Exemple #1
0
/**
 * The sd log deamon app only briefly exists to start
 * the background job. The stack size assigned in the
 * Makefile does only apply to this management task.
 *
 * The actual stack size should be set in the call
 * to task_spawn_cmd().
 */
int sdlog_main(int argc, char *argv[])
{
	if (argc < 1)
		usage("missing command");

	if (!strcmp(argv[1], "start")) {

		if (thread_running) {
			printf("sdlog already running\n");
			/* this is not an error */
			exit(0);
		}

		thread_should_exit = false;
		deamon_task = task_spawn_cmd("sdlog",
					 SCHED_DEFAULT,
					 SCHED_PRIORITY_DEFAULT - 30,
					 4096,
					 sdlog_thread_main,
					 (const char **)argv);
		exit(0);
	}

	if (!strcmp(argv[1], "stop")) {
		if (!thread_running) {
			printf("\tsdlog is not started\n");
		}

		thread_should_exit = true;
		exit(0);
	}

	if (!strcmp(argv[1], "status")) {
		if (thread_running) {
			print_sdlog_status();

		} else {
			printf("\tsdlog not started\n");
		}

		exit(0);
	}

	usage("unrecognized command");
	exit(1);
}
Exemple #2
0
int sdlog_thread_main(int argc, char *argv[])
{
	mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);

	if (mavlink_fd < 0) {
		warnx("ERROR: Failed to open MAVLink log stream, start mavlink app first.\n");
	}

	/* log every n'th value (skip three per default) */
	int skip_value = 3;

	/* work around some stupidity in task_create's argv handling */
	argc -= 2;
	argv += 2;
	int ch;

	while ((ch = getopt(argc, argv, "s:r")) != EOF) {
		switch (ch) {
		case 's':
			{
			/* log only every n'th (gyro clocked) value */
			unsigned s = strtoul(optarg, NULL, 10);

			if (s < 1 || s > 250) {
				errx(1, "Wrong skip value of %d, out of range (1..250)\n", s);
			} else {
				skip_value = s;
			}
			}
			break;

		case 'r':
			/* log only on request, disable logging per default */
			logging_enabled = false;
			break;

		case '?':
			if (optopt == 'c') {
				warnx("Option -%c requires an argument.\n", optopt);
			} else if (isprint(optopt)) {
				warnx("Unknown option `-%c'.\n", optopt);
			} else {
				warnx("Unknown option character `\\x%x'.\n", optopt);
			}

		default:
			usage("unrecognized flag");
			errx(1, "exiting.");
		}
	}

	if (file_exist(mountpoint) != OK) {
		errx(1, "logging mount point %s not present, exiting.", mountpoint);
	}

	char folder_path[64];

	if (create_logfolder(folder_path))
		errx(1, "unable to create logging folder, exiting.");

	FILE *gpsfile;
	FILE *blackbox_file;

	/* string to hold the path to the sensorfile */
	char path_buf[64] = "";

	/* only print logging path, important to find log file later */
	warnx("logging to directory %s\n", folder_path);

	/* set up file path: e.g. /mnt/sdcard/session0001/actuator_controls0.bin */
	sprintf(path_buf, "%s/%s.bin", folder_path, "sysvector");

	if (0 == (sysvector_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
		errx(1, "opening %s failed.\n", path_buf);
	}

	/* set up file path: e.g. /mnt/sdcard/session0001/gps.txt */
	sprintf(path_buf, "%s/%s.txt", folder_path, "gps");

	if (NULL == (gpsfile = fopen(path_buf, "w"))) {
		errx(1, "opening %s failed.\n", path_buf);
	}

	int gpsfile_no = fileno(gpsfile);

	/* set up file path: e.g. /mnt/sdcard/session0001/blackbox.txt */
	sprintf(path_buf, "%s/%s.txt", folder_path, "blackbox");

	if (NULL == (blackbox_file = fopen(path_buf, "w"))) {
		errx(1, "opening %s failed.\n", path_buf);
	}

	// XXX for fsync() calls
	int blackbox_file_no = fileno(blackbox_file);

	/* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */
	/* number of messages */
	const ssize_t fdsc = 25;
	/* Sanity check variable and index */
	ssize_t fdsc_count = 0;
	/* file descriptors to wait for */
	struct pollfd fds[fdsc];


	struct {
		struct sensor_combined_s raw;
		struct vehicle_attitude_s att;
		struct vehicle_attitude_setpoint_s att_sp;
		struct actuator_outputs_s act_outputs;
		struct actuator_controls_s act_controls;
		struct actuator_controls_effective_s act_controls_effective;
		struct vehicle_command_s cmd;
		struct vehicle_local_position_s local_pos;
		struct vehicle_global_position_s global_pos;
		struct vehicle_gps_position_s gps_pos;
		struct vehicle_vicon_position_s vicon_pos;
		struct optical_flow_s flow;
		struct battery_status_s batt;
		struct differential_pressure_s diff_pres;
		struct airspeed_s airspeed;
	} buf;
	memset(&buf, 0, sizeof(buf));

	struct {
		int cmd_sub;
		int sensor_sub;
		int att_sub;
		int spa_sub;
		int act_0_sub;
		int controls_0_sub;
		int controls_effective_0_sub;
		int local_pos_sub;
		int global_pos_sub;
		int gps_pos_sub;
		int vicon_pos_sub;
		int flow_sub;
		int batt_sub;
		int diff_pres_sub;
		int airspeed_sub;
	} subs;

	/* --- MANAGEMENT - LOGGING COMMAND --- */
	/* subscribe to ORB for vehicle command */
	subs.cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
	fds[fdsc_count].fd = subs.cmd_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GPS POSITION --- */
	/* subscribe to ORB for global position */
	subs.gps_pos_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	fds[fdsc_count].fd = subs.gps_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- SENSORS RAW VALUE --- */
	/* subscribe to ORB for sensors raw */
	subs.sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
	fds[fdsc_count].fd = subs.sensor_sub;
	/* do not rate limit, instead use skip counter (aliasing on rate limit) */
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ATTITUDE VALUE --- */
	/* subscribe to ORB for attitude */
	subs.att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	fds[fdsc_count].fd = subs.att_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ATTITUDE SETPOINT VALUE --- */
	/* subscribe to ORB for attitude setpoint */
	/* struct already allocated */
	subs.spa_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	fds[fdsc_count].fd = subs.spa_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/** --- ACTUATOR OUTPUTS --- */
	subs.act_0_sub = orb_subscribe(ORB_ID(actuator_outputs_0));
	fds[fdsc_count].fd = subs.act_0_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ACTUATOR CONTROL VALUE --- */
	/* subscribe to ORB for actuator control */
	subs.controls_0_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	fds[fdsc_count].fd = subs.controls_0_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ACTUATOR CONTROL EFFECTIVE VALUE --- */
	/* subscribe to ORB for actuator control */
	subs.controls_effective_0_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE);
	fds[fdsc_count].fd = subs.controls_effective_0_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- LOCAL POSITION --- */
	/* subscribe to ORB for local position */
	subs.local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	fds[fdsc_count].fd = subs.local_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GLOBAL POSITION --- */
	/* subscribe to ORB for global position */
	subs.global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	fds[fdsc_count].fd = subs.global_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- VICON POSITION --- */
	/* subscribe to ORB for vicon position */
	subs.vicon_pos_sub = orb_subscribe(ORB_ID(vehicle_vicon_position));
	fds[fdsc_count].fd = subs.vicon_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- FLOW measurements --- */
	/* subscribe to ORB for flow measurements */
	subs.flow_sub = orb_subscribe(ORB_ID(optical_flow));
	fds[fdsc_count].fd = subs.flow_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- BATTERY STATUS --- */
	/* subscribe to ORB for flow measurements */
	subs.batt_sub = orb_subscribe(ORB_ID(battery_status));
	fds[fdsc_count].fd = subs.batt_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- DIFFERENTIAL PRESSURE --- */
	/* subscribe to ORB for flow measurements */
	subs.diff_pres_sub = orb_subscribe(ORB_ID(differential_pressure));
	fds[fdsc_count].fd = subs.diff_pres_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- AIRSPEED --- */
	/* subscribe to ORB for airspeed */
	subs.airspeed_sub = orb_subscribe(ORB_ID(airspeed));
	fds[fdsc_count].fd = subs.airspeed_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;	

	/* WARNING: If you get the error message below,
	 * then the number of registered messages (fdsc)
	 * differs from the number of messages in the above list.
	 */
	if (fdsc_count > fdsc) {
		warn("WARNING: Not enough space for poll fds allocated. Check %s:%d.\n", __FILE__, __LINE__);
		fdsc_count = fdsc;
	}

	/*
	 * set up poll to block for new data,
	 * wait for a maximum of 1000 ms (1 second)
	 */
	// const int timeout = 1000;

	thread_running = true;

	/* initialize log buffer with a size of 10 */
	sdlog_logbuffer_init(&lb, 10);

	/* initialize thread synchronization */
	pthread_mutex_init(&sysvector_mutex, NULL);
  	pthread_cond_init(&sysvector_cond, NULL);

	/* start logbuffer emptying thread */
	pthread_t sysvector_pthread = sysvector_write_start(&lb);

	starttime = hrt_absolute_time();

	/* track skipping */
	int skip_count = 0;

	while (!thread_should_exit) {

		/* only poll for commands, gps and sensor_combined */
		int poll_ret = poll(fds, 3, 1000);

		/* handle the poll result */
		if (poll_ret == 0) {
			/* XXX this means none of our providers is giving us data - might be an error? */
		} else if (poll_ret < 0) {
			/* XXX this is seriously bad - should be an emergency */
		} else {

			int ifds = 0;

			/* --- VEHICLE COMMAND VALUE --- */
			if (fds[ifds++].revents & POLLIN) {
				/* copy command into local buffer */
				orb_copy(ORB_ID(vehicle_command), subs.cmd_sub, &buf.cmd);

				/* always log to blackbox, even when logging disabled */
				blackbox_file_bytes += fprintf(blackbox_file, "[%10.4f\tVCMD] CMD #%d [%f\t%f\t%f\t%f\t%f\t%f\t%f]\n", hrt_absolute_time()/1000000.0d,
					buf.cmd.command, (double)buf.cmd.param1, (double)buf.cmd.param2, (double)buf.cmd.param3, (double)buf.cmd.param4,
					(double)buf.cmd.param5, (double)buf.cmd.param6, (double)buf.cmd.param7);

				handle_command(&buf.cmd);
			}

			/* --- VEHICLE GPS VALUE --- */
			if (fds[ifds++].revents & POLLIN) {
				/* copy gps position into local buffer */
				orb_copy(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf.gps_pos);

				/* if logging disabled, continue */
				if (logging_enabled) {

				/* write KML line */
				}
			}

			/* --- SENSORS RAW VALUE --- */
			if (fds[ifds++].revents & POLLIN) {

				// /* copy sensors raw data into local buffer */
				// orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
				// /* write out */
				// sensor_combined_bytes += write(sensorfile, (const char*)&(buf.raw), sizeof(buf.raw));

				/* always copy sensors raw data into local buffer, since poll flags won't clear else */
				orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
				orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.controls_0_sub, &buf.act_controls);
				orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE, subs.controls_effective_0_sub, &buf.act_controls_effective);
				orb_copy(ORB_ID(actuator_outputs_0), subs.act_0_sub, &buf.act_outputs);
				orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.spa_sub, &buf.att_sp);
				orb_copy(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf.gps_pos);
				orb_copy(ORB_ID(vehicle_local_position), subs.local_pos_sub, &buf.local_pos);
				orb_copy(ORB_ID(vehicle_global_position), subs.global_pos_sub, &buf.global_pos);
				orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);
				orb_copy(ORB_ID(vehicle_vicon_position), subs.vicon_pos_sub, &buf.vicon_pos);
				orb_copy(ORB_ID(optical_flow), subs.flow_sub, &buf.flow);
				orb_copy(ORB_ID(differential_pressure), subs.diff_pres_sub, &buf.diff_pres);
				orb_copy(ORB_ID(airspeed), subs.airspeed_sub, &buf.airspeed);
				orb_copy(ORB_ID(battery_status), subs.batt_sub, &buf.batt);

				/* if skipping is on or logging is disabled, ignore */
				if (skip_count < skip_value || !logging_enabled) {
					skip_count++;
					/* do not log data */
					continue;
				} else {
					/* log data, reset */
					skip_count = 0;
				}

				struct sdlog_sysvector sysvect = {
					.timestamp = buf.raw.timestamp,
					.gyro = {buf.raw.gyro_rad_s[0], buf.raw.gyro_rad_s[1], buf.raw.gyro_rad_s[2]},
					.accel = {buf.raw.accelerometer_m_s2[0], buf.raw.accelerometer_m_s2[1], buf.raw.accelerometer_m_s2[2]},
					.mag = {buf.raw.magnetometer_ga[0], buf.raw.magnetometer_ga[1], buf.raw.magnetometer_ga[2]},
					.baro = buf.raw.baro_pres_mbar,
					.baro_alt = buf.raw.baro_alt_meter,
					.baro_temp = buf.raw.baro_temp_celcius,
					.control = {buf.act_controls.control[0], buf.act_controls.control[1], buf.act_controls.control[2], buf.act_controls.control[3]},
					.actuators = {
						buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3],
						buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]
					},
					.vbat = buf.batt.voltage_v,
					.bat_current = buf.batt.current_a,
					.bat_discharged = buf.batt.discharged_mah,
					.adc = {buf.raw.adc_voltage_v[0], buf.raw.adc_voltage_v[1], buf.raw.adc_voltage_v[2], buf.raw.adc_voltage_v[3]},
					.local_position = {buf.local_pos.x, buf.local_pos.y, buf.local_pos.z},
					.gps_raw_position = {buf.gps_pos.lat, buf.gps_pos.lon, buf.gps_pos.alt},
					.attitude = {buf.att.pitch, buf.att.roll, buf.att.yaw},
					.rotMatrix = {buf.att.R[0][0], buf.att.R[0][1], buf.att.R[0][2], buf.att.R[1][0], buf.att.R[1][1], buf.att.R[1][2], buf.att.R[2][0], buf.att.R[2][1], buf.att.R[2][2]},
					.vicon = {buf.vicon_pos.x, buf.vicon_pos.y, buf.vicon_pos.z, buf.vicon_pos.roll, buf.vicon_pos.pitch, buf.vicon_pos.yaw},
					.control_effective = {buf.act_controls_effective.control_effective[0], buf.act_controls_effective.control_effective[1], buf.act_controls_effective.control_effective[2], buf.act_controls_effective.control_effective[3]},
					.flow = {buf.flow.flow_raw_x, buf.flow.flow_raw_y, buf.flow.flow_comp_x_m, buf.flow.flow_comp_y_m, buf.flow.ground_distance_m, buf.flow.quality},
					.diff_pressure = buf.diff_pres.differential_pressure_pa,
					.ind_airspeed = buf.airspeed.indicated_airspeed_m_s,
					.true_airspeed = buf.airspeed.true_airspeed_m_s
				};

				/* put into buffer for later IO */
				pthread_mutex_lock(&sysvector_mutex);
				sdlog_logbuffer_write(&lb, &sysvect);
				/* signal the other thread new data, but not yet unlock */
				if ((unsigned)lb.count > (lb.size / 2)) {
					/* only request write if several packets can be written at once */
					pthread_cond_signal(&sysvector_cond);
				}
				/* unlock, now the writer thread may run */
				pthread_mutex_unlock(&sysvector_mutex);
			}

		}

	}

	print_sdlog_status();

	/* wake up write thread one last time */
	pthread_mutex_lock(&sysvector_mutex);
	pthread_cond_signal(&sysvector_cond);
	/* unlock, now the writer thread may return */
	pthread_mutex_unlock(&sysvector_mutex);

	/* wait for write thread to return */
	(void)pthread_join(sysvector_pthread, NULL);

  	pthread_mutex_destroy(&sysvector_mutex);
  	pthread_cond_destroy(&sysvector_cond);

	warnx("exiting.\n\n");

	/* finish KML file */
	// XXX
	fclose(gpsfile);
	fclose(blackbox_file);

	thread_running = false;

	return 0;
}
Exemple #3
0
int sdlog_thread_main(int argc, char *argv[]) {

	warnx("starting\n");

	if (file_exist(mountpoint) != OK) {
		errx(1, "logging mount point %s not present, exiting.", mountpoint);
	}

	char folder_path[64];
	if (create_logfolder(folder_path))
		errx(1, "unable to create logging folder, exiting.");

	/* create sensorfile */
	int sensorfile = -1;
	int actuator_outputs_file = -1;
	int actuator_controls_file = -1;
	int sysvector_file = -1;
	FILE *gpsfile;
	FILE *blackbox_file;
	// FILE *vehiclefile;

	char path_buf[64] = ""; // string to hold the path to the sensorfile

	warnx("logging to directory %s\n", folder_path);

	/* set up file path: e.g. /mnt/sdcard/session0001/sensor_combined.bin */
	sprintf(path_buf, "%s/%s.bin", folder_path, "sensor_combined");
	if (0 == (sensorfile = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
		errx(1, "opening %s failed.\n", path_buf);
	}

	// /* set up file path: e.g. /mnt/sdcard/session0001/actuator_outputs0.bin */
	// sprintf(path_buf, "%s/%s.bin", folder_path, "actuator_outputs0");
	// if (0 == (actuator_outputs_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
	// 	errx(1, "opening %s failed.\n", path_buf);
	// }

	/* set up file path: e.g. /mnt/sdcard/session0001/actuator_controls0.bin */
	sprintf(path_buf, "%s/%s.bin", folder_path, "sysvector");
	if (0 == (sysvector_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
		errx(1, "opening %s failed.\n", path_buf);
	}

	/* set up file path: e.g. /mnt/sdcard/session0001/actuator_controls0.bin */
	sprintf(path_buf, "%s/%s.bin", folder_path, "actuator_controls0");
	if (0 == (actuator_controls_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
		errx(1, "opening %s failed.\n", path_buf);
	}

	/* set up file path: e.g. /mnt/sdcard/session0001/gps.txt */
	sprintf(path_buf, "%s/%s.txt", folder_path, "gps");
	if (NULL == (gpsfile = fopen(path_buf, "w"))) {
		errx(1, "opening %s failed.\n", path_buf);
	}
	int gpsfile_no = fileno(gpsfile);

	/* set up file path: e.g. /mnt/sdcard/session0001/blackbox.txt */
	sprintf(path_buf, "%s/%s.txt", folder_path, "blackbox");
	if (NULL == (blackbox_file = fopen(path_buf, "w"))) {
		errx(1, "opening %s failed.\n", path_buf);
	}
	int blackbox_file_no = fileno(blackbox_file);

	/* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */
	/* number of messages */
	const ssize_t fdsc = 25;
	/* Sanity check variable and index */
	ssize_t fdsc_count = 0;
	/* file descriptors to wait for */
	struct pollfd fds[fdsc];


	struct {
		struct sensor_combined_s raw;
		struct vehicle_attitude_s att;
		struct vehicle_attitude_setpoint_s att_sp;
		struct actuator_outputs_s act_outputs;
		struct actuator_controls_s act_controls;
		struct vehicle_command_s cmd;
		struct vehicle_local_position_s local_pos;
		struct vehicle_global_position_s global_pos;
		struct vehicle_gps_position_s gps_pos;
	} buf;
	memset(&buf, 0, sizeof(buf));

	struct {
		int cmd_sub;
		int sensor_sub;
		int att_sub;
		int spa_sub;
		int act_0_sub;
		int controls0_sub;
		int local_pos_sub;
		int global_pos_sub;
		int gps_pos_sub;
	} subs;

	/* --- MANAGEMENT - LOGGING COMMAND --- */
	/* subscribe to ORB for sensors raw */
	subs.cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
	fds[fdsc_count].fd = subs.cmd_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- SENSORS RAW VALUE --- */
	/* subscribe to ORB for sensors raw */
	subs.sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
	fds[fdsc_count].fd = subs.sensor_sub;
	/* rate-limit raw data updates to 200Hz */
	orb_set_interval(subs.sensor_sub, 5);
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ATTITUDE VALUE --- */
	/* subscribe to ORB for attitude */
	subs.att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	fds[fdsc_count].fd = subs.att_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ATTITUDE SETPOINT VALUE --- */
	/* subscribe to ORB for attitude setpoint */
	/* struct already allocated */
	subs.spa_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	fds[fdsc_count].fd = subs.spa_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/** --- ACTUATOR OUTPUTS --- */
	subs.act_0_sub = orb_subscribe(ORB_ID(actuator_outputs_0));
	fds[fdsc_count].fd = subs.act_0_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- ACTUATOR CONTROL VALUE --- */
	/* subscribe to ORB for actuator control */
	subs.controls0_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	fds[fdsc_count].fd = subs.controls0_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- LOCAL POSITION --- */
	/* subscribe to ORB for local position */
	subs.local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	fds[fdsc_count].fd = subs.local_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GLOBAL POSITION --- */
	/* subscribe to ORB for global position */
	subs.global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	fds[fdsc_count].fd = subs.global_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* --- GPS POSITION --- */
	/* subscribe to ORB for global position */
	subs.gps_pos_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
	fds[fdsc_count].fd = subs.gps_pos_sub;
	fds[fdsc_count].events = POLLIN;
	fdsc_count++;

	/* WARNING: If you get the error message below,
	 * then the number of registered messages (fdsc)
	 * differs from the number of messages in the above list.
	 */
	if (fdsc_count > fdsc) {
		warn("WARNING: Not enough space for poll fds allocated. Check %s:%d.\n", __FILE__, __LINE__);
		fdsc_count = fdsc;
	}

	/*
	 * set up poll to block for new data,
	 * wait for a maximum of 1000 ms (1 second)
	 */
	// const int timeout = 1000;

	thread_running = true;

	int poll_count = 0;

	starttime = hrt_absolute_time();

	while (!thread_should_exit) {

		// int poll_ret = poll(fds, fdsc_count, timeout);

		// /* handle the poll result */
		// if (poll_ret == 0) {
		// 	/* XXX this means none of our providers is giving us data - might be an error? */
		// } else if (poll_ret < 0) {
		// 	/* XXX this is seriously bad - should be an emergency */
		// } else {

		// 	int ifds = 0;

		// 	if (poll_count % 5000 == 0) {
		// 		fsync(sensorfile);
		// 		fsync(actuator_outputs_file);
		// 		fsync(actuator_controls_file);
		// 		fsync(blackbox_file_no);
		// 	}

			

		// 	/* --- VEHICLE COMMAND VALUE --- */
		// 	if (fds[ifds++].revents & POLLIN) {
		// 		/* copy command into local buffer */
		// 		orb_copy(ORB_ID(vehicle_command), subs.cmd_sub, &buf.cmd);
		// 		blackbox_file_bytes += fprintf(blackbox_file, "[%10.4f\tVCMD] CMD #%d [%f\t%f\t%f\t%f\t%f\t%f\t%f]\n", hrt_absolute_time()/1000000.0d,
		// 			buf.cmd.command, (double)buf.cmd.param1, (double)buf.cmd.param2, (double)buf.cmd.param3, (double)buf.cmd.param4,
		// 			(double)buf.cmd.param5, (double)buf.cmd.param6, (double)buf.cmd.param7);
		// 	}

		// 	/* --- SENSORS RAW VALUE --- */
		// 	if (fds[ifds++].revents & POLLIN) {

		// 		/* copy sensors raw data into local buffer */
		// 		orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
		// 		/* write out */
		// 		sensor_combined_bytes += write(sensorfile, (const char*)&(buf.raw), sizeof(buf.raw));
		// 	}

		// 	/* --- ATTITUDE VALUE --- */
		// 	if (fds[ifds++].revents & POLLIN) {

		// 		/* copy attitude data into local buffer */
		// 		orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);

				
		// 	}

		// 	/* --- VEHICLE ATTITUDE SETPOINT --- */
		// 	if (fds[ifds++].revents & POLLIN) {
		// 		/* copy local position data into local buffer */
		// 		orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.spa_sub, &buf.att_sp);
				
		// 	}

		// 	/* --- ACTUATOR OUTPUTS 0 --- */
		// 	if (fds[ifds++].revents & POLLIN) {
		// 		/* copy actuator data into local buffer */
		// 		orb_copy(ORB_ID(actuator_outputs_0), subs.act_0_sub, &buf.act_outputs);
		// 		/* write out */
		// 		// actuator_outputs_bytes += write(actuator_outputs_file, (const char*)&buf.act_outputs, sizeof(buf.act_outputs));
		// 	}

		// 	/* --- ACTUATOR CONTROL --- */
		// 	if (fds[ifds++].revents & POLLIN) {
		// 		orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.controls0_sub, &buf.act_controls);
		// 		/* write out */
		// 		actuator_controls_bytes += write(actuator_controls_file, (const char*)&buf.act_controls, sizeof(buf.act_controls));
		// 	}
		// }

		if (poll_count % 100 == 0) {
			fsync(sysvector_file);
		}

		poll_count++;


		/* copy sensors raw data into local buffer */
		orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
		orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.controls0_sub, &buf.act_controls);
		/* copy actuator data into local buffer */
		orb_copy(ORB_ID(actuator_outputs_0), subs.act_0_sub, &buf.act_outputs);
		orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.spa_sub, &buf.att_sp);
		orb_copy(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf.gps_pos);
		orb_copy(ORB_ID(vehicle_local_position), subs.local_pos_sub, &buf.local_pos);
		orb_copy(ORB_ID(vehicle_global_position), subs.global_pos_sub, &buf.global_pos);
		orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);

		#pragma pack(push, 1)
		struct {
			uint64_t timestamp; //[us]
			float gyro[3]; //[rad/s]
			float accel[3]; //[m/s^2]
			float mag[3]; //[gauss]
			float baro; //pressure [millibar]
			float baro_alt; //altitude above MSL [meter]
			float baro_temp; //[degree celcius]
			float control[4]; //roll, pitch, yaw [-1..1], thrust [0..1]
			float actuators[8]; //motor 1-8, in motor units (PWM: 1000-2000,AR.Drone: 0-512)
			float vbat; //battery voltage in [volt]
			float adc[3]; //remaining auxiliary ADC ports [volt]
			float local_position[3]; //tangent plane mapping into x,y,z [m]
			int32_t gps_raw_position[3]; //latitude [degrees] north, longitude [degrees] east, altitude above MSL [millimeter]
			float attitude[3]; //pitch, roll, yaw [rad]
			float rotMatrix[9]; //unitvectors
		} sysvector = {
			.timestamp = buf.raw.timestamp,
			.gyro = {buf.raw.gyro_rad_s[0], buf.raw.gyro_rad_s[1], buf.raw.gyro_rad_s[2]},
			.accel = {buf.raw.accelerometer_m_s2[0], buf.raw.accelerometer_m_s2[1], buf.raw.accelerometer_m_s2[2]},
			.mag = {buf.raw.magnetometer_ga[0], buf.raw.magnetometer_ga[1], buf.raw.magnetometer_ga[2]},
			.baro = buf.raw.baro_pres_mbar,
			.baro_alt = buf.raw.baro_alt_meter,
			.baro_temp = buf.raw.baro_temp_celcius,
			.control = {buf.act_controls.control[0], buf.act_controls.control[1], buf.act_controls.control[2], buf.act_controls.control[3]},
			.actuators = {buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3],
					buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]},
			.vbat = buf.raw.battery_voltage_v,
			.adc = {buf.raw.adc_voltage_v[0], buf.raw.adc_voltage_v[1], buf.raw.adc_voltage_v[2]},
			.local_position = {buf.local_pos.x, buf.local_pos.y, buf.local_pos.z},
			.gps_raw_position = {buf.gps_pos.lat, buf.gps_pos.lon, buf.gps_pos.alt},
			.attitude = {buf.att.pitch, buf.att.roll, buf.att.yaw},
			.rotMatrix = {buf.att.R[0][0], buf.att.R[0][1], buf.att.R[0][2], buf.att.R[1][0], buf.att.R[1][1], buf.att.R[1][2], buf.att.R[2][0], buf.att.R[2][1], buf.att.R[2][2]}
		};
		#pragma pack(pop)

		sysvector_bytes += write(sysvector_file, (const char*)&sysvector, sizeof(sysvector));

		usleep(10000);   //10000 corresponds in reality to ca. 76 Hz
	}

	fsync(sysvector_file);

	print_sdlog_status();

	warnx("exiting.\n");

	close(sensorfile);
	close(actuator_outputs_file);
	close(actuator_controls_file);
	fclose(gpsfile);
	fclose(blackbox_file);

	thread_running = false;

	return 0;
}

void print_sdlog_status()
{
	unsigned bytes = sysvector_bytes + sensor_combined_bytes + actuator_outputs_bytes + blackbox_file_bytes + actuator_controls_bytes;
	float mebibytes = bytes / 1024.0f / 1024.0f;
	float seconds = ((float)(hrt_absolute_time() - starttime)) / 1000000.0f;

	warnx("wrote %4.2f MiB (average %5.3f MiB/s).\n", (double)mebibytes, (double)(mebibytes / seconds));
}