Exemple #1
0
static void update_parameters(PJ *P) {
/***************************************************************************

    Update transformation parameters.
    ---------------------------------

    The 14-parameter Helmert transformation is at it's core the same as the
    7-parameter transformation, since the transformation parameters are
    projected forward or backwards in time via the rate of changes of the
    parameters. The transformation parameters are calculated for a specific
    epoch before the actual Helmert transformation is carried out.

    The transformation parameters are updated with the following equation [0]:

                      .
    P(t) = P(EPOCH) + P * (t - EPOCH)

                                                              .
    where EPOCH is the epoch indicated in the above table and P is the rate
    of that parameter.

    [0] http://itrf.ign.fr/doc_ITRF/Transfo-ITRF2008_ITRFs.txt

*******************************************************************************/

    struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
    double dt = Q->t_obs - Q->t_epoch;

    Q->xyz.x = Q->xyz_0.x + Q->dxyz.x * dt;
    Q->xyz.y = Q->xyz_0.y + Q->dxyz.y * dt;
    Q->xyz.z = Q->xyz_0.z + Q->dxyz.z * dt;

    Q->opk.o = Q->opk_0.o + Q->dopk.o * dt;
    Q->opk.p = Q->opk_0.p + Q->dopk.p * dt;
    Q->opk.k = Q->opk_0.k + Q->dopk.k * dt;

    Q->scale = Q->scale_0 + Q->dscale * dt;

    Q->theta = Q->theta_0 + Q->dtheta * dt;

    /* debugging output */
    if (proj_log_level(P->ctx, PJ_LOG_TELL) >= PJ_LOG_TRACE) {
        proj_log_trace(P, "Transformation parameters for observation "
                       "t_obs=%g (t_epoch=%g):", Q->t_obs, Q->t_epoch);
        proj_log_trace(P, "x: %g", Q->xyz.x);
        proj_log_trace(P, "y: %g", Q->xyz.y);
        proj_log_trace(P, "z: %g", Q->xyz.z);
        proj_log_trace(P, "s: %g", Q->scale*1e-6);
        proj_log_trace(P, "rx: %g", Q->opk.o);
        proj_log_trace(P, "ry: %g", Q->opk.p);
        proj_log_trace(P, "rz: %g", Q->opk.k);
        proj_log_trace(P, "theta: %g", Q->theta);
    }
}
Exemple #2
0
double proj_vgrid_value(PJ *P, LP lp){
/***********************************************

  Read grid value at position lp in grids loaded
  with proj_grid_init.

  Returns the grid value of the given coordinate.

************************************************/

    struct CTABLE used_grid;
    double value;
    memset(&used_grid, 0, sizeof(struct CTABLE));

    value = read_vgrid_value(P, lp, &(P->vgridlist_geoid_count), P->vgridlist_geoid, &used_grid);
    proj_log_trace(P, "proj_vgrid_value: (%f, %f) = %f", lp.lam*RAD_TO_DEG, lp.phi*RAD_TO_DEG, value);

    return value;
}
Exemple #3
0
static void build_rot_matrix(PJ *P) {
/***************************************************************************

    Build rotation matrix.
    ----------------------

    Here we rename rotation indices from omega, phi, kappa (opk), to
    fi (i.e. phi), theta, psi (ftp), in order to reduce the mental agility
    needed to implement the expression for the rotation matrix derived over
    at https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
    The relevant section is Euler angles ( z-’-x" intrinsic) -> Rotation matrix

    By default small angle approximations are used:
    The matrix elements are approximated by expanding the trigonometric
    functions to linear order (i.e. cos(x) = 1, sin(x) = x), and discarding
    products of second order.

    This was a useful hack when calculating by hand was the only option,
    but in general, today, should be avoided because:

    1. It does not save much computation time, as the rotation matrix
       is built only once and probably used many times (except when
       transforming spatio-temporal coordinates).

    2. The error induced may be too large for ultra high accuracy
       applications: the Earth is huge and the linear error is
       approximately the angular error multiplied by the Earth radius.

    However, in many cases the approximation is necessary, since it has
    been used historically: Rotation angles from older published datum
    shifts may actually be a least squares fit to the linearized rotation
    approximation, hence not being strictly valid for deriving the exact
    rotation matrix. In fact, most publicly available transformation
    parameters are based on the approximate Helmert transform, which is why
    we use that as the default setting, even though it is more correct to
    use the exact form of the equations.

    So in order to fit historically derived coordinates, the access to
    the approximate rotation matrix is necessary - at least in principle.

    Also, when using any published datum transformation information, one
    should always check which convention (exact or approximate rotation
    matrix) is expected, and whether the induced error for selecting
    the opposite convention is acceptable (which it often is).


    Sign conventions
    ----------------

    Take care: Two different sign conventions exist for the rotation terms.

    Conceptually they relate to whether we rotate the coordinate system
    or the "position vector" (the vector going from the coordinate system
    origin to the point being transformed, i.e. the point coordinates
    interpreted as vector coordinates).

    Switching between the "position vector" and "coordinate system"
    conventions is simply a matter of switching the sign of the rotation
    angles, which algebraically also translates into a transposition of
    the rotation matrix.

    Hence, as geodetic constants should preferably be referred to exactly
    as published, the "convention" option provides the ability to switch
    between the conventions.

***************************************************************************/
    struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;

    double  f,  t,  p;    /* phi/fi , theta, psi  */
    double cf, ct, cp;    /* cos (fi, theta, psi) */
    double sf, st, sp;    /* sin (fi, theta, psi) */

    /* rename   (omega, phi, kappa)   to   (fi, theta, psi)   */
    f = Q->opk.o;
    t = Q->opk.p;
    p = Q->opk.k;

    /* Those equations are given assuming coordinate frame convention. */
    /* For the position vector convention, we transpose the matrix just after. */
    if (Q->exact) {
        cf = cos(f);
        sf = sin(f);
        ct = cos(t);
        st = sin(t);
        cp = cos(p);
        sp = sin(p);


        R00 = ct*cp;
        R01 = cf*sp + sf*st*cp;
        R02 = sf*sp - cf*st*cp;

        R10 = -ct*sp;
        R11 =  cf*cp - sf*st*sp;
        R12 =  sf*cp + cf*st*sp;

        R20 =  st;
        R21 = -sf*ct;
        R22 =  cf*ct;
    } else{
        R00 =  1;
        R01 =  p;
        R02 = -t;

        R10 = -p;
        R11 =  1;
        R12 =  f;

        R20 =  t;
        R21 = -f;
        R22 =  1;
    }


    /*
        For comparison: Description from Engsager/Poder implementation
        in set_dtm_1.c (trlib)

        DATUM SHIFT:
        TO = scale * ROTZ * ROTY * ROTX * FROM + TRANSLA

             ( cz sz 0)         (cy 0 -sy)         (1   0  0)
        ROTZ=(-sz cz 0),   ROTY=(0  1   0),   ROTX=(0  cx sx)
             (  0  0 1)         (sy 0  cy)         (0 -sx cx)

        trp->r11  =  cos_ry*cos_rz;
        trp->r12  =  cos_rx*sin_rz + sin_rx*sin_ry*cos_rz;
        trp->r13  =  sin_rx*sin_rz - cos_rx*sin_ry*cos_rz;

        trp->r21  = -cos_ry*sin_rz;
        trp->r22  =  cos_rx*cos_rz - sin_rx*sin_ry*sin_rz;
        trp->r23  =  sin_rx*cos_rz + cos_rx*sin_ry*sin_rz;

        trp->r31  =  sin_ry;
        trp->r32  = -sin_rx*cos_ry;
        trp->r33  =  cos_rx*cos_ry;

        trp->scale = 1.0 + scale;
    */


    if (Q->is_position_vector) {
        double r;
        r = R01;    R01 = R10;    R10 = r;
        r = R02;    R02 = R20;    R20 = r;
        r = R12;    R12 = R21;    R21 = r;
    }

    /* some debugging output */
    if (proj_log_level(P->ctx, PJ_LOG_TELL) >= PJ_LOG_TRACE) {
        proj_log_trace(P, "Rotation Matrix:");
        proj_log_trace(P, "  | % 6.6g  % 6.6g  % 6.6g |", R00, R01, R02);
        proj_log_trace(P, "  | % 6.6g  % 6.6g  % 6.6g |", R10, R11, R12);
        proj_log_trace(P, "  | % 6.6g  % 6.6g  % 6.6g |", R20, R21, R22);
    }
}
Exemple #4
0
int pj_apply_vgridshift( PJ *defn, const char *listname,
                         PJ_GRIDINFO ***gridlist_p,
                         int *gridlist_count_p,
                         int inverse,
                         long point_count, int point_offset,
                         double *x, double *y, double *z )

{
    int  i;
    static int debug_count = 0;
    PJ_GRIDINFO **tables;
    struct CTABLE ct;

    if( *gridlist_p == NULL )
    {
        *gridlist_p =
            pj_gridlist_from_nadgrids( pj_get_ctx(defn),
                                       pj_param(defn->ctx,defn->params,listname).s,
                                       gridlist_count_p );

        if( *gridlist_p == NULL || *gridlist_count_p == 0 )
            return defn->ctx->last_errno;
    }

    if( *gridlist_count_p == 0 )
    {
        pj_ctx_set_errno( defn->ctx, PJD_ERR_FAILED_TO_LOAD_GRID);
        return PJD_ERR_FAILED_TO_LOAD_GRID;
    }

    tables = *gridlist_p;
    defn->ctx->last_errno = 0;

    for( i = 0; i < point_count; i++ )
    {
        double value;
        long io = i * point_offset;
        LP   input;

        input.phi = y[io];
        input.lam = x[io];

        value = read_vgrid_value(defn, input, gridlist_count_p, tables, &ct);

        if( inverse )
            z[io] -= value;
        else
            z[io] += value;
        if( value != HUGE_VAL )
        {
            if( debug_count++ < 20 ) {
                proj_log_trace(defn, "pj_apply_gridshift(): used %s", ct.id);
                break;
            }
        }

        if( value == HUGE_VAL )
        {
            int itable;
            char gridlist[3000];

            proj_log_debug(defn,
                "pj_apply_vgridshift(): failed to find a grid shift table for\n"
                "                       location (%.7fdW,%.7fdN)",
                x[io] * RAD_TO_DEG,
                y[io] * RAD_TO_DEG );

            gridlist[0] = '\0';
            for( itable = 0; itable < *gridlist_count_p; itable++ )
            {
                PJ_GRIDINFO *gi = tables[itable];
                if( strlen(gridlist) + strlen(gi->gridname) > sizeof(gridlist)-100 )
                {
                    strcat( gridlist, "..." );
                    break;
                }

                if( itable == 0 )
                    sprintf( gridlist, "   tried: %s", gi->gridname );
                else
                    sprintf( gridlist+strlen(gridlist), ",%s", gi->gridname );
            }

            proj_log_debug(defn, "%s", gridlist);
            pj_ctx_set_errno( defn->ctx, PJD_ERR_GRID_AREA );

            return PJD_ERR_GRID_AREA;
        }
    }

    return 0;
}