Exemple #1
0
 inline void operator()
     (const fix15_t src_r, const fix15_t src_g, const fix15_t src_b,
      fix15_t &dst_r, fix15_t &dst_g, fix15_t &dst_b) const
 {
     process_channel(src_r, dst_r);
     process_channel(src_g, dst_g);
     process_channel(src_b, dst_b);
 }
Exemple #2
0
		void
		process_frame(const fft_channel *const infos[]) {
			for (int c = 0; number_channels != c; ++c)
				process_channel(values[c], infos[c]);
		}
Exemple #3
0
static void
run(LV2_Handle instance, uint32_t n_samples)
{
	uint32_t i,c;
	BalanceControl* self = (BalanceControl*)instance;
	const float balance = *self->balance;
	const float trim = db_to_gain(*self->trim);
	float gain_left  = 1.0;
	float gain_right = 1.0;

	const int ascnt = self->samplerate / UPDATE_FREQ;

  const uint32_t capacity = self->notify->atom.size;
  lv2_atom_forge_set_buffer(&self->forge, (uint8_t*)self->notify, capacity);
  lv2_atom_forge_sequence_head(&self->forge, &self->frame, 0);

  /* reset after state restore */
	if (self->queue_stateswitch) {
		self->queue_stateswitch = 0;
		self->peak_integrate_pref = self->state[0] * self->samplerate;
		self->meter_falloff = self->state[1] / UPDATE_FREQ;
		self->peak_hold = self->state[2] * UPDATE_FREQ;

		self->peak_integrate_pref = MAX(0, self->peak_integrate_pref);
		self->peak_integrate_pref = MIN(self->peak_integrate_pref, self->peak_integrate_max);

		self->meter_falloff = MAX(0, self->meter_falloff);
		self->meter_falloff = MIN(self->meter_falloff, 1000);

		self->peak_hold = MAX(0, self->peak_hold);
		self->peak_hold = MIN(self->peak_hold, 60 * UPDATE_FREQ);
		reset_uicom(self);
		send_cfg_to_ui(self);
	}

  /* Process incoming events from GUI */
  if (self->control) {
    LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(self->control)->body);
    while(!lv2_atom_sequence_is_end(&(self->control)->body, (self->control)->atom.size, ev)) {
      if (ev->body.type == self->uris.atom_Blank || ev->body.type == self->uris.atom_Object) {
				const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body;
				if (obj->body.otype == self->uris.blc_meters_on) {
					if (self->uicom_active == 0) {
						reset_uicom(self);
						send_cfg_to_ui(self);
						self->uicom_active = 1;
					}
				}
				if (obj->body.otype == self->uris.blc_meters_off) {
					self->uicom_active = 0;
				}
				if (obj->body.otype == self->uris.blc_meters_cfg) {
					const LV2_Atom* key = NULL;
					const LV2_Atom* value = NULL;
					lv2_atom_object_get(obj, self->uris.blc_cckey, &key, self->uris.blc_ccval, &value, 0);
					if (value && key) {
						update_meter_cfg(self, ((LV2_Atom_Int*)key)->body, ((LV2_Atom_Float*)value)->body);
					}
				}
			}
      ev = lv2_atom_sequence_next(ev);
    }
	}

	/* pre-calculate parameters */
	if (balance < 0) {
		gain_right = 1.0 + RAIL(balance, -1.0, 0.0);
	} else if (balance > 0) {
		gain_left = 1.0 - RAIL(balance, 0.0, 1.0);
	}

	switch ((int) *self->unitygain) {
		case 1:
			{
				/* maintain amplitude sum */
				const double gaindiff = (gain_left - gain_right);
				gain_left = 1.0 + gaindiff;
				gain_right = 1.0 - gaindiff;
			}
			break;
		case 2:
			{
				/* equal power*/
				if (balance < 0) {
					gain_right = MAX(.5, gain_right);
					gain_left = db_to_gain(-gain_to_db(gain_right));
				} else {
					gain_left = MAX(.5, gain_left);
					gain_right = db_to_gain(-gain_to_db(gain_left));
				}
			}
		case 0:
			/* 'tradidional' balance */
			break;
	}

	if (*(self->phase[C_LEFT])) gain_left *=-1;
	if (*(self->phase[C_RIGHT])) gain_right *=-1;

	/* keep track of input levels -- only if GUI is visiable */
	if (self->uicom_active) {
		for (c=0; c < CHANNELS; ++c) {
			for (i=0; i < n_samples; ++i) {
				/* input peak meter */
				const float ps = fabsf(self->input[c][i]);
				if (ps > self->p_peak_in[c]) self->p_peak_in[c] = ps;

				if (self->peak_integrate_pref < 1) {
					const float psm = ps * ps;
					if (psm > self->p_peak_inM[c]) self->p_peak_inM[c] = psm;
					continue;
				}

				/* integrated level, peak */
				const int pip = (self->peak_integrate_pos + i ) % self->peak_integrate_pref;
				const double p_sig = SQUARE(self->input[c][i]);
				self->p_peak_inP[c] += p_sig - self->p_peak_inPi[c][pip];
				self->p_peak_inPi[c][pip] = p_sig;
				/* peak of integrated signal */
				const float psm = self->p_peak_inP[c] / (double) self->peak_integrate_pref;
				if (psm > self->p_peak_inM[c]) self->p_peak_inM[c] = psm;
			}
		}
	}

	/* process audio -- delayline + balance & gain */
	process_channel(self, gain_left * trim,  C_LEFT, n_samples);
	process_channel(self, gain_right * trim, C_RIGHT, n_samples);

	/* swap/assign channels */
	uint32_t pos = 0;

	if (self->c_monomode != (int) *self->monomode) {
		/* smooth change */
		const uint32_t fade_len = (n_samples >= FADE_LEN) ? FADE_LEN : n_samples;
		for (; pos < fade_len; pos++) {
			const float gain = (float)pos / (float)fade_len;
			float x1[CHANNELS], x2[CHANNELS];
			channel_map_change(self, self->c_monomode, pos, x1);
			channel_map_change(self, (int) *self->monomode, pos, x2);
			self->output[C_LEFT][pos] = x1[C_LEFT] * (1.0 - gain) + x2[C_LEFT] * gain;
			self->output[C_RIGHT][pos] = x1[C_RIGHT] * (1.0 - gain) + x2[C_RIGHT] * gain;
		}
	}

	channel_map(self, (int) *self->monomode, pos, n_samples);
	self->c_monomode = (int) *self->monomode;

	/* audio processing done */

	if (!self->uicom_active) {
		return;
	}

	/* output peak meter */
	for (c=0; c < CHANNELS; ++c) {
		for (i=0; i < n_samples; ++i) {
			/* peak */
			const float ps = fabsf(self->output[c][i]);
			if (ps > self->p_peak_out[c]) self->p_peak_out[c] = ps;

				if (self->peak_integrate_pref < 1) {
				const float psm = ps * ps;
				if (psm > self->p_peak_outM[c]) self->p_peak_outM[c] = psm;
				continue;
			}

			/* integrated level, peak */
			const int pip = (self->peak_integrate_pos + i ) % self->peak_integrate_pref;
			const double p_sig = SQUARE(self->output[c][i]);
			self->p_peak_outP[c] += p_sig - self->p_peak_outPi[c][pip];
			self->p_peak_outPi[c][pip] = p_sig;
			/* peak of integrated signal */
			const float psm = self->p_peak_outP[c] / (double) self->peak_integrate_pref;
			if (psm > self->p_peak_outM[c]) self->p_peak_outM[c] = psm;
		}
	}
	if (self->peak_integrate_pref > 0) {
		self->peak_integrate_pos = (self->peak_integrate_pos + n_samples ) % self->peak_integrate_pref;
	}

	/* simple output phase correlation */
	for (i=0; i < n_samples; ++i) {
		const double p_pos = SQUARE(self->output[C_LEFT][i] + self->output[C_RIGHT][i]);
		const double p_neg = SQUARE(self->output[C_LEFT][i] - self->output[C_RIGHT][i]);

		/* integrate over 500ms */
		self->p_phase_outP += p_pos - self->p_phase_outPi[self->phase_integrate_pos];
		self->p_phase_outN += p_neg - self->p_phase_outNi[self->phase_integrate_pos];
		self->p_phase_outPi[self->phase_integrate_pos] = p_pos;
		self->p_phase_outNi[self->phase_integrate_pos] = p_neg;
		self->phase_integrate_pos = (self->phase_integrate_pos + 1) % self->phase_integrate_max;
	}

/* abs peak hold */
#define PKM(A,CHN,ID) \
{ \
	const float peak = VALTODB(self->p_peak_##A[CHN]); \
	if (peak > self->p_max_##A[CHN]) { \
		self->p_max_##A[CHN] = peak; \
		self->p_tme_##A[CHN] = 0; \
		forge_kvcontrolmessage(&self->forge, &self->uris, ID, self->p_max_##A[CHN]); \
	} else if (self->peak_hold <= 0) { \
		(self->p_tme_##A[CHN])=0; /* infinite hold */ \
	} else if (self->p_tme_##A[CHN] <= self->peak_hold) { \
		(self->p_tme_##A[CHN])++; \
	} else if (self->meter_falloff == 0) { \
		self->p_max_##A[CHN] = peak; \
		forge_kvcontrolmessage(&self->forge, &self->uris, ID, self->p_max_##A[CHN]); \
	} else { \
		self->p_max_##A[CHN] -= self->meter_falloff; \
		self->p_max_##A[CHN] = MAX(peak, self->p_max_##A[CHN]); \
		forge_kvcontrolmessage(&self->forge, &self->uris, ID, self->p_max_##A[CHN]); \
	} \
}

/* RMS meter */
#define PKF(A,CHN,ID) \
{ \
	float dbp = VALTODB(sqrt(2.0 * self->p_peak_##A##M[CHN])); \
	if (dbp > self->p_vpeak_##A[CHN]) { \
		self->p_vpeak_##A[CHN] = dbp; \
	} else if (self->meter_falloff == 0) { \
		self->p_vpeak_##A[CHN] = dbp; \
	} else { \
		self->p_vpeak_##A[CHN] -= self->meter_falloff; \
		self->p_vpeak_##A[CHN] = MAX(dbp, self->p_vpeak_##A[CHN]); \
	} \
	forge_kvcontrolmessage(&self->forge, &self->uris, ID, (self->p_vpeak_##A [CHN])); \
}

	/* report peaks to UI */
	self->p_peakcnt += n_samples;
	if (self->p_peakcnt > ascnt) {

		PKF(in,  C_LEFT,  METER_IN_LEFT)
		PKF(in,  C_RIGHT, METER_IN_RIGHT);
		PKF(out, C_LEFT,  METER_OUT_LEFT);
		PKF(out, C_RIGHT, METER_OUT_RIGHT);

		PKM(in,  C_LEFT,  PEAK_IN_LEFT);
		PKM(in,  C_RIGHT, PEAK_IN_RIGHT);
		PKM(out, C_LEFT,  PEAK_OUT_LEFT);
		PKM(out, C_RIGHT, PEAK_OUT_RIGHT);

#define RMSF(A) sqrt( ( (A) / (double)self->phase_integrate_max ) + 1.0e-12 )
		double phase = 0.0;
		const double phasdiv = self->p_phase_outP + self->p_phase_outN;
		if (phasdiv >= 1.0e-6) {
			phase = (RMSF(self->p_phase_outP) - RMSF(self->p_phase_outN)) / RMSF(phasdiv);
		} else if (self->p_phase_outP > .001 && self->p_phase_outN > .001) {
			phase = 1.0;
		}

		forge_kvcontrolmessage(&self->forge, &self->uris, PHASE_OUT, phase);

		self->p_peakcnt -= ascnt;
		for (c=0; c < CHANNELS; ++c) {
			self->p_peak_in[c] = -INFINITY;
			self->p_peak_out[c] = -INFINITY;
			self->p_peak_inM[c] = -INFINITY;
			self->p_peak_outM[c] = -INFINITY;
		}
	}

	/* report values to UI - if changed*/
	float bal = gain_to_db(fabsf(gain_left));
	if (bal != self->p_bal[C_LEFT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, GAIN_LEFT, bal);
	}
	self->p_bal[C_LEFT] = bal;

	bal = gain_to_db(fabsf(gain_right));
	if (bal != self->p_bal[C_RIGHT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, GAIN_RIGHT, bal);
	}
	self->p_bal[C_RIGHT] = bal;

	if (self->p_dly[C_LEFT] != self->c_dly[C_LEFT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, DELAY_LEFT, (float) self->c_dly[C_LEFT] / self->samplerate);
	}
	self->p_dly[C_LEFT] = self->c_dly[C_LEFT];

	if (self->p_dly[C_RIGHT] != self->c_dly[C_RIGHT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, DELAY_RIGHT, (float) self->c_dly[C_RIGHT] / self->samplerate);
	}
	self->p_dly[C_RIGHT] = self->c_dly[C_RIGHT];

}