Exemple #1
0
static int set_shortterm(vtimer_t *timer)
{
    DEBUG("set_shortterm(): Absolute: %" PRIu32 " %" PRIu32 "\n", timer->absolute.seconds, timer->absolute.microseconds);
    timer->priority_queue_entry.priority = timer->absolute.microseconds;
    /* *** UGLY FIX BEGINS *** */
    /* Workaround for a bug in a so far undiscovered location which causes the
     * vtimer to add the same timer twice, locking the system in an infinite
     * loop inside priority_queue_add. */
    priority_queue_remove(&shortterm_priority_queue_root, timer_get_node(timer));
    /* *** UGLY FIX ENDS *** */
    priority_queue_add(&shortterm_priority_queue_root, timer_get_node(timer));
    return 1;
}
void condition_variable::wait(unique_lock<mutex>& lock) noexcept {
  if (!lock.owns_lock()) {
    throw std::system_error(
      std::make_error_code(std::errc::operation_not_permitted),
      "Mutex not locked.");
  }
  priority_queue_node_t n;
  n.priority = sched_active_thread->priority;
  n.data = sched_active_pid;
  n.next = NULL;
  // the signaling thread may not hold the mutex, the queue is not thread safe
  unsigned old_state = disableIRQ();
  priority_queue_add(&m_queue, &n);
  restoreIRQ(old_state);
  mutex_unlock_and_sleep(lock.mutex()->native_handle());
  if (n.data != -1u) {
    // on signaling n.data is set to -1u
    // if it isn't set, then the wakeup is either spurious or a timer wakeup
    old_state = disableIRQ();
    priority_queue_remove(&m_queue, &n);
    restoreIRQ(old_state);
  }
  mutex_lock(lock.mutex()->native_handle());
}
void
carmen_localize_ackerman_initialize_particles_uniform(carmen_localize_ackerman_particle_filter_p filter,
		carmen_robot_ackerman_laser_message *laser,
		carmen_localize_ackerman_map_p map)
{
	priority_queue_p queue = priority_queue_init(filter->param->num_particles);
	double *laser_x, *laser_y;
	int i, j, x_l, y_l;
	float angle, prob, ctheta, stheta;
	carmen_point_t point;
	queue_node_p mark;
	int *beam_valid;


	/* compute the correct laser_skip */
	if (filter->param->laser_skip <= 0) {
		filter->param->laser_skip =
				floor(filter->param->integrate_angle / laser->config.angular_resolution);
	}

	fprintf(stderr, "\rDoing global localization... (%.1f%% complete)", 0.0);
	filter->initialized = 0;
	/* copy laser scan into temporary memory */
	laser_x = (double *)calloc(laser->num_readings, sizeof(double));
	carmen_test_alloc(laser_x);
	laser_y = (double *)calloc(laser->num_readings, sizeof(double));
	carmen_test_alloc(laser_y);
	beam_valid = (int *)calloc(laser->num_readings, sizeof(int));
	carmen_test_alloc(beam_valid);

	for(i = 0; i < laser->num_readings; i++) {
		if (laser->range[i] < laser->config.maximum_range &&
				laser->range[i] < filter->param->max_range)
			beam_valid[i] = 1;
		else
			beam_valid[i] = 0;
	}

	/* do all calculations in map coordinates */
	for(i = 0; i < laser->num_readings; i++) {
		angle = laser->config.start_angle +
				i * laser->config.angular_resolution;

		laser_x[i] = (filter->param->front_laser_offset +
				laser->range[i] * cos(angle)) / map->config.resolution;
		laser_y[i] = (laser->range[i] * sin(angle)) / map->config.resolution;
	}

	for(i = 0; i < filter->param->global_test_samples; i++) {
		if(i % 10000 == 0)
		{
			fprintf(stderr, "\rDoing global localization... (%.1f%% complete)",
					i / (double)filter->param->global_test_samples * 100.0);
			carmen_ipc_sleep(0.001);
		}
		do {
			point.x = carmen_uniform_random(0, map->config.x_size - 1);
			point.y = carmen_uniform_random(0, map->config.y_size - 1);
		} while(map->carmen_map.map[(int)point.x][(int)point.y] >
		filter->param->occupied_prob ||
		map->carmen_map.map[(int)point.x][(int)point.y] == -1);
		point.theta = carmen_uniform_random(-M_PI, M_PI);

		prob = 0.0;
		ctheta = cos(point.theta);
		stheta = sin(point.theta);
		for(j = 0; j < laser->num_readings &&
		(queue->last == NULL || prob > queue->last->prob);
		j += filter->param->laser_skip)
		{

			if (beam_valid[j]) {
				x_l = point.x + laser_x[j] * ctheta - laser_y[j] * stheta;
				y_l = point.y + laser_x[j] * stheta + laser_y[j] * ctheta;

				if(x_l >= 0 && y_l >= 0 && x_l < map->config.x_size &&
						y_l < map->config.y_size)
					prob += map->gprob[x_l][y_l];
				else
					prob -= 100;
			}
		}
		priority_queue_add(queue, point, prob);
	}

	/* transfer samples from priority queue back into particles */
	mark = queue->first;
	for(i = 0; i < queue->num_elements; i++) {
		filter->particles[i].x = (mark->point.x * map->config.resolution) + map->config.x_origin;
		filter->particles[i].y = (mark->point.y * map->config.resolution) + map->config.y_origin;
		filter->particles[i].theta = mark->point.theta;
		mark = mark->next;
	}
	priority_queue_free(queue);
	free(laser_x);
	free(laser_y);
	free(beam_valid);


	if(filter->param->do_scanmatching) {
		for(i = 0; i < filter->param->num_particles; i++) {
			point.x = filter->particles[i].x;
			point.y = filter->particles[i].y;
			point.theta = filter->particles[i].theta;
			carmen_localize_ackerman_laser_scan_gd(laser->num_readings, laser->range,
					laser->config.angular_resolution,
					laser->config.start_angle,
					&point,
					filter->param->front_laser_offset,
					map,
					filter->param->laser_skip);
			filter->particles[i].x = point.x;
			filter->particles[i].y = point.y;
			filter->particles[i].theta = point.theta;
			filter->particles[i].weight = 0.0;
		}
	}
	filter->initialized = 1;
	filter->first_odometry = 1;
	filter->global_mode = 1;
	filter->distance_travelled = 0;
	fprintf(stderr, "\rDoing global localization... (%.1f%% complete)\n\n",
			100.0);
}
Exemple #4
0
static int set_longterm(vtimer_t *timer)
{
    timer->priority_queue_entry.priority = timer->absolute.seconds;
    priority_queue_add(&longterm_priority_queue_root, timer_get_node(timer));
    return 0;
}
Exemple #5
0
Fichier : msg.c Projet : michz/RIOT
static int _msg_send(msg_t *m, kernel_pid_t target_pid, bool block, unsigned state)
{
#ifdef DEVELHELP
    if (!pid_is_valid(target_pid)) {
        DEBUG("msg_send(): target_pid is invalid, continuing anyways\n");
    }
#endif /* DEVELHELP */

    tcb_t *target = (tcb_t*) sched_threads[target_pid];

    m->sender_pid = sched_active_pid;

    if (target == NULL) {
        DEBUG("msg_send(): target thread does not exist\n");
        restoreIRQ(state);
        return -1;
    }

    DEBUG("msg_send() %s:%i: Sending from %" PRIkernel_pid " to %" PRIkernel_pid
          ". block=%i src->state=%i target->state=%i\n", RIOT_FILE_RELATIVE,
          __LINE__, sched_active_pid, target_pid,
          block, sched_active_thread->status, target->status);

    if (target->status != STATUS_RECEIVE_BLOCKED) {
        DEBUG("msg_send() %s:%i: Target %" PRIkernel_pid " is not RECEIVE_BLOCKED.\n",
              RIOT_FILE_RELATIVE, __LINE__, target_pid);

        if (queue_msg(target, m)) {
            DEBUG("msg_send() %s:%i: Target %" PRIkernel_pid
                  " has a msg_queue. Queueing message.\n", RIOT_FILE_RELATIVE,
                  __LINE__, target_pid);
            restoreIRQ(state);
            if (sched_active_thread->status == STATUS_REPLY_BLOCKED) {
                thread_yield_higher();
            }
            return 1;
        }

        if (!block) {
            DEBUG("msg_send: %" PRIkernel_pid ": Receiver not waiting, block=%u\n",
                  sched_active_thread->pid, block);
            restoreIRQ(state);
            return 0;
        }

        DEBUG("msg_send: %" PRIkernel_pid ": send_blocked.\n",
              sched_active_thread->pid);
        priority_queue_node_t n;
        n.priority = sched_active_thread->priority;
        n.data = (unsigned int) sched_active_thread;
        n.next = NULL;
        DEBUG("msg_send: %" PRIkernel_pid ": Adding node to msg_waiters:\n",
              sched_active_thread->pid);

        priority_queue_add(&(target->msg_waiters), &n);

        sched_active_thread->wait_data = (void*) m;

        int newstatus;

        if (sched_active_thread->status == STATUS_REPLY_BLOCKED) {
            newstatus = STATUS_REPLY_BLOCKED;
        }
        else {
            newstatus = STATUS_SEND_BLOCKED;
        }

        sched_set_status((tcb_t*) sched_active_thread, newstatus);

        DEBUG("msg_send: %" PRIkernel_pid ": Back from send block.\n",
              sched_active_thread->pid);

        restoreIRQ(state);
        thread_yield_higher();
    }
    else {
        DEBUG("msg_send: %" PRIkernel_pid ": Direct msg copy from %"
              PRIkernel_pid " to %" PRIkernel_pid ".\n",
              sched_active_thread->pid, thread_getpid(), target_pid);
        /* copy msg to target */
        msg_t *target_message = (msg_t*) target->wait_data;
        *target_message = *m;
        sched_set_status(target, STATUS_PENDING);

        restoreIRQ(state);
        thread_yield_higher();
    }

    return 1;
}
Exemple #6
0
static void recursive_insert(lm_trie_t *trie, ngram_raw_t **raw_ngrams, uint32 *counts, int order)
{
    uint32 unigram_idx = 0;
    uint32 *words;
    float *probs;
    const uint32 unigram_count = (uint32)counts[0];
    priority_queue_t *ngrams = priority_queue_create(order, &ngram_ord_comparator);
    ngram_raw_ord_t *ngram;
    uint32 *raw_ngrams_ptr;
    int i;

    words = (uint32 *)ckd_calloc(order, sizeof(*words)); //for blanks catching
    probs = (float *)ckd_calloc(order - 1, sizeof(*probs));    //for blanks prob generating
    ngram = (ngram_raw_ord_t *)ckd_calloc(1, sizeof(*ngram));
    ngram->order = 1;
    ngram->instance.words = &unigram_idx;
    priority_queue_add(ngrams, ngram);
    raw_ngrams_ptr = (uint32 *)ckd_calloc(order - 1, sizeof(*raw_ngrams_ptr));
    for (i = 2; i <= order; ++i) {
        ngram_raw_ord_t *tmp_ngram = (ngram_raw_ord_t *)ckd_calloc(1, sizeof(*tmp_ngram));
        tmp_ngram->order = i;
        raw_ngrams_ptr[i-2] = 0;
        tmp_ngram->instance = raw_ngrams[i - 2][raw_ngrams_ptr[i-2]];
        priority_queue_add(ngrams, tmp_ngram);
    }

    for (;;) {
        ngram_raw_ord_t *top = (ngram_raw_ord_t *)priority_queue_poll(ngrams);
        if (top->order == 1) {
            trie->unigrams[unigram_idx].next = unigram_next(trie, order);
            words[0] = unigram_idx;
            probs[0] = trie->unigrams[unigram_idx].prob;
            if (++unigram_idx == unigram_count + 1) {
                ckd_free(top);
                break;
            }
            priority_queue_add(ngrams, top);
        } else {
            for (i = 0; i < top->order - 1; i++) {
                if (words[i] != top->instance.words[i]) {
                    //need to insert dummy suffixes to make ngram of higher order reachable
                    int j;
                    assert(i > 0); //unigrams are not pruned without removing ngrams that contains them
                    for (j = i; j < top->order - 1; j++) {
                        middle_t *middle = &trie->middle_begin[j - 1];
                        bitarr_address_t address = middle_insert(middle, top->instance.words[j], j + 1, order);
                        //calculate prob for blank
                        float calc_prob = probs[j - 1] + trie->unigrams[top->instance.words[j]].bo;
                        probs[j] = calc_prob;
                        lm_trie_quant_mwrite(trie->quant, address, j - 1, calc_prob, 0.0f);
                    }
                }
            }
            memcpy(words, top->instance.words, top->order * sizeof(*words));
            if (top->order == order) {
                float *weights = top->instance.weights;
                bitarr_address_t address = longest_insert(trie->longest, top->instance.words[top->order - 1]);
                lm_trie_quant_lwrite(trie->quant, address, weights[0]);
            } else {
                float *weights = top->instance.weights;
                middle_t *middle = &trie->middle_begin[top->order - 2];
                bitarr_address_t address = middle_insert(middle, top->instance.words[top->order - 1], top->order, order);
                //write prob and backoff
                probs[top->order - 1] = weights[0];
                lm_trie_quant_mwrite(trie->quant, address, top->order - 2, weights[0], weights[1]);
            }
            raw_ngrams_ptr[top->order - 2]++;
            if (raw_ngrams_ptr[top->order - 2] < counts[top->order - 1]) {
                top->instance = raw_ngrams[top->order-2][raw_ngrams_ptr[top->order - 2]];
                priority_queue_add(ngrams, top);
            } else {
                ckd_free(top);
            }
        }
    }
    assert(priority_queue_size(ngrams) == 0);
    priority_queue_free(ngrams, NULL);
    ckd_free(raw_ngrams_ptr);
    ckd_free(words);
    ckd_free(probs);
}