Exemple #1
0
prop_dictionary_t
prop_dictionary_augment(prop_dictionary_t bottom, prop_dictionary_t top)
{
	prop_object_iterator_t i;
	prop_dictionary_t d;
	prop_object_t ko, o;
	prop_dictionary_keysym_t k;
	const char *key;

	d = prop_dictionary_copy_mutable(bottom);

	i = prop_dictionary_iterator(top);

	while ((ko = prop_object_iterator_next(i)) != NULL) {
		k = (prop_dictionary_keysym_t)ko;
		key = prop_dictionary_keysym_cstring_nocopy(k);
		o = prop_dictionary_get_keysym(top, k);
		if (o == NULL || !prop_dictionary_set(d, key, o)) {
			prop_object_release((prop_object_t)d);
			d = NULL;
			break;
		}
	}
	prop_object_iterator_release(i);
	prop_dictionary_make_immutable(d);
	return d;
}
static const char *
acpi_debug_getkey(prop_dictionary_t dict, uint32_t arg)
{
	prop_object_iterator_t i;
	prop_object_t obj, val;
	const char *key;
	uint32_t num;

	i = prop_dictionary_iterator(dict);

	while ((obj = prop_object_iterator_next(i)) != NULL) {

		key = prop_dictionary_keysym_cstring_nocopy(obj);
		val = prop_dictionary_get(dict, key);
		num = prop_number_unsigned_integer_value(val);

		if (arg == num)
			return key;
	}

	return "UNKNOWN";
}
/*
 * Reads the CPU temperature from /sys/class/thermal/thermal_zone%d/temp (or
 * the user provided path) and returns the temperature in degree celcius.
 *
 */
void print_cpu_temperature_info(yajl_gen json_gen, char *buffer, int zone, const char *path, const char *format, int max_threshold) {
    char *outwalk = buffer;
#ifdef THERMAL_ZONE
    const char *walk;
    bool colorful_output = false;
    char *thermal_zone;

    if (path == NULL)
        asprintf(&thermal_zone, THERMAL_ZONE, zone);
    else {
        static glob_t globbuf;
        if (glob(path, GLOB_NOCHECK | GLOB_TILDE, NULL, &globbuf) < 0)
            die("glob() failed\n");
        if (globbuf.gl_pathc == 0) {
            /* No glob matches, the specified path does not contain a wildcard. */
            asprintf(&thermal_zone, path, zone);
        } else {
            /* glob matched, we take the first match and ignore the others */
            asprintf(&thermal_zone, "%s", globbuf.gl_pathv[0]);
        }
        globfree(&globbuf);
    }

    INSTANCE(thermal_zone);

    for (walk = format; *walk != '\0'; walk++) {
        if (*walk != '%') {
            *(outwalk++) = *walk;
            continue;
        }

        if (BEGINS_WITH(walk + 1, "degrees")) {
#if defined(LINUX)
            static char buf[16];
            long int temp;
            if (!slurp(thermal_zone, buf, sizeof(buf)))
                goto error;
            temp = strtol(buf, NULL, 10);
            if (temp == LONG_MIN || temp == LONG_MAX || temp <= 0)
                *(outwalk++) = '?';
            else {
                if ((temp / 1000) >= max_threshold) {
                    START_COLOR("color_bad");
                    colorful_output = true;
                }
                outwalk += sprintf(outwalk, "%ld", (temp / 1000));
                if (colorful_output) {
                    END_COLOR;
                    colorful_output = false;
                }
            }
#elif defined(__DragonFly__)
            struct sensor th_sensor;
            size_t th_sensorlen;

            th_sensorlen = sizeof(th_sensor);

            if (sysctlbyname(thermal_zone, &th_sensor, &th_sensorlen, NULL, 0) == -1) {
                perror("sysctlbyname");
                goto error;
            }
            if (MUKTOC(th_sensor.value) >= max_threshold) {
                START_COLOR("color_bad");
                colorful_output = true;
            }
            outwalk += sprintf(outwalk, "%.2f", MUKTOC(th_sensor.value));
            if (colorful_output) {
                END_COLOR;
                colorful_output = false;
            }

#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
            int sysctl_rslt;
            size_t sysctl_size = sizeof(sysctl_rslt);
            if (sysctlbyname(thermal_zone, &sysctl_rslt, &sysctl_size, NULL, 0))
                goto error;

            if (TZ_AVG(sysctl_rslt) >= max_threshold) {
                START_COLOR("color_bad");
                colorful_output = true;
            }
            outwalk += sprintf(outwalk, "%d.%d", TZ_KELVTOC(sysctl_rslt));
            if (colorful_output) {
                END_COLOR;
                colorful_output = false;
            }

#elif defined(__OpenBSD__)
            struct sensordev sensordev;
            struct sensor sensor;
            size_t sdlen, slen;
            int dev, numt, mib[5] = {CTL_HW, HW_SENSORS, 0, 0, 0};

            sdlen = sizeof(sensordev);
            slen = sizeof(sensor);

            for (dev = 0;; dev++) {
                mib[2] = dev;
                if (sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) {
                    if (errno == ENXIO)
                        continue;
                    if (errno == ENOENT)
                        break;
                    goto error;
                }
                /* 'path' is the node within the full path (defaults to acpitz0). */
                if (BEGINS_WITH(sensordev.xname, thermal_zone)) {
                    mib[3] = SENSOR_TEMP;
                    /* Limit to temo0, but should retrieve from a full path... */
                    for (numt = 0; numt < 1 /*sensordev.maxnumt[SENSOR_TEMP]*/; numt++) {
                        mib[4] = numt;
                        if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) {
                            if (errno != ENOENT) {
                                warn("sysctl");
                                continue;
                            }
                        }
                        if ((int)MUKTOC(sensor.value) >= max_threshold) {
                            START_COLOR("color_bad");
                            colorful_output = true;
                        }

                        outwalk += sprintf(outwalk, "%.2f", MUKTOC(sensor.value));

                        if (colorful_output) {
                            END_COLOR;
                            colorful_output = false;
                        }
                    }
                }
            }
#elif defined(__NetBSD__)
            int fd, rval;
            bool err = false;
            prop_dictionary_t dict;
            prop_array_t array;
            prop_object_iterator_t iter;
            prop_object_iterator_t iter2;
            prop_object_t obj, obj2, obj3;

            fd = open("/dev/sysmon", O_RDONLY);
            if (fd == -1)
                goto error;

            rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict);
            if (rval == -1) {
                err = true;
                goto error_netbsd1;
            }

            /* No drivers registered? */
            if (prop_dictionary_count(dict) == 0) {
                err = true;
                goto error_netbsd2;
            }

            iter = prop_dictionary_iterator(dict);
            if (iter == NULL) {
                err = true;
                goto error_netbsd2;
            }

            /* iterate over the dictionary returned by the kernel */
            while ((obj = prop_object_iterator_next(iter)) != NULL) {
                /* skip this dict if it's not what we're looking for */
                if ((strlen(prop_dictionary_keysym_cstring_nocopy(obj)) != strlen(thermal_zone)) ||
                    (strncmp(thermal_zone,
                             prop_dictionary_keysym_cstring_nocopy(obj),
                             strlen(thermal_zone)) != 0))
                    continue;

                array = prop_dictionary_get_keysym(dict, obj);
                if (prop_object_type(array) != PROP_TYPE_ARRAY) {
                    err = true;
                    goto error_netbsd3;
                }

                iter2 = prop_array_iterator(array);
                if (!iter2) {
                    err = true;
                    goto error_netbsd3;
                }

                /* iterate over array of dicts specific to target sensor */
                while ((obj2 = prop_object_iterator_next(iter2)) != NULL) {
                    obj3 = prop_dictionary_get(obj2, "cur-value");

                    float temp = MUKTOC(prop_number_integer_value(obj3));
                    if ((int)temp >= max_threshold) {
                        START_COLOR("color_bad");
                        colorful_output = true;
                    }

                    outwalk += sprintf(outwalk, "%.2f", temp);

                    if (colorful_output) {
                        END_COLOR;
                        colorful_output = false;
                    }

                    break;
                }
                prop_object_iterator_release(iter2);
            }
        error_netbsd3:
            prop_object_iterator_release(iter);
        error_netbsd2:
            prop_object_release(dict);
        error_netbsd1:
            close(fd);
            if (err)
                goto error;

#endif

            walk += strlen("degrees");
        }
    }

    free(thermal_zone);

    OUTPUT_FULL_TEXT(buffer);
    return;
error:
    free(thermal_zone);
#endif

    OUTPUT_FULL_TEXT("can't read temp");
    (void)fputs("i3status: Cannot read temperature. Verify that you have a thermal zone in /sys/class/thermal or disable the cpu_temperature module in your i3status config.\n", stderr);
}
Exemple #4
0
static
int
swsensor_init(void *arg)
{
	int error, val = 0;
	const char *key, *str;
	prop_dictionary_t pd = (prop_dictionary_t)arg;
	prop_object_t po, obj;
	prop_object_iterator_t iter;
	prop_type_t type;
	const struct sme_descr_entry *descr;

	swsensor_sme = sysmon_envsys_create();
	if (swsensor_sme == NULL)
		return ENOTTY;

	swsensor_sme->sme_name = "swsensor";
	swsensor_sme->sme_cookie = &swsensor_edata;
	swsensor_sme->sme_refresh = swsensor_refresh;
	swsensor_sme->sme_set_limits = NULL;
	swsensor_sme->sme_get_limits = NULL;

	/* Set defaults in case no prop dictionary given */

	swsensor_edata.units = ENVSYS_INTEGER;
	swsensor_edata.flags = 0;
	sw_sensor_mode = 0;
	sw_sensor_value = 0;
	sw_sensor_limit = 0;

	/* Iterate over the provided dictionary, if any */
	if (pd != NULL) {
		iter = prop_dictionary_iterator(pd);
		if (iter == NULL)
			return ENOMEM;

		while ((obj = prop_object_iterator_next(iter)) != NULL) {
			key = prop_dictionary_keysym_cstring_nocopy(obj);
			po  = prop_dictionary_get_keysym(pd, obj);
			type = prop_object_type(po);
			if (type == PROP_TYPE_NUMBER)
				val = prop_number_integer_value(po);

			/* Sensor type/units */
			if (strcmp(key, "type") == 0) {
				if (type == PROP_TYPE_NUMBER) {
					descr = sme_find_table_entry(
							SME_DESC_UNITS, val);
					if (descr == NULL)
						return EINVAL;
					swsensor_edata.units = descr->type;
					continue;
				}
				if (type != PROP_TYPE_STRING)
					return EINVAL;
				str = prop_string_cstring_nocopy(po);
				descr = sme_find_table_desc(SME_DESC_UNITS,
							    str);
				if (descr == NULL)
					return EINVAL;
				swsensor_edata.units = descr->type;
				continue;
			}

			/* Sensor flags */
			if (strcmp(key, "flags") == 0) {
				if (type != PROP_TYPE_NUMBER)
					return EINVAL;
				swsensor_edata.flags = val;
				continue;
			}

			/* Sensor limit behavior
			 *	0 - simple sensor, no hw limits
			 *	1 - simple sensor, hw provides initial limit
			 *	2 - complex sensor, hw provides settable 
			 *	    limits and does its own limit checking
			 */
			if (strcmp(key, "mode") == 0) {
				if (type != PROP_TYPE_NUMBER)
					return EINVAL;
				sw_sensor_mode = val;
				if (sw_sensor_mode > 2)
					sw_sensor_mode = 2;
				else if (sw_sensor_mode < 0)
					sw_sensor_mode = 0;
				continue;
			}

			/* Grab any limit that might be specified */
			if (strcmp(key, "limit") == 0) {
				if (type != PROP_TYPE_NUMBER)
					return EINVAL;
				sw_sensor_limit = val;
				continue;
			}

			/* Grab the initial value */
			if (strcmp(key, "value") == 0) {
				if (type != PROP_TYPE_NUMBER)
					return EINVAL;
				sw_sensor_value = val;
				continue;
			}

			/* Grab value_min and value_max */
			if (strcmp(key, "value_min") == 0) {
				if (type != PROP_TYPE_NUMBER)
					return EINVAL;
				swsensor_edata.value_min = val;
				swsensor_edata.flags |= ENVSYS_FVALID_MIN;
				continue;
			}
			if (strcmp(key, "value_max") == 0) {
				if (type != PROP_TYPE_NUMBER)
					return EINVAL;
				swsensor_edata.value_max = val;
				swsensor_edata.flags |= ENVSYS_FVALID_MAX;
				continue;
			}

			/* See if sensor reports percentages vs raw values */
			if (strcmp(key, "percentage") == 0) {
				if (type != PROP_TYPE_BOOL)
					return EINVAL;
				if (prop_bool_true(po))
					swsensor_edata.flags |= ENVSYS_FPERCENT;
				continue;
			}

			/* Unrecognized dicttionary object */
#ifdef DEBUG
			printf("%s: unknown attribute %s\n", __func__, key);
#endif
			return EINVAL;

		} /* while */
		prop_object_iterator_release(iter);
	}

	/* Initialize limit processing */
	if (sw_sensor_mode >= 1)
		swsensor_sme->sme_get_limits = swsensor_get_limits;

	if (sw_sensor_mode == 2)
		swsensor_sme->sme_set_limits = swsensor_set_limits;

	if (sw_sensor_mode != 0) {
		swsensor_edata.flags |= ENVSYS_FMONLIMITS;
		swsensor_get_limits(swsensor_sme, &swsensor_edata,
		    &sw_sensor_deflims, &sw_sensor_defprops);
	}

	strlcpy(swsensor_edata.desc, "sensor", ENVSYS_DESCLEN);

	/* Wait for refresh to validate the sensor value */
	swsensor_edata.state = ENVSYS_SINVALID;
	sw_sensor_state = ENVSYS_SVALID;

	error = sysmon_envsys_sensor_attach(swsensor_sme, &swsensor_edata);
	if (error != 0) {
		aprint_error("sysmon_envsys_sensor_attach failed: %d\n", error);
		return error;
	}

	error = sysmon_envsys_register(swsensor_sme);
	if (error != 0) {
		aprint_error("sysmon_envsys_register failed: %d\n", error);
		return error;
	}

	sysctl_swsensor_setup();
	aprint_normal("swsensor: initialized\n");

	return 0;
}
static bool slurp_battery_info(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, int number, const char *path, const char *format_down) {
    char *outwalk = buffer;

#if defined(LINUX)
    char buf[1024];
    memset(buf, 0, 1024);
    const char *walk, *last;
    bool watt_as_unit = false;
    int voltage = -1;
    char batpath[512];
    sprintf(batpath, path, number);
    INSTANCE(batpath);

    if (!slurp(batpath, buf, sizeof(buf))) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    for (walk = buf, last = buf; (walk - buf) < 1024; walk++) {
        if (*walk == '\n') {
            last = walk + 1;
            continue;
        }

        if (*walk != '=')
            continue;

        if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_NOW=")) {
            watt_as_unit = true;
            batt_info->remaining = atoi(walk + 1);
            batt_info->percentage_remaining = -1;
        } else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_NOW=")) {
            watt_as_unit = false;
            batt_info->remaining = atoi(walk + 1);
            batt_info->percentage_remaining = -1;
        } else if (BEGINS_WITH(last, "POWER_SUPPLY_CAPACITY=") && batt_info->remaining == -1) {
            batt_info->percentage_remaining = atoi(walk + 1);
        } else if (BEGINS_WITH(last, "POWER_SUPPLY_CURRENT_NOW="))
            batt_info->present_rate = abs(atoi(walk + 1));
        else if (BEGINS_WITH(last, "POWER_SUPPLY_VOLTAGE_NOW="))
            voltage = abs(atoi(walk + 1));
        /* on some systems POWER_SUPPLY_POWER_NOW does not exist, but actually
         * it is the same as POWER_SUPPLY_CURRENT_NOW but with μWh as
         * unit instead of μAh. We will calculate it as we need it
         * later. */
        else if (BEGINS_WITH(last, "POWER_SUPPLY_POWER_NOW="))
            batt_info->present_rate = abs(atoi(walk + 1));
        else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Charging"))
            batt_info->status = CS_CHARGING;
        else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Full"))
            batt_info->status = CS_FULL;
        else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Discharging"))
            batt_info->status = CS_DISCHARGING;
        else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS="))
            batt_info->status = CS_UNKNOWN;
        else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL_DESIGN=") ||
                 BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL_DESIGN="))
            batt_info->full_design = atoi(walk + 1);
        else if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL=") ||
                 BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL="))
            batt_info->full_last = atoi(walk + 1);
    }

    /* the difference between POWER_SUPPLY_ENERGY_NOW and
     * POWER_SUPPLY_CHARGE_NOW is the unit of measurement. The energy is
     * given in mWh, the charge in mAh. So calculate every value given in
     * ampere to watt */
    if (!watt_as_unit && voltage >= 0) {
        if (batt_info->present_rate > 0) {
            batt_info->present_rate = (((float)voltage / 1000.0) * ((float)batt_info->present_rate / 1000.0));
        }
        if (batt_info->remaining > 0) {
            batt_info->remaining = (((float)voltage / 1000.0) * ((float)batt_info->remaining / 1000.0));
        }
        if (batt_info->full_design > 0) {
            batt_info->full_design = (((float)voltage / 1000.0) * ((float)batt_info->full_design / 1000.0));
        }
        if (batt_info->full_last > 0) {
            batt_info->full_last = (((float)voltage / 1000.0) * ((float)batt_info->full_last / 1000.0));
        }
    }
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
    int state;
    int sysctl_rslt;
    size_t sysctl_size = sizeof(sysctl_rslt);

    if (sysctlbyname(BATT_LIFE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    batt_info->percentage_remaining = sysctl_rslt;
    if (sysctlbyname(BATT_TIME, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    batt_info->seconds_remaining = sysctl_rslt * 60;
    if (sysctlbyname(BATT_STATE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    state = sysctl_rslt;
    if (state == 0 && batt_info->percentage_remaining == 100)
        batt_info->status = CS_FULL;
    else if ((state & ACPI_BATT_STAT_CHARGING) && batt_info->percentage_remaining < 100)
        batt_info->status = CS_CHARGING;
    else
        batt_info->status = CS_DISCHARGING;
#elif defined(__OpenBSD__)
    /*
	 * We're using apm(4) here, which is the interface to acpi(4) on amd64/i386 and
	 * the generic interface on macppc/sparc64/zaurus, instead of using sysctl(3) and
	 * probing acpi(4) devices.
	 */
    struct apm_power_info apm_info;
    int apm_fd;

    apm_fd = open("/dev/apm", O_RDONLY);
    if (apm_fd < 0) {
        OUTPUT_FULL_TEXT("can't open /dev/apm");
        return false;
    }
    if (ioctl(apm_fd, APM_IOC_GETPOWER, &apm_info) < 0)
        OUTPUT_FULL_TEXT("can't read power info");

    close(apm_fd);

    /* Don't bother to go further if there's no battery present. */
    if ((apm_info.battery_state == APM_BATTERY_ABSENT) ||
        (apm_info.battery_state == APM_BATT_UNKNOWN)) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    switch (apm_info.ac_state) {
        case APM_AC_OFF:
            batt_info->status = CS_DISCHARGING;
            break;
        case APM_AC_ON:
            batt_info->status = CS_CHARGING;
            break;
        default:
            /* If we don't know what's going on, just assume we're discharging. */
            batt_info->status = CS_DISCHARGING;
            break;
    }

    batt_info->percentage_remaining = apm_info.battery_life;

    /* Can't give a meaningful value for remaining minutes if we're charging. */
    if (batt_info->status != CS_CHARGING) {
        batt_info->seconds_remaining = apm_info.minutes_left * 60;
    }
#elif defined(__NetBSD__)
    /*
     * Using envsys(4) via sysmon(4).
     */
    int fd, rval;
    bool is_found = false;
    char sensor_desc[16];

    prop_dictionary_t dict;
    prop_array_t array;
    prop_object_iterator_t iter;
    prop_object_iterator_t iter2;
    prop_object_t obj, obj2, obj3, obj4, obj5;

    if (number >= 0)
        (void)snprintf(sensor_desc, sizeof(sensor_desc), "acpibat%d", number);

    fd = open("/dev/sysmon", O_RDONLY);
    if (fd < 0) {
        OUTPUT_FULL_TEXT("can't open /dev/sysmon");
        return false;
    }

    rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict);
    if (rval == -1) {
        close(fd);
        return false;
    }

    if (prop_dictionary_count(dict) == 0) {
        prop_object_release(dict);
        close(fd);
        return false;
    }

    iter = prop_dictionary_iterator(dict);
    if (iter == NULL) {
        prop_object_release(dict);
        close(fd);
    }

    /* iterate over the dictionary returned by the kernel */
    while ((obj = prop_object_iterator_next(iter)) != NULL) {
        /* skip this dict if it's not what we're looking for */
        if (number < 0) {
            /* we want all batteries */
            if (!BEGINS_WITH(prop_dictionary_keysym_cstring_nocopy(obj),
                             "acpibat"))
                continue;
        } else {
            /* we want a specific battery */
            if (strcmp(sensor_desc,
                       prop_dictionary_keysym_cstring_nocopy(obj)) != 0)
                continue;
        }

        is_found = true;

        array = prop_dictionary_get_keysym(dict, obj);
        if (prop_object_type(array) != PROP_TYPE_ARRAY) {
            prop_object_iterator_release(iter);
            prop_object_release(dict);
            close(fd);
            return false;
        }

        iter2 = prop_array_iterator(array);
        if (!iter2) {
            prop_object_iterator_release(iter);
            prop_object_release(dict);
            close(fd);
            return false;
        }

        struct battery_info batt_buf = {
            .full_design = 0,
            .full_last = 0,
            .remaining = 0,
            .present_rate = 0,
            .status = CS_UNKNOWN,
        };
        int voltage = -1;
        bool watt_as_unit = false;

        /* iterate over array of dicts specific to target battery */
        while ((obj2 = prop_object_iterator_next(iter2)) != NULL) {
            obj3 = prop_dictionary_get(obj2, "description");

            if (obj3 == NULL)
                continue;

            if (strcmp("charging", prop_string_cstring_nocopy(obj3)) == 0) {
                obj3 = prop_dictionary_get(obj2, "cur-value");

                if (prop_number_integer_value(obj3))
                    batt_buf.status = CS_CHARGING;
                else
                    batt_buf.status = CS_DISCHARGING;
            } else if (strcmp("charge", prop_string_cstring_nocopy(obj3)) == 0) {
                obj3 = prop_dictionary_get(obj2, "cur-value");
                obj4 = prop_dictionary_get(obj2, "max-value");
                obj5 = prop_dictionary_get(obj2, "type");

                batt_buf.remaining = prop_number_integer_value(obj3);
                batt_buf.full_design = prop_number_integer_value(obj4);

                if (strcmp("Ampere hour", prop_string_cstring_nocopy(obj5)) == 0)
                    watt_as_unit = false;
                else
                    watt_as_unit = true;
            } else if (strcmp("discharge rate", prop_string_cstring_nocopy(obj3)) == 0) {
                obj3 = prop_dictionary_get(obj2, "cur-value");
                batt_buf.present_rate = prop_number_integer_value(obj3);
            } else if (strcmp("charge rate", prop_string_cstring_nocopy(obj3)) == 0) {
                obj3 = prop_dictionary_get(obj2, "cur-value");
                batt_info->present_rate = prop_number_integer_value(obj3);
            } else if (strcmp("last full cap", prop_string_cstring_nocopy(obj3)) == 0) {
                obj3 = prop_dictionary_get(obj2, "cur-value");
                batt_buf.full_last = prop_number_integer_value(obj3);
            } else if (strcmp("voltage", prop_string_cstring_nocopy(obj3)) == 0) {
                obj3 = prop_dictionary_get(obj2, "cur-value");
                voltage = prop_number_integer_value(obj3);
            }
        }
        prop_object_iterator_release(iter2);

        if (!watt_as_unit && voltage != -1) {
            batt_buf.present_rate = (((float)voltage / 1000.0) * ((float)batt_buf.present_rate / 1000.0));
            batt_buf.remaining = (((float)voltage / 1000.0) * ((float)batt_buf.remaining / 1000.0));
            batt_buf.full_design = (((float)voltage / 1000.0) * ((float)batt_buf.full_design / 1000.0));
            batt_buf.full_last = (((float)voltage / 1000.0) * ((float)batt_buf.full_last / 1000.0));
        }

        if (batt_buf.remaining == batt_buf.full_design)
            batt_buf.status = CS_FULL;

        add_battery_info(batt_info, &batt_buf);
    }

    prop_object_iterator_release(iter);
    prop_object_release(dict);
    close(fd);

    if (!is_found) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    batt_info->present_rate = abs(batt_info->present_rate);
#endif

    return true;
}

/*
 * Populate batt_info with aggregate information about all batteries.
 * Returns false on error, and an error message will have been written.
 */
static bool slurp_all_batteries(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, const char *path, const char *format_down) {
#if defined(LINUX)
    char *outwalk = buffer;
    bool is_found = false;

    char *placeholder;
    char *globpath = sstrdup(path);
    if ((placeholder = strstr(path, "%d")) != NULL) {
        char *globplaceholder = globpath + (placeholder - path);
        *globplaceholder = '*';
        strcpy(globplaceholder + 1, placeholder + 2);
    }

    if (!strcmp(globpath, path)) {
        OUTPUT_FULL_TEXT("no '%d' in battery path");
        return false;
    }

    glob_t globbuf;
    if (glob(globpath, 0, NULL, &globbuf) == 0) {
        for (size_t i = 0; i < globbuf.gl_pathc; i++) {
            /* Probe to see if there is such a battery. */
            struct battery_info batt_buf = {
                .full_design = 0,
                .full_last = 0,
                .remaining = 0,
                .present_rate = 0,
                .status = CS_UNKNOWN,
            };
            if (!slurp_battery_info(&batt_buf, json_gen, buffer, i, globbuf.gl_pathv[i], format_down))
                return false;

            is_found = true;
            add_battery_info(batt_info, &batt_buf);
        }
    }
    globfree(&globbuf);
    free(globpath);

    if (!is_found) {
        OUTPUT_FULL_TEXT(format_down);
        return false;
    }

    batt_info->present_rate = abs(batt_info->present_rate);
#else
    /* FreeBSD and OpenBSD only report aggregates. NetBSD always
     * iterates through all batteries, so it's more efficient to
     * aggregate in slurp_battery_info. */
    return slurp_battery_info(batt_info, json_gen, buffer, -1, path, format_down);
#endif

    return true;
}

void print_battery_info(yajl_gen json_gen, char *buffer, int number, const char *path, const char *format, const char *format_down, const char *status_chr, const char *status_bat, const char *status_unk, const char *status_full, int low_threshold, char *threshold_type, bool last_full_capacity, bool integer_battery_capacity, bool hide_seconds) {
    const char *walk;
    char *outwalk = buffer;
    struct battery_info batt_info = {
        .full_design = -1,
        .full_last = -1,
        .remaining = -1,
        .present_rate = -1,
        .seconds_remaining = -1,
        .percentage_remaining = -1,
        .status = CS_UNKNOWN,
    };
    bool colorful_output = false;

#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__)
    /* These OSes report battery stats in whole percent. */
    integer_battery_capacity = true;
#endif
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__)
    /* These OSes report battery time in minutes. */
    hide_seconds = true;
#endif

    if (number < 0) {
        if (!slurp_all_batteries(&batt_info, json_gen, buffer, path, format_down))
            return;
    } else {
        if (!slurp_battery_info(&batt_info, json_gen, buffer, number, path, format_down))
            return;
    }

    // *Choose* a measure of the 'full' battery. It is whichever is better of
    // the battery's (hardware-given) design capacity (batt_info.full_design)
    // and the battery's last known good charge (batt_info.full_last).
    // We prefer the design capacity, but use the last capacity if we don't have it,
    // or if we are asked to (last_full_capacity == true); but similarly we use
    // the design capacity if we don't have the last capacity.
    // If we don't have either then both full_design and full_last <= 0,
    // which implies full <= 0, which bails out on the following line.
    int full = batt_info.full_design;
    if (full <= 0 || (last_full_capacity && batt_info.full_last > 0)) {
        full = batt_info.full_last;
    }
    if (full <= 0 && batt_info.remaining < 0 && batt_info.percentage_remaining < 0) {
        /* We have no physical measurements and no estimates. Nothing
         * much we can report, then. */
        OUTPUT_FULL_TEXT(format_down);
        return;
    }

    if (batt_info.percentage_remaining < 0) {
        batt_info.percentage_remaining = (((float)batt_info.remaining / (float)full) * 100);
        /* Some batteries report POWER_SUPPLY_CHARGE_NOW=<full_design> when fully
         * charged, even though that’s plainly wrong. For people who chose to see
         * the percentage calculated based on the last full capacity, we clamp the
         * value to 100%, as that makes more sense.
         * See http://bugs.debian.org/785398 */
        if (last_full_capacity && batt_info.percentage_remaining > 100) {
            batt_info.percentage_remaining = 100;
        }
    }

    if (batt_info.seconds_remaining < 0 && batt_info.present_rate > 0 && batt_info.status != CS_FULL) {
        if (batt_info.status == CS_CHARGING)
            batt_info.seconds_remaining = 3600.0 * (full - batt_info.remaining) / batt_info.present_rate;
        else if (batt_info.status == CS_DISCHARGING)
            batt_info.seconds_remaining = 3600.0 * batt_info.remaining / batt_info.present_rate;
        else
            batt_info.seconds_remaining = 0;
    }

    if (batt_info.status == CS_DISCHARGING && low_threshold > 0) {
        if (batt_info.percentage_remaining >= 0 && strcasecmp(threshold_type, "percentage") == 0 && batt_info.percentage_remaining < low_threshold) {
            START_COLOR("color_bad");
            colorful_output = true;
        } else if (batt_info.seconds_remaining >= 0 && strcasecmp(threshold_type, "time") == 0 && batt_info.seconds_remaining < 60 * low_threshold) {
            START_COLOR("color_bad");
            colorful_output = true;
        }
    }

#define EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT()                   \
    do {                                                       \
        if (outwalk == prevoutwalk) {                          \
            if (outwalk > buffer && isspace((int)outwalk[-1])) \
                outwalk--;                                     \
            else if (isspace((int)*(walk + 1)))                \
                walk++;                                        \
        }                                                      \
    } while (0)

    for (walk = format; *walk != '\0'; walk++) {
        char *prevoutwalk = outwalk;

        if (*walk != '%') {
            *(outwalk++) = *walk;
            continue;
        }

        if (BEGINS_WITH(walk + 1, "status")) {
            const char *statusstr;
            switch (batt_info.status) {
                case CS_CHARGING:
                    statusstr = status_chr;
                    break;
                case CS_DISCHARGING:
                    statusstr = status_bat;
                    break;
                case CS_FULL:
                    statusstr = status_full;
                    break;
                default:
                    statusstr = status_unk;
            }

            outwalk += sprintf(outwalk, "%s", statusstr);
            walk += strlen("status");
        } else if (BEGINS_WITH(walk + 1, "percentage")) {
            if (integer_battery_capacity) {
                outwalk += sprintf(outwalk, "%.00f%s", batt_info.percentage_remaining, pct_mark);
            } else {
                outwalk += sprintf(outwalk, "%.02f%s", batt_info.percentage_remaining, pct_mark);
            }
            walk += strlen("percentage");
        } else if (BEGINS_WITH(walk + 1, "remaining")) {
            if (batt_info.seconds_remaining >= 0) {
                int seconds, hours, minutes;

                hours = batt_info.seconds_remaining / 3600;
                seconds = batt_info.seconds_remaining - (hours * 3600);
                minutes = seconds / 60;
                seconds -= (minutes * 60);

                if (hide_seconds)
                    outwalk += sprintf(outwalk, "%02d:%02d",
                                       max(hours, 0), max(minutes, 0));
                else
                    outwalk += sprintf(outwalk, "%02d:%02d:%02d",
                                       max(hours, 0), max(minutes, 0), max(seconds, 0));
            }
            walk += strlen("remaining");
            EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
        } else if (BEGINS_WITH(walk + 1, "emptytime")) {
            if (batt_info.seconds_remaining >= 0) {
                time_t empty_time = time(NULL) + batt_info.seconds_remaining;
                set_timezone(NULL); /* Use local time. */
                struct tm *empty_tm = localtime(&empty_time);

                if (hide_seconds)
                    outwalk += sprintf(outwalk, "%02d:%02d",
                                       max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0));
                else
                    outwalk += sprintf(outwalk, "%02d:%02d:%02d",
                                       max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0));
            }
            walk += strlen("emptytime");
            EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
        } else if (BEGINS_WITH(walk + 1, "consumption")) {
            if (batt_info.present_rate >= 0)
                outwalk += sprintf(outwalk, "%1.2fW", batt_info.present_rate / 1e6);

            walk += strlen("consumption");
            EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
        }
    }

    if (colorful_output)
        END_COLOR;

    OUTPUT_FULL_TEXT(buffer);
}