,"%-24s = %-"FFMT" %-24s = %-"FFMT"\n",
			   mname[i],mom(i,state),vname[i],v[i]);
	}
	speed = sqrt(speed);

	(void) fprintf(file,"%-24s = %-"FFMT"","total energy",energy(state));
	if (c > 0. && Dens(state) > 0.)
	   (void) fprintf(file," %-24s = %-"FFMT"\n","Mach number",speed / c);
	else
	   (void) fprintf(file,"\n");

#if defined(TWOD)
	if (dim == 2)
	    (void) fprintf(file,"%-24s = %-"FFMT"\n","velocity angle",
			   degrees(angle(v[0],v[1])));
#endif /* defined(TWOD) */


	fprint_state_type(file,"State type = ",state_type(state));
	(void) fprintf(file,"Params state = %llu\n",
		       gas_param_number(Params(state)));

	bin_out = is_binary_output();
	set_binary_output(NO);
	if (debugging("prt_params"))
	    fprint_Gas_param(file,Params(state));
	else
	    (void) fprintf(file,"Gas_param = %llu\n",
		                gas_param_number(Params(state)));
	set_binary_output(bin_out);

	//if(p< -2000 || p>10000)
	//{
	//    printf("#huge pressure\n");
	//    clean_up(0);
	//}
#if !defined(COMBUSTION_CODE)
	(void) fprintf(file,"\n");
#else /* !defined(COMBUSTION_CODE) */
	if (Composition_type(state) == PURE_NON_REACTIVE)
	{
	    (void) fprintf(file,"\n");
	    return;
	}

	(void) fprintf(file,"%-24s = %-12s   %-24s = %-"FFMT"\n","burned",
		       Burned(state) ? "BURNED" : "UNBURNED",
		       "q",Params(state)->q);
	(void) fprintf(file,"%-24s = %-"FFMT"\n","t_crit",
		       Params(state)->critical_temperature);

	if (Composition_type(state) == PTFLAME)
	{
	    (void) fprintf(file,"\n");
	    return;
	}

	(void) fprintf(file,"%-24s = %-"FFMT"\n","product density",Prod(state));
	(void) fprintf(file,"%-24s = %-"FFMT"\n",
		       "reaction progress",React(state));

	if (Composition_type(state) == ZND)
	{
	    (void) fprintf(file,"\n");
	    return;
	}

	(void) fprintf(file,"%-24s = %-"FFMT"\n","rho1",Dens1(state));
#endif /* !defined(COMBUSTION_CODE) */
	(void) fprintf(file,"%-24s = %-24s %-24s = %-"FFMT"\n\n","gamma_set",
		      Local_gamma_set(state)?"YES" : "NO","local_gamma",
		      Local_gamma(state));
        if(g_composition_type() == MULTI_COMP_NON_REACTIVE)
        {
            if(Params(state) != NULL &&
               Params(state)->n_comps != 1)
            {
                for(i = 0; i < Params(state)->n_comps; i++)
                    (void) fprintf(file,"partial density[%2d] = %"FFMT"\n",
                       i,pdens(state)[i]);
                (void) fprintf(file,"\n");
                 /* TMP the following print is for the debuging display purpose */
                for(i = 0; i < Params(state)->n_comps; i++)
                    (void) fprintf(file,"[%d]Mass fraction = %-"FFMT"\n",
                             i, pdens(state)[i]/Dens(state));
                (void) fprintf(file,"\n");
            }
        }
}		/*end g_verbose_fprint_state*/
int tester()
{
//description
  std::vector<std::string> neutrals;
  std::vector<std::string> ions;
  neutrals.push_back("N2");
  neutrals.push_back("CH4");
  neutrals.push_back("C2H");
//ionic system contains neutral system
  ions = neutrals;
  ions.push_back("N2+");
  Scalar MN(14.008L), MC(12.011), MH(1.008L);
  Scalar MN2 = 2.L*MN , MCH4 = MC + 4.L*MH, MC2H = 2.L * MC + MH;
  std::vector<Scalar> Mm;
  Mm.push_back(MN2);
  Mm.push_back(MCH4);
  Mm.push_back(MC2H);

//densities
  std::vector<Scalar> molar_frac;
  molar_frac.push_back(0.95999L);
  molar_frac.push_back(0.04000L);
  molar_frac.push_back(0.00001L);
  molar_frac.push_back(0.L);
  Scalar dens_tot(1e12L);

//hard sphere radius
  std::vector<Scalar> hard_sphere_radius;
  hard_sphere_radius.push_back(2.0675e-8L * 1e-2L); //N2  in cm -> m
  hard_sphere_radius.push_back(2.3482e-8L * 1e-2L); //CH4 in cm -> m
  hard_sphere_radius.push_back(0.L); //C2H

//zenith angle
//not necessary

//photon flux
//not necessary

////cross-section
//not necessary

//altitudes
  Scalar zmin(600.),zmax(1400.),zstep(10.);

//binary diffusion
  Scalar bCN1(1.04e-5 * 1e-4),bCN2(1.76); //cm2 -> m2
  Planet::DiffusionType CN_model(Planet::DiffusionType::Wakeham);
  Scalar bCC1(5.73e16 * 1e-4),bCC2(0.5); //cm2 -> m2
  Planet::DiffusionType CC_model(Planet::DiffusionType::Wilson);
  Scalar bNN1(0.1783 * 1e-4),bNN2(1.81); //cm2 -> m2
  Planet::DiffusionType NN_model(Planet::DiffusionType::Massman);

/************************
 * first level
 ************************/

//altitude
  Planet::Altitude<Scalar,std::vector<Scalar> > altitude(zmin,zmax,zstep);

//neutrals
  Antioch::ChemicalMixture<Scalar> neutral_species(neutrals); 

//ions
  Antioch::ChemicalMixture<Scalar> ionic_species(ions); 

//chapman
//not needed

//binary diffusion
  Planet::BinaryDiffusion<Scalar> N2N2(   Antioch::Species::N2,  Antioch::Species::N2 , bNN1, bNN2, NN_model);
  Planet::BinaryDiffusion<Scalar> N2CH4(  Antioch::Species::N2,  Antioch::Species::CH4, bCN1, bCN2, CN_model);
  Planet::BinaryDiffusion<Scalar> CH4CH4( Antioch::Species::CH4, Antioch::Species::CH4, bCC1, bCC2, CC_model);
  Planet::BinaryDiffusion<Scalar> N2C2H( Antioch::Species::N2, Antioch::Species::C2H);
  Planet::BinaryDiffusion<Scalar> CH4C2H( Antioch::Species::CH4, Antioch::Species::C2H);
  std::vector<std::vector<Planet::BinaryDiffusion<Scalar> > > bin_diff_coeff;
  bin_diff_coeff.resize(2);
  bin_diff_coeff[0].push_back(N2N2);
  bin_diff_coeff[0].push_back(N2CH4);
  bin_diff_coeff[0].push_back(N2C2H);
  bin_diff_coeff[1].push_back(N2CH4);
  bin_diff_coeff[1].push_back(CH4CH4);
  bin_diff_coeff[1].push_back(CH4C2H);


/************************
 * second level
 ************************/

//temperature
  std::vector<Scalar> T0,Tz;
  read_temperature<Scalar>(T0,Tz,"input/temperature.dat");
  std::vector<Scalar> neutral_temperature;
  linear_interpolation(T0,Tz,altitude.altitudes(),neutral_temperature);
  Planet::AtmosphericTemperature<Scalar, std::vector<Scalar> > temperature(neutral_temperature, neutral_temperature, altitude);

//photon opacity
//not needed

//reaction sets
//not needed

/************************
 * third level
 ************************/

//atmospheric mixture
  Planet::AtmosphericMixture<Scalar,std::vector<Scalar>, std::vector<std::vector<Scalar> > > composition(neutral_species, ionic_species, altitude, temperature);
  composition.init_composition(molar_frac,dens_tot);
  composition.set_hard_sphere_radius(hard_sphere_radius);
  composition.initialize();

//kinetics evaluators
//not needed

/************************
 * fourth level
 ************************/

//photon evaluator
//not needed

//molecular diffusion
  Planet::MolecularDiffusionEvaluator<Scalar,std::vector<Scalar>, std::vector<std::vector<Scalar> > > molecular_diffusion(bin_diff_coeff,
                                                                                                                          composition,
                                                                                                                          altitude,
                                                                                                                          temperature);
  molecular_diffusion.make_molecular_diffusion();

//eddy diffusion
//not needed

/************************
 * checks
 ************************/

  molar_frac.pop_back();//get the ion outta here
  Scalar Matm(0.L);
  for(unsigned int s = 0; s < molar_frac.size(); s++)
  {
     Matm += molar_frac[s] * composition.neutral_composition().M(s);
  }
  Matm *= 1e-3L; //to kg

  std::vector<std::vector<Scalar> > densities;
  calculate_densities(densities, dens_tot, molar_frac, zmin,zmax,zstep, temperature.neutral_temperature(), Mm);
//N2, CH4, C2H
  std::vector<std::vector<Scalar> > Dij;
  Dij.resize(2);
  Dij[0].resize(3,0.L);
  Dij[1].resize(3,0.L);

  int return_flag(0);
  for(unsigned int iz = 0; iz < altitude.altitudes().size(); iz++)
  {
      Scalar P = pressure(composition.total_density()[iz],temperature.neutral_temperature()[iz]);
      Scalar T = temperature.neutral_temperature()[iz];
      Dij[0][0] = binary_coefficient(T,P,bNN1,bNN2); //N2 N2
      Dij[1][1] = binary_coefficient(T,P,bCC1 * Antioch::ant_pow(Planet::Constants::Convention::T_standard<Scalar>(),bCC2 + Scalar(1.L)) 
                                              * Planet::Constants::Universal::kb<Scalar>()
                                              / Planet::Constants::Convention::P_normal<Scalar>(),bCC2 + Scalar(1.L)); //CH4 CH4
      Dij[0][1] = binary_coefficient(T,P,bCN1 * Antioch::ant_pow(Planet::Constants::Convention::T_standard<Scalar>(),bCN2),bCN2); //N2 CH4
      Dij[0][2] = binary_coefficient(Dij[0][0],Mm[0],Mm[2]); //N2 C2H
      Dij[1][2] = binary_coefficient(Dij[1][1],Mm[1],Mm[2]); //CH4 C2H
      Dij[1][0] = Dij[0][1]; //CH4 N2
      for(unsigned int s = 0; s < molar_frac.size(); s++)
      {
        Scalar tmp(0.L);
        Scalar M_diff(0.L);
        for(unsigned int medium = 0; medium < 2; medium++)
        {
           if(s == medium)continue;
           tmp += densities[medium][iz]/Dij[medium][s];
        }
        Scalar Ds = (barometry(zmin,altitude.altitudes()[iz],neutral_temperature[iz],Matm,dens_tot) - densities[s][iz]) / tmp;
        for(unsigned int j = 0; j < molar_frac.size(); j++)
        {
           if(s == j)continue;
           M_diff += composition.total_density()[iz] * composition.neutral_molar_fraction()[j][iz] * composition.neutral_composition().M(j);
        }
        M_diff /= Scalar(molar_frac.size() - 1);
        Scalar Dtilde = Ds / (Scalar(1.L) - composition.neutral_molar_fraction()[s][iz] * (Scalar(1.L) - composition.neutral_composition().M(s)/M_diff));

        return_flag = return_flag ||
                      check_test(Dtilde,molecular_diffusion.Dtilde()[s][iz],"D tilde of species at altitude");

      }
      return_flag = return_flag ||
                    check_test(Dij[0][0],molecular_diffusion.binary_coefficient(0,0,T,P),"binary molecular coefficient N2 N2 at altitude") || 
                    check_test(Dij[0][1],molecular_diffusion.binary_coefficient(0,1,T,P),"binary molecular coefficient N2 CH4 at altitude") || 
                    check_test(Dij[0][2],molecular_diffusion.binary_coefficient(0,2,T,P),"binary molecular coefficient N2 C2H at altitude") || 
                    check_test(Dij[1][1],molecular_diffusion.binary_coefficient(1,1,T,P),"binary molecular coefficient CH4 CH4 at altitude") || 
                    check_test(Dij[1][2],molecular_diffusion.binary_coefficient(1,2,T,P),"binary molecular coefficient CH4 C2H at altitude");
  }

  return return_flag;
}
Exemple #22
0
LOCAL	void set_prt_node_sts_params(
	RP_DATA		*RP,
	int		n_type,
	int		*num_sts,
	int		*nangs,
	const char	**ang_names,
	int		*ist,
	int		*iang)
{
	float		p[4];
	int		i;

	switch (n_type)
	{
	case DIFFRACTION_NODE:
	case TOT_INT_REFL_NODE:
	    *num_sts = 7;
	    for (i = 0; i < *num_sts; i++)
	        ist[i] = i;
	    ang_names[0] = "Incident shock angle";
	    ang_names[1] = "Reflected rarefaction leading edge angle";
	    ang_names[2] = "Reflected shock angle";
	    ang_names[3] = "Reflected rarefaction trailing edge angle";
	    ang_names[4] = "Downstream contact angle";
	    ang_names[5] = "Transmitted shock angle";
	    ang_names[6] = "Upstream contact angle";
	    iang[0] = 0;
	    if (pressure(RP->state[4]) < pressure(RP->state[1]))
	    {
	    	*nangs = 6;
	    	iang[1] = 1; iang[2] = 3; iang[3] = 4;
	    	iang[4] = 5; iang[5] = 6;
	    }
	    else
	    {
	    	*nangs = 5;
	    	iang[1] = 2; iang[2] = 4; iang[3] = 5; iang[4] = 6;
	    }
	    break;
	case TRANSMISSION_NODE:
	    *num_sts = 4;
	    ist[0] = 0; ist[1] = 1; ist[2] = 3; ist[3] = 4;
	    *nangs = 4;
	    iang[0] = 0; iang[1] = 1; iang[2] = 3; iang[3] = 4;
	    ang_names[0] = "Upstream contact angle";
	    ang_names[1] = "Incident shock angle";
	    ang_names[2] = "Downstream contact angle";
	    ang_names[3] = "Downstream contact angle";
	    ang_names[4] = "Transmitted shock angle";
	    break;
	case CROSS_NODE:
	    *num_sts = 5;
	    for (i = 0; i < 5; i++) ist[i] = i;
	    for (i = 0; i < 4; i++)
	    	p[i] = pressure(RP->state[i+1]);
	    ang_names[0] = "Incident shock angle";
	    iang[0] = 0;
	    if (p[1] < p[0])
	    {
	    	*nangs = 6;
	    	iang[1] = 5;
	    	ang_names[1] =
	    		"Reflected rarefaction leading edge angle";
	    	iang[2] = 6;
	    	ang_names[2] =
	    		"Reflected rarefaction trailing edge angle";
	    	iang[3] = 2;
	    	ang_names[3] = "Contact angle";
	    	iang[4] = 3;
	    	ang_names[4] = "Reflected shock angle";
	    	iang[5] = 4;
	    	ang_names[5] = "Incident shock angle";
	    }
	    else if (p[2] < p[3])
	    {
	    	*nangs = 6;
	    	iang[1] = 1;
	    	ang_names[1] = "Reflected shock angle";
	    	iang[2] = 2;
	    	ang_names[2] = "Contact angle";
	    	iang[3] = 5;
	    	ang_names[3] =
	    		"Reflected rarefaction leading edge angle";
	    	iang[4] = 6;
	    	ang_names[4] =
	    		"Reflected rarefaction trailing edge angle";
	    	iang[5] = 4;
	    	ang_names[5] = "Incident shock angle";
	    }
	    else
	    {
	    	*nangs = 5;
	    	for (i = 1; i < *nangs; i++) iang[i] = i;
	    	ang_names[1] = "Reflected shock angle";
	    	ang_names[2] = "Contact angle";
	    	ang_names[3] = "Reflected shock angle";
	    	ang_names[4] = "Incident shock angle";
	    }
	    break;
	case OVERTAKE_NODE:
	    *num_sts = 7;
	    for (i = 0; i < *num_sts; i++) ist[i] = i;
	    iang[0] = 0;
	    ang_names[0] = "Ahead incident shock angle";
	    iang[1] = 1;
	    ang_names[1] = "Overtaking incident shock angle";
	    iang[0] = 0;
	    if (pressure(RP->state[5]) < pressure(RP->state[2]))
	    {
	    	*nangs = 6;
	    	iang[2] = 2;
	    	ang_names[2] =
	    		"Reflected rarefaction leading edge angle";
	    	iang[3] = 4;
	    	ang_names[3] =
	    		"Reflected rarefaction trailing edge angle";
	    	iang[4] = 5;
	    	ang_names[4] = "Contact angle";
	    	iang[5] = 6;
	    	ang_names[5] = "Transmitted shock angle";
	    }
	    else
	    {
	    	*nangs = 5;
	    	iang[2] = 2;
	    	ang_names[2] = "Reflected shock angle";
	    	iang[3] = 5;
	    	ang_names[4] = "Contact angle";
	    	iang[4] = 6;
	    	ang_names[5] = "Transmitted shock angle";
	    }
	    break;
	case MACH_NODE:
	    *num_sts = 4;
	    for (i = 0; i < *num_sts; i++) ist[i] = i;
	    *nangs = 4;
	    for (i = 0; i < *nangs; i++) iang[i] = i;
	    ang_names[0] = "Incident shock angle";
	    ang_names[1] = "Reflected shock angle";
	    ang_names[2] = "Contact angle";
	    ang_names[3] = "Mach stem angle";
	    break;
	case B_REFLECT_NODE:
	    *num_sts = 3;
	    for (i = 0; i < *num_sts; i++) ist[i] = i;
	    *nangs = 4;
	    for (i = 0; i < *nangs; i++) iang[i] = i;
	    ang_names[0] = "Upstream wall angle";
	    ang_names[1] = "Incident shock angle";
	    ang_names[2] = "Reflected shock angle";
	    ang_names[3] = "Downstream wall angle";
	    break;
	default:
	    return;
	}
}		/*end print_node_sts_params*/
Exemple #23
0
doublereal IdealGasPhase::standardConcentration(size_t k) const
{
    return pressure() / (GasConstant * temperature());
}
Exemple #24
0
EXPORT	bool output_spectral_analysis(
	char		*basename,
	Wave		*wave,
	Front		*front)
{
	COMPONENT	comp;
	Locstate	state;
	float		*coords;
	float		*L = wave->rect_grid->L;
	float		*U = wave->rect_grid->U;
	float		*h = wave->rect_grid->h;
	int		icoords[MAXD];
	int		dim = wave->rect_grid->dim;
	int		status;
	int		step = front->step;
	char		energy_name[100],vorticity_name[100],
			enstrophy_name[100],dens_name[100],pres_name[100];
	FILE		*energy_file,*vorticity_file,
			*enstrophy_file,*dens_file,*pres_file;

	debug_print("fft","Entered fft_energy_spectral()\n");

	(void) sprintf(energy_name,"%s.energy%s.dat",basename,
                         right_flush(step,TSTEP_FIELD_WIDTH));
	(void) sprintf(vorticity_name,"%s.vorticity%s.dat",basename,
                         right_flush(step,TSTEP_FIELD_WIDTH));
	(void) sprintf(enstrophy_name,"%s.enstrophy%s.dat",basename,
                         right_flush(step,TSTEP_FIELD_WIDTH));
	(void) sprintf(dens_name,"%s.density%s.dat",basename,
                         right_flush(step,TSTEP_FIELD_WIDTH));
	(void) sprintf(pres_name,"%s.pressure%s.dat",basename,
                         right_flush(step,TSTEP_FIELD_WIDTH));
	energy_file    = fopen(energy_name,"w");
	vorticity_file = fopen(vorticity_name,"w");
	enstrophy_file = fopen(enstrophy_name,"w");
	dens_file = fopen(dens_name,"w");
	pres_file = fopen(pres_name,"w");

	if (wave->sizest == 0)
	{
	    debug_print("fft","Left fft_energy_spectral()\n");
	    return FUNCTION_FAILED;
	}

	switch (dim)
	{
#if defined(ONED)
	case 1:
	{
	    int		ix;
	    int		xmax;
	    COMPLEX	*mesh_energy;

	    xmax = wave->rect_grid->gmax[0];
	    uni_array(&mesh_energy,xmax,sizeof(COMPLEX));
	    for (ix = 0; ix < xmax; ++ix)
	    {
	    	icoords[0] = ix;
	    	coords = Rect_coords(icoords,wave);
	    	comp = Rect_comp(icoords,wave);
	    	state = Rect_state(icoords,wave);
		mesh_energy[ix].real = Energy(state);
		mesh_energy[ix].imag = 0.0;
	    }
	    break;
	}
#endif /* defined(ONED) */
#if defined(TWOD)
	case 2:
	{
	    int		ix, iy;
	    int		xmax, ymax, mx, my, dummy;
	    COMPLEX	**mesh_energy,**mesh_vorticity,**mesh_enstrophy;
	    Locstate	lstate,rstate,bstate,tstate;
	    float	kk,kx,ky,dk;

	    xmax = wave->rect_grid->gmax[0];
	    ymax = wave->rect_grid->gmax[1];
	    if (!Powerof2(xmax,&mx,&dummy) || !Powerof2(ymax,&my,&dummy))
	    {
		screen("fft_energy_spectral() cannot analyze "
				"mesh not power of 2\n");
		screen("xmax = %d  ymax = %d\n",xmax,ymax);
		return FUNCTION_FAILED;
	    }
	    bi_array(&mesh_energy,xmax,ymax,sizeof(COMPLEX));
	    bi_array(&mesh_vorticity,xmax,ymax,sizeof(COMPLEX));
	    fprintf(energy_file,"zone  i=%d, j=%d\n",xmax,ymax);
	    fprintf(vorticity_file,"zone  i=%d, j=%d\n",xmax,ymax);
	    fprintf(dens_file,"zone  i=%d, j=%d\n",xmax,ymax);
	    fprintf(pres_file,"zone  i=%d, j=%d\n",xmax,ymax);
	    fprintf(enstrophy_file,"zone  i=%d, j=%d\n",xmax,ymax);
	    for (iy = 0; iy < ymax; ++iy)
	    {
	    	for (ix = 0; ix < xmax; ++ix)
	    	{
	    	    icoords[0] = ix; icoords[1] = iy;
	    	    coords = Rect_coords(icoords,wave);
	    	    comp = Rect_comp(icoords,wave);
	    	    state = Rect_state(icoords,wave);
		    mesh_energy[ix][iy].real = kinetic_energy(state);
		    mesh_energy[ix][iy].imag = 0.0;

		    if (ix != 0) icoords[0] = ix - 1;
		    else icoords[0] = ix;
	    	    lstate = Rect_state(icoords,wave);
		    if (ix != xmax-1) icoords[0] = ix + 1;
		    else icoords[0] = ix;
	    	    rstate = Rect_state(icoords,wave);

		    icoords[0] = ix;
		    if (iy != 0) icoords[1] = iy - 1;
		    else icoords[1] = iy;
	    	    bstate = Rect_state(icoords,wave);
		    if (iy != ymax-1) icoords[1] = iy + 1;
		    else icoords[1] = iy;
	    	    tstate = Rect_state(icoords,wave);
		    mesh_vorticity[ix][iy].real = (Mom(rstate)[1]/Dens(rstate) 
			    		- Mom(lstate)[1]/Dens(lstate))/h[0]
					- (Mom(tstate)[0]/Dens(tstate)
					- Mom(bstate)[0]/Dens(bstate))/h[1];
		    mesh_vorticity[ix][iy].imag = 0.0;
		    fprintf(energy_file,"%lf\n",kinetic_energy(state));
		    fprintf(vorticity_file,"%lf\n",mesh_vorticity[ix][iy].real);
		    fprintf(enstrophy_file,"%lf\n",
		    		sqr(mesh_vorticity[ix][iy].real));
		    fprintf(dens_file,"%lf\n",Dens(state));
		    fprintf(pres_file,"%lf\n",pressure(state));
	    	}
	    }
	    fft_output2d(basename,"energy",step,wave->rect_grid,
	    				mesh_energy);
	    fft_output2d(basename,"vorticity",step,wave->rect_grid,
	    				mesh_vorticity);
	    free_these(2,mesh_energy,mesh_vorticity);
	    break;
	}
#endif /* defined(TWOD) */
#if defined(THREED)
	case 3:
	{
	    int		ix, iy, iz;
	    int		xmax, ymax, zmax;
	    COMPLEX	***mesh_energy;

	    xmax = wave->rect_grid->gmax[0];
	    ymax = wave->rect_grid->gmax[1];
	    zmax = wave->rect_grid->gmax[2];
	    tri_array(&mesh_energy,xmax,ymax,zmax,sizeof(COMPLEX));
	    for (iz = 0; iz < zmax; ++iz)
	    {
	    	icoords[2] = iz;
	    	for (iy = 0; iy < ymax; ++iy)
	    	{
	    	    icoords[1] = iy;
	    	    for (ix = 0; ix < xmax; ++ix)
	    	    {
	    	    	icoords[0] = ix;
	    	    	coords = Rect_coords(icoords,wave);
	    	    	comp = Rect_comp(icoords,wave);
	    	    	state = Rect_state(icoords,wave);
			mesh_energy[ix][iy][iz].real = Energy(state);
		    	mesh_energy[ix][iy][iz].imag = 0.0;
	    	    }
	    	}
	    }
	    break;
	}
#endif /* defined(THREED) */
	}
	fclose(energy_file);
	fclose(vorticity_file);
	fclose(enstrophy_file);
	fclose(dens_file);
	fclose(pres_file);

	debug_print("fft","Left fft_energy_spectral()\n");
	return FUNCTION_SUCCEEDED;
}		/*end fft_energy_spectral*/
Exemple #25
0
/**
  * Format a summary of the mixture state for output.
  */
std::string MolalityVPSSTP::report(bool show_thermo) const
{


    char p[800];
    string s = "";
    try {
        if (name() != "") {
            sprintf(p, " \n  %s:\n", name().c_str());
            s += p;
        }
        sprintf(p, " \n       temperature    %12.6g  K\n", temperature());
        s += p;
        sprintf(p, "          pressure    %12.6g  Pa\n", pressure());
        s += p;
        sprintf(p, "           density    %12.6g  kg/m^3\n", density());
        s += p;
        sprintf(p, "  mean mol. weight    %12.6g  amu\n", meanMolecularWeight());
        s += p;

        doublereal phi = electricPotential();
        sprintf(p, "         potential    %12.6g  V\n", phi);
        s += p;

        size_t kk = nSpecies();
        vector_fp x(kk);
        vector_fp molal(kk);
        vector_fp mu(kk);
        vector_fp muss(kk);
        vector_fp acMolal(kk);
        vector_fp actMolal(kk);
        getMoleFractions(&x[0]);
        getMolalities(&molal[0]);
        getChemPotentials(&mu[0]);
        getStandardChemPotentials(&muss[0]);
        getMolalityActivityCoefficients(&acMolal[0]);
        getActivities(&actMolal[0]);

        size_t iHp = speciesIndex("H+");
        if (iHp != npos) {
            double pH = -log(actMolal[iHp]) / log(10.0);
            sprintf(p, "                pH    %12.4g  \n", pH);
            s += p;
        }

        if (show_thermo) {
            sprintf(p, " \n");
            s += p;
            sprintf(p, "                          1 kg            1 kmol\n");
            s += p;
            sprintf(p, "                       -----------      ------------\n");
            s += p;
            sprintf(p, "          enthalpy    %12.6g     %12.4g     J\n",
                    enthalpy_mass(), enthalpy_mole());
            s += p;
            sprintf(p, "   internal energy    %12.6g     %12.4g     J\n",
                    intEnergy_mass(), intEnergy_mole());
            s += p;
            sprintf(p, "           entropy    %12.6g     %12.4g     J/K\n",
                    entropy_mass(), entropy_mole());
            s += p;
            sprintf(p, "    Gibbs function    %12.6g     %12.4g     J\n",
                    gibbs_mass(), gibbs_mole());
            s += p;
            sprintf(p, " heat capacity c_p    %12.6g     %12.4g     J/K\n",
                    cp_mass(), cp_mole());
            s += p;
            try {
                sprintf(p, " heat capacity c_v    %12.6g     %12.4g     J/K\n",
                        cv_mass(), cv_mole());
                s += p;
            } catch (CanteraError& err) {
                err.save();
                sprintf(p, " heat capacity c_v    <not implemented>       \n");
                s += p;
            }
        }

        sprintf(p, " \n");
        s += p;
        if (show_thermo) {
            sprintf(p, "                           X        "
                    "   Molalities         Chem.Pot.    ChemPotSS    ActCoeffMolal\n");
            s += p;
            sprintf(p, "                                    "
                    "                      (J/kmol)      (J/kmol)                 \n");
            s += p;
            sprintf(p, "                     -------------  "
                    "  ------------     ------------  ------------    ------------\n");
            s += p;
            for (size_t k = 0; k < kk; k++) {
                if (x[k] > SmallNumber) {
                    sprintf(p, "%18s  %12.6g     %12.6g     %12.6g   %12.6g   %12.6g\n",
                            speciesName(k).c_str(), x[k], molal[k], mu[k], muss[k], acMolal[k]);
                } else {
                    sprintf(p, "%18s  %12.6g     %12.6g          N/A      %12.6g   %12.6g \n",
                            speciesName(k).c_str(), x[k], molal[k], muss[k], acMolal[k]);
                }
                s += p;
            }
        } else {
            sprintf(p, "                           X"
                    "Molalities\n");
            s += p;
            sprintf(p, "                     -------------"
                    "     ------------\n");
            s += p;
            for (size_t k = 0; k < kk; k++) {
                sprintf(p, "%18s   %12.6g     %12.6g\n",
                        speciesName(k).c_str(), x[k], molal[k]);
                s += p;
            }
        }
    } catch (CanteraError& err) {
        err.save();
    }
    return s;
}
Exemple #26
0
 /*
  * Returns the standard concentration \f$ C^0_k \f$, which is used to normalize
  * the generalized concentration.
  */
 doublereal PecosGasPhase::standardConcentration(int k) const {
   double p = pressure();
   return p/(GasConstant * temperature());
 }
doublereal MetalSHEelectrons::isothermalCompressibility() const
{
    return 1.0/pressure();
}
Exemple #28
0
 /*
  * Returns the natural logarithm of the standard 
  * concentration of the kth species
  */
 doublereal PecosGasPhase::logStandardConc(int k) const {
   _updateThermo();
   double p = pressure();
   double lc = std::log (p / (GasConstant * temperature()));
   return lc;
 }
void MetalSHEelectrons::getGibbs_RT(doublereal* grt) const
{
    getGibbs_RT_ref(grt);
    doublereal tmp = log(pressure() / m_p0);
    grt[0] += tmp;
}
Exemple #30
0
int main()
{
    quan::length::m length(1);
    quan::time::s time(1);
    quan::mass::kg mass(1);
    quan::temperature::K temperature(1);
    quan::current::A current(1);
    quan::substance::mol subst(1);
    quan::intensity::cd intensity(1);
    quan::energy::J energy(1); 
    quan::area::m2 area(1);
    quan::force::N force(1);
    quan::volume::m3 volume(1);
    quan::power::W power(1);
    quan::pressure::Pa pressure(1);
#if (1)
    std::ostream & os = std::cout;
#else
    std::ofstream os("db_dims.csv");
#endif
    os << "abstract quantity name ,";
    for (int i = 0 ; i < 7 ; ++i){
        os << ar[i] << ',';
    }
    os << "upf_pre_sym,upf_sym,offset,extent,non-prog name,upf_out_sym" << '\n';

    show(os, "volume_flow" , // name
         "volume flow" , //out name
        volume/time, //dim
        "m3_per_s", // prog sym
        "m3.s-1" //upf_out_sym
    );

    show(os, "force_per_mass" , // name
         "force divided by mass" , //out name
        force/mass, //dim
        "N_per_kg", // prog sym
        "N.kg-1" //upf_out_sym
    );

      show(os, "energy_per_area_time" , // name
         "energy divided by area time" , //out name
        energy / (area * time), //dim
        "W_per_m2", // prog sym
        "W.m-2" //upf_out_sym
    );

    show(os, "force_per_length" , // name
         "force divided by length" , //out name
        force / length, //dim
        "N_per_m", // prog sym
        "N.m-1" //upf_out_sym
    );
    
    show(os, "energy_per_volume" , // name
         "energy divided by volume" , //out name
         energy / volume, //dim
        "J_per_m3", // prog sym
        "J.m-3" //upf_out_sym
    );
    
    show(os, "energy_per_mass" , // name
         "energy divided by mass" , //out name
         energy / mass, //dim
        "J_per_kg", // prog sym
        "J.kg-1" //upf_out_sym
    );
    
    show(os, "heat_transfer_coefficient" , // name
         "heat transfer coefficient" , //out name
         power / (area * temperature), //dim
        "W_per_m2_K", // prog sym
        "W.m-2.K-1" //upf_out_sym
    );

    show(os, "heat_density" , // name
         "heat density" , //out name
         energy / area, //dim
        "J_per_m2", // prog sym
        "J.m-2" //upf_out_sym
    );
 
    show(os, "heat_flow_density" , // name
         "heat flow density" , //out name
         power / area, //dim
        "W_per_m2", // prog sym
        "W.m-2" //upf_out_sym
    );

    show(os, "volume_per_energy" , // name
         "volume divided by energy" , //out name
         volume / energy, //dim
        "m3_per_J", // prog sym
        "m3.J-1" //upf_out_sym
    );

    show(os, "fuel_consumption" , // name
         "fuel consumption" , //out name
        length / volume, //dim
        "m_per_m3", // prog sym
        "m.m-3" //upf_out_sym
    );

    show(os, "entropy" , // name
         "entropy" , //out name
        energy / temperature, //dim
        "J_per_K", // prog sym
        "J.K-1" //upf_out_sym
    );

    show(os, "heat_flow" , // name
         "heat flow" , //out name
        power, //dim
        "W", // prog sym
        "W" //upf_out_sym
    );

    show(os, "specific_entropy" , // name
         "specific entropy" , //out name
        energy / ( mass * temperature), //dim
        "J_per_kg_K", // prog sym
        "J.kg-1.K-1" //upf_out_sym
    );
///////////WRONG//////////////////
    show(os, "thermal_conductivity" , // name
         "thermal conductivity" , //out name
////////////////
        power / ( length * temperature), //dim
        "W_per_m_K", // prog sym
        "W.m-1.K-1" //upf_out_sym
    );
////////////////////
    show(os, "thermal_diffusivity" , // name
         "thermal diffusivity" , //out name
        area / time, //dim
        "m2_per_s", // prog sym
        "m2.s-1" //upf_out_sym
    );

    show(os, "thermal_insulance" , // name
         "thermal insulance" , //out name
        area * temperature / power, //dim
        "m2_K_per_W", // prog sym
        "m2.K.W-1" //upf_out_sym
    );

    show(os, "thermal_resistance" , // name
         "thermal resistance" , //out name
        temperature / power, //dim
        "K_per_W", // prog sym
        "K.W-1" //upf_out_sym
    );

    show(os, "thermal_resistivity" , // name
         "thermal resistivity" , //out name
        (length * temperature) / power, //dim
        "m_K_per_W", // prog sym
        "m.K.W-1" //upf_out_sym
    );
  // in fact are 3 types of permeability  
    show(os, "permeability" , // name
        "permeability" , //out name
        mass /( pressure * time * area), //dim
        "g_per_Pa_s_m2", // prog sym
        "g.Pa-1.s-1.m-2", //upf_out_sym,
        "null",3
    );
}