BOOL rpc_api_pipe_req(struct cli_state *cli, uint8 op_num, prs_struct *data, prs_struct *rdata) { uint32 auth_len, real_auth_len, auth_hdr_len, max_data, data_left, data_sent; NTSTATUS nt_status; BOOL ret = False; uint32 callid = 0; fstring dump_name; auth_len = 0; real_auth_len = 0; auth_hdr_len = 0; if (cli->pipe_auth_flags & AUTH_PIPE_SIGN) { if (cli->pipe_auth_flags & AUTH_PIPE_NTLMSSP) { auth_len = RPC_AUTH_NTLMSSP_CHK_LEN; } if (cli->pipe_auth_flags & AUTH_PIPE_NETSEC) { auth_len = RPC_AUTH_NETSEC_CHK_LEN; } auth_hdr_len = RPC_HDR_AUTH_LEN; } /* * calc how much actual data we can send in a PDU fragment */ max_data = cli->max_xmit_frag - RPC_HEADER_LEN - RPC_HDR_REQ_LEN - auth_hdr_len - auth_len - 8; for (data_left = prs_offset(data), data_sent = 0; data_left > 0;) { prs_struct outgoing_packet; prs_struct sec_blob; uint32 data_len, send_size; uint8 flags = 0; uint32 auth_padding = 0; DATA_BLOB sign_blob; /* * how much will we send this time */ send_size = MIN(data_left, max_data); if (!prs_init(&sec_blob, send_size, /* will need at least this much */ cli->mem_ctx, MARSHALL)) { DEBUG(0,("Could not malloc %u bytes", send_size+auth_padding)); return False; } if(!prs_append_some_prs_data(&sec_blob, data, data_sent, send_size)) { DEBUG(0,("Failed to append data to netsec blob\n")); prs_mem_free(&sec_blob); return False; } /* * NT expects the data that is sealed to be 8-byte * aligned. The padding must be encrypted as well and * taken into account when generating the * authentication verifier. The amount of padding must * be stored in the auth header. */ if (cli->pipe_auth_flags) { size_t data_and_padding_size; int auth_type; int auth_level; prs_align_uint64(&sec_blob); get_auth_type_level(cli->pipe_auth_flags, &auth_type, &auth_level); data_and_padding_size = prs_offset(&sec_blob); auth_padding = data_and_padding_size - send_size; /* insert the auth header */ if(!create_auth_hdr(&sec_blob, auth_type, auth_level, auth_padding)) { prs_mem_free(&sec_blob); return False; } /* create an NTLMSSP signature */ if (cli->pipe_auth_flags & AUTH_PIPE_NTLMSSP) { /* * Seal the outgoing data if requested. */ if (cli->pipe_auth_flags & AUTH_PIPE_SEAL) { nt_status = ntlmssp_seal_packet(cli->ntlmssp_pipe_state, (unsigned char*)prs_data_p(&sec_blob), data_and_padding_size, &sign_blob); if (!NT_STATUS_IS_OK(nt_status)) { prs_mem_free(&sec_blob); return False; } } else if (cli->pipe_auth_flags & AUTH_PIPE_SIGN) { nt_status = ntlmssp_sign_packet(cli->ntlmssp_pipe_state, (unsigned char*)prs_data_p(&sec_blob), data_and_padding_size, &sign_blob); if (!NT_STATUS_IS_OK(nt_status)) { prs_mem_free(&sec_blob); return False; } } /* write auth footer onto the packet */ real_auth_len = sign_blob.length; prs_copy_data_in(&sec_blob, (char *)sign_blob.data, sign_blob.length); data_blob_free(&sign_blob); } else if (cli->pipe_auth_flags & AUTH_PIPE_NETSEC) { size_t parse_offset_marker; RPC_AUTH_NETSEC_CHK verf; DEBUG(10,("SCHANNEL seq_num=%d\n", cli->auth_info.seq_num)); netsec_encode(&cli->auth_info, cli->pipe_auth_flags, SENDER_IS_INITIATOR, &verf, prs_data_p(&sec_blob), data_and_padding_size); cli->auth_info.seq_num++; /* write auth footer onto the packet */ parse_offset_marker = prs_offset(&sec_blob); if (!smb_io_rpc_auth_netsec_chk("", &verf, &sec_blob, 0)) { prs_mem_free(&sec_blob); return False; } real_auth_len = prs_offset(&sec_blob) - parse_offset_marker; } } data_len = RPC_HEADER_LEN + RPC_HDR_REQ_LEN + prs_offset(&sec_blob); /* * Malloc parse struct to hold it (and enough for alignments). */ if(!prs_init(&outgoing_packet, data_len + 8, cli->mem_ctx, MARSHALL)) { DEBUG(0,("rpc_api_pipe_req: Failed to malloc %u bytes.\n", (unsigned int)data_len )); return False; } if (data_left == prs_offset(data)) flags |= RPC_FLG_FIRST; if (data_left <= max_data) flags |= RPC_FLG_LAST; /* * Write out the RPC header and the request header. */ if(!(callid = create_rpc_request(&outgoing_packet, op_num, data_len, real_auth_len, flags, callid, data_left))) { DEBUG(0,("rpc_api_pipe_req: Failed to create RPC request.\n")); prs_mem_free(&outgoing_packet); prs_mem_free(&sec_blob); return False; } prs_append_prs_data(&outgoing_packet, &sec_blob); prs_mem_free(&sec_blob); DEBUG(100,("data_len: %x data_calc_len: %x\n", data_len, prs_offset(&outgoing_packet))); if (flags & RPC_FLG_LAST) ret = rpc_api_pipe(cli, &outgoing_packet, rdata, RPC_RESPONSE); else { cli_write(cli, cli->nt_pipe_fnum, 0x0008, prs_data_p(&outgoing_packet), data_sent, data_len); } prs_mem_free(&outgoing_packet); data_sent += send_size; data_left -= send_size; } /* Also capture received data */ slprintf(dump_name, sizeof(dump_name) - 1, "reply_%s", cli_pipe_get_name(cli)); prs_dump(dump_name, op_num, rdata); return ret; }
static BOOL rpc_api_pipe(struct cli_state *cli, prs_struct *data, prs_struct *rdata, uint8 expected_pkt_type) { uint32 len; char *rparam = NULL; uint32 rparam_len = 0; uint16 setup[2]; BOOL first = True; BOOL last = True; RPC_HDR rhdr; char *pdata = data ? prs_data_p(data) : NULL; uint32 data_len = data ? prs_offset(data) : 0; char *prdata = NULL; uint32 rdata_len = 0; uint32 current_offset = 0; uint32 fragment_start = 0; uint32 max_data = cli->max_xmit_frag ? cli->max_xmit_frag : 1024; int auth_padding_len = 0; /* Create setup parameters - must be in native byte order. */ setup[0] = TRANSACT_DCERPCCMD; setup[1] = cli->nt_pipe_fnum; /* Pipe file handle. */ DEBUG(5,("rpc_api_pipe: fnum:%x\n", (int)cli->nt_pipe_fnum)); /* Send the RPC request and receive a response. For short RPC calls (about 1024 bytes or so) the RPC request and response appears in a SMBtrans request and response. Larger RPC responses are received further on. */ if (!cli_api_pipe(cli, "\\PIPE\\", setup, 2, 0, /* Setup, length, max */ NULL, 0, 0, /* Params, length, max */ pdata, data_len, max_data, /* data, length, max */ &rparam, &rparam_len, /* return params, len */ &prdata, &rdata_len)) /* return data, len */ { DEBUG(0, ("cli_pipe: return critical error. Error was %s\n", cli_errstr(cli))); return False; } /* Throw away returned params - we know we won't use them. */ SAFE_FREE(rparam); if (prdata == NULL) { DEBUG(0,("rpc_api_pipe: pipe %x failed to return data.\n", (int)cli->nt_pipe_fnum)); return False; } /* * Give this memory as dynamically allocated to the return parse * struct. */ prs_give_memory(rdata, prdata, rdata_len, True); current_offset = rdata_len; /* This next call sets the endian bit correctly in rdata. */ if (!rpc_check_hdr(rdata, &rhdr, &first, &last, &len)) { prs_mem_free(rdata); return False; } if (rhdr.pkt_type == RPC_BINDACK) { if (!last && !first) { DEBUG(5,("rpc_api_pipe: bug in server (AS/U?), setting fragment first/last ON.\n")); first = True; last = True; } } if (rhdr.pkt_type == RPC_BINDNACK) { DEBUG(3, ("Bind NACK received on pipe %x!\n", (int)cli->nt_pipe_fnum)); prs_mem_free(rdata); return False; } if (rhdr.pkt_type == RPC_RESPONSE) { RPC_HDR_RESP rhdr_resp; if(!smb_io_rpc_hdr_resp("rpc_hdr_resp", &rhdr_resp, rdata, 0)) { DEBUG(5,("rpc_api_pipe: failed to unmarshal RPC_HDR_RESP.\n")); prs_mem_free(rdata); return False; } } if (rhdr.pkt_type != expected_pkt_type) { DEBUG(3, ("Connection to pipe %x got an unexpected RPC packet type - %d, not %d\n", (int)cli->nt_pipe_fnum, rhdr.pkt_type, expected_pkt_type)); prs_mem_free(rdata); return False; } DEBUG(5,("rpc_api_pipe: len left: %u smbtrans read: %u\n", (unsigned int)len, (unsigned int)rdata_len )); /* check if data to be sent back was too large for one SMBtrans */ /* err status is only informational: the _real_ check is on the length */ if (len > 0) { /* || err == (0x80000000 | STATUS_BUFFER_OVERFLOW)) */ /* Read the remaining part of the first response fragment */ if (!rpc_read(cli, rdata, len, ¤t_offset)) { prs_mem_free(rdata); return False; } } /* * Now we have a complete PDU, check the auth struct if any was sent. */ if(!rpc_auth_pipe(cli, rdata, fragment_start, rhdr.frag_len, rhdr.auth_len, rhdr.pkt_type, &auth_padding_len)) { prs_mem_free(rdata); return False; } if (rhdr.auth_len != 0) { /* * Drop the auth footers from the current offset. * We need this if there are more fragments. * The auth footers consist of the auth_data and the * preceeding 8 byte auth_header. */ current_offset -= (auth_padding_len + RPC_HDR_AUTH_LEN + rhdr.auth_len); } /* * Only one rpc fragment, and it has been read. */ if (first && last) { DEBUG(6,("rpc_api_pipe: fragment first and last both set\n")); return True; } /* * Read more fragments using SMBreadX until we get one with the * last bit set. */ while (!last) { RPC_HDR_RESP rhdr_resp; int num_read; char hdr_data[RPC_HEADER_LEN+RPC_HDR_RESP_LEN]; prs_struct hps; uint8 eclass; uint32 ecode; /* * First read the header of the next PDU. */ prs_init(&hps, 0, cli->mem_ctx, UNMARSHALL); prs_give_memory(&hps, hdr_data, sizeof(hdr_data), False); num_read = cli_read(cli, cli->nt_pipe_fnum, hdr_data, 0, RPC_HEADER_LEN+RPC_HDR_RESP_LEN); if (cli_is_dos_error(cli)) { cli_dos_error(cli, &eclass, &ecode); if (eclass != ERRDOS && ecode != ERRmoredata) { DEBUG(0,("rpc_api_pipe: cli_read error : %d/%d\n", eclass, ecode)); return False; } } DEBUG(5,("rpc_api_pipe: read header (size:%d)\n", num_read)); if (num_read != RPC_HEADER_LEN+RPC_HDR_RESP_LEN) { DEBUG(0,("rpc_api_pipe: Error : requested %d bytes, got %d.\n", RPC_HEADER_LEN+RPC_HDR_RESP_LEN, num_read )); return False; } /* This call sets the endianness in hps. */ if (!rpc_check_hdr(&hps, &rhdr, &first, &last, &len)) return False; /* Ensure the endianness in rdata is set correctly - must be same as hps. */ if (hps.bigendian_data != rdata->bigendian_data) { DEBUG(0,("rpc_api_pipe: Error : Endianness changed from %s to %s\n", rdata->bigendian_data ? "big" : "little", hps.bigendian_data ? "big" : "little" )); return False; } if(!smb_io_rpc_hdr_resp("rpc_hdr_resp", &rhdr_resp, &hps, 0)) { DEBUG(0,("rpc_api_pipe: Error in unmarshalling RPC_HDR_RESP.\n")); return False; } if (first) { DEBUG(0,("rpc_api_pipe: secondary PDU rpc header has 'first' set !\n")); return False; } /* * Now read the rest of the PDU. */ if (!rpc_read(cli, rdata, len, ¤t_offset)) { prs_mem_free(rdata); return False; } fragment_start = current_offset - len - RPC_HEADER_LEN - RPC_HDR_RESP_LEN; /* * Verify any authentication footer. */ if(!rpc_auth_pipe(cli, rdata, fragment_start, rhdr.frag_len, rhdr.auth_len, rhdr.pkt_type, &auth_padding_len)) { prs_mem_free(rdata); return False; } if (rhdr.auth_len != 0 ) { /* * Drop the auth footers from the current offset. * The auth footers consist of the auth_data and the * preceeding 8 byte auth_header. * We need this if there are more fragments. */ current_offset -= (auth_padding_len + RPC_HDR_AUTH_LEN + rhdr.auth_len); } } return True; }
static NTSTATUS create_rpc_bind_req(struct cli_state *cli, prs_struct *rpc_out, uint32 rpc_call_id, RPC_IFACE *abstract, RPC_IFACE *transfer, const char *my_name, const char *domain) { RPC_HDR hdr; RPC_HDR_RB hdr_rb; RPC_HDR_AUTH hdr_auth; int auth_len = 0; int auth_type, auth_level; size_t saved_hdr_offset = 0; prs_struct auth_info; prs_init(&auth_info, RPC_HDR_AUTH_LEN, /* we will need at least this much */ prs_get_mem_context(rpc_out), MARSHALL); if (cli->pipe_auth_flags) { get_auth_type_level(cli->pipe_auth_flags, &auth_type, &auth_level); /* * Create the auth structs we will marshall. */ init_rpc_hdr_auth(&hdr_auth, auth_type, auth_level, 0x00, 1); /* * Now marshall the data into the temporary parse_struct. */ if(!smb_io_rpc_hdr_auth("hdr_auth", &hdr_auth, &auth_info, 0)) { DEBUG(0,("create_rpc_bind_req: failed to marshall RPC_HDR_AUTH.\n")); prs_mem_free(&auth_info); return NT_STATUS_NO_MEMORY; } saved_hdr_offset = prs_offset(&auth_info); } if (cli->pipe_auth_flags & AUTH_PIPE_NTLMSSP) { NTSTATUS nt_status; DATA_BLOB null_blob = data_blob(NULL, 0); DATA_BLOB request; DEBUG(5, ("Processing NTLMSSP Negotiate\n")); nt_status = ntlmssp_update(cli->ntlmssp_pipe_state, null_blob, &request); if (!NT_STATUS_EQUAL(nt_status, NT_STATUS_MORE_PROCESSING_REQUIRED)) { prs_mem_free(&auth_info); return nt_status; } /* Auth len in the rpc header doesn't include auth_header. */ auth_len = request.length; prs_copy_data_in(&auth_info, (char *)request.data, request.length); DEBUG(5, ("NTLMSSP Negotiate:\n")); dump_data(5, (const char *)request.data, request.length); data_blob_free(&request); } else if (cli->pipe_auth_flags & AUTH_PIPE_NETSEC) { RPC_AUTH_NETSEC_NEG netsec_neg; /* Use lp_workgroup() if domain not specified */ if (!domain || !domain[0]) { DEBUG(10,("create_rpc_bind_req: no domain; assuming my own\n")); domain = lp_workgroup(); } init_rpc_auth_netsec_neg(&netsec_neg, domain, my_name); /* * Now marshall the data into the temporary parse_struct. */ if(!smb_io_rpc_auth_netsec_neg("netsec_neg", &netsec_neg, &auth_info, 0)) { DEBUG(0,("Failed to marshall RPC_AUTH_NETSEC_NEG.\n")); prs_mem_free(&auth_info); return NT_STATUS_NO_MEMORY; } /* Auth len in the rpc header doesn't include auth_header. */ auth_len = prs_offset(&auth_info) - saved_hdr_offset; } /* Create the request RPC_HDR */ init_rpc_hdr(&hdr, RPC_BIND, 0x3, rpc_call_id, RPC_HEADER_LEN + RPC_HDR_RB_LEN + prs_offset(&auth_info), auth_len); if(!smb_io_rpc_hdr("hdr" , &hdr, rpc_out, 0)) { DEBUG(0,("create_rpc_bind_req: failed to marshall RPC_HDR.\n")); prs_mem_free(&auth_info); return NT_STATUS_NO_MEMORY; } /* create the bind request RPC_HDR_RB */ init_rpc_hdr_rb(&hdr_rb, MAX_PDU_FRAG_LEN, MAX_PDU_FRAG_LEN, 0x0, 0x1, 0x0, 0x1, abstract, transfer); /* Marshall the bind request data */ if(!smb_io_rpc_hdr_rb("", &hdr_rb, rpc_out, 0)) { DEBUG(0,("create_rpc_bind_req: failed to marshall RPC_HDR_RB.\n")); prs_mem_free(&auth_info); return NT_STATUS_NO_MEMORY; } /* * Grow the outgoing buffer to store any auth info. */ if(auth_len != 0) { if(!prs_append_prs_data( rpc_out, &auth_info)) { DEBUG(0,("create_rpc_bind_req: failed to grow parse struct to add auth.\n")); prs_mem_free(&auth_info); return NT_STATUS_NO_MEMORY; } } prs_mem_free(&auth_info); return NT_STATUS_OK; }
static void process_complete_pdu(pipes_struct *p) { prs_struct rpc_in; size_t data_len = p->in_data.pdu_received_len - RPC_HEADER_LEN; char *data_p = (char *)&p->in_data.current_in_pdu[RPC_HEADER_LEN]; BOOL reply = False; if(p->fault_state) { DEBUG(10,("process_complete_pdu: pipe %s in fault state.\n", p->name )); set_incoming_fault(p); setup_fault_pdu(p, NT_STATUS(DCERPC_FAULT_OP_RNG_ERROR)); return; } prs_init( &rpc_in, 0, p->mem_ctx, UNMARSHALL); /* * Ensure we're using the corrent endianness for both the * RPC header flags and the raw data we will be reading from. */ prs_set_endian_data( &rpc_in, p->endian); prs_set_endian_data( &p->in_data.data, p->endian); prs_give_memory( &rpc_in, data_p, (uint32)data_len, False); DEBUG(10,("process_complete_pdu: processing packet type %u\n", (unsigned int)p->hdr.pkt_type )); switch (p->hdr.pkt_type) { case RPC_REQUEST: reply = process_request_pdu(p, &rpc_in); break; case RPC_PING: /* CL request - ignore... */ DEBUG(0,("process_complete_pdu: Error. Connectionless packet type %u received on pipe %s.\n", (unsigned int)p->hdr.pkt_type, p->name)); break; case RPC_RESPONSE: /* No responses here. */ DEBUG(0,("process_complete_pdu: Error. RPC_RESPONSE received from client on pipe %s.\n", p->name )); break; case RPC_FAULT: case RPC_WORKING: /* CL request - reply to a ping when a call in process. */ case RPC_NOCALL: /* CL - server reply to a ping call. */ case RPC_REJECT: case RPC_ACK: case RPC_CL_CANCEL: case RPC_FACK: case RPC_CANCEL_ACK: DEBUG(0,("process_complete_pdu: Error. Connectionless packet type %u received on pipe %s.\n", (unsigned int)p->hdr.pkt_type, p->name)); break; case RPC_BIND: /* * We assume that a pipe bind is only in one pdu. */ if(pipe_init_outgoing_data(p)) { reply = api_pipe_bind_req(p, &rpc_in); } break; case RPC_BINDACK: case RPC_BINDNACK: DEBUG(0,("process_complete_pdu: Error. RPC_BINDACK/RPC_BINDNACK packet type %u received on pipe %s.\n", (unsigned int)p->hdr.pkt_type, p->name)); break; case RPC_ALTCONT: /* * We assume that a pipe bind is only in one pdu. */ if(pipe_init_outgoing_data(p)) { reply = api_pipe_alter_context(p, &rpc_in); } break; case RPC_ALTCONTRESP: DEBUG(0,("process_complete_pdu: Error. RPC_ALTCONTRESP on pipe %s: Should only be server -> client.\n", p->name)); break; case RPC_AUTH3: /* * The third packet in an NTLMSSP auth exchange. */ if(pipe_init_outgoing_data(p)) { reply = api_pipe_bind_auth3(p, &rpc_in); } break; case RPC_SHUTDOWN: DEBUG(0,("process_complete_pdu: Error. RPC_SHUTDOWN on pipe %s: Should only be server -> client.\n", p->name)); break; case RPC_CO_CANCEL: /* For now just free all client data and continue processing. */ DEBUG(3,("process_complete_pdu: RPC_ORPHANED. Abandoning rpc call.\n")); /* As we never do asynchronous RPC serving, we can never cancel a call (as far as I know). If we ever did we'd have to send a cancel_ack reply. For now, just free all client data and continue processing. */ reply = True; break; #if 0 /* Enable this if we're doing async rpc. */ /* We must check the call-id matches the outstanding callid. */ if(pipe_init_outgoing_data(p)) { /* Send a cancel_ack PDU reply. */ /* We should probably check the auth-verifier here. */ reply = setup_cancel_ack_reply(p, &rpc_in); } break; #endif case RPC_ORPHANED: /* We should probably check the auth-verifier here. For now just free all client data and continue processing. */ DEBUG(3,("process_complete_pdu: RPC_ORPHANED. Abandoning rpc call.\n")); reply = True; break; default: DEBUG(0,("process_complete_pdu: Unknown rpc type = %u received.\n", (unsigned int)p->hdr.pkt_type )); break; } /* Reset to little endian. Probably don't need this but it won't hurt. */ prs_set_endian_data( &p->in_data.data, RPC_LITTLE_ENDIAN); if (!reply) { DEBUG(3,("process_complete_pdu: DCE/RPC fault sent on pipe %s\n", p->pipe_srv_name)); set_incoming_fault(p); setup_fault_pdu(p, NT_STATUS(DCERPC_FAULT_OP_RNG_ERROR)); prs_mem_free(&rpc_in); } else { /* * Reset the lengths. We're ready for a new pdu. */ p->in_data.pdu_needed_len = 0; p->in_data.pdu_received_len = 0; } prs_mem_free(&rpc_in); }
static BOOL rpc_pipe_bind(struct cli_state *cli, int pipe_idx, const char *my_name) { RPC_IFACE abstract; RPC_IFACE transfer; prs_struct rpc_out; prs_struct rdata; uint32 rpc_call_id; char buffer[MAX_PDU_FRAG_LEN]; if ( (pipe_idx < 0) || (pipe_idx >= PI_MAX_PIPES) ) return False; DEBUG(5,("Bind RPC Pipe[%x]: %s\n", cli->nt_pipe_fnum, pipe_names[pipe_idx].client_pipe)); if (!valid_pipe_name(pipe_idx, &abstract, &transfer)) return False; prs_init(&rpc_out, 0, cli->mem_ctx, MARSHALL); /* * Use the MAX_PDU_FRAG_LEN buffer to store the bind request. */ prs_give_memory( &rpc_out, buffer, sizeof(buffer), False); rpc_call_id = get_rpc_call_id(); if (cli->pipe_auth_flags & AUTH_PIPE_NTLMSSP) { NTSTATUS nt_status; fstring password; DEBUG(5, ("NTLMSSP authenticated pipe selected\n")); nt_status = ntlmssp_client_start(&cli->ntlmssp_pipe_state); if (!NT_STATUS_IS_OK(nt_status)) return False; /* Currently the NTLMSSP code does not implement NTLM2 correctly for signing or sealing */ cli->ntlmssp_pipe_state->neg_flags &= ~NTLMSSP_NEGOTIATE_NTLM2; nt_status = ntlmssp_set_username(cli->ntlmssp_pipe_state, cli->user_name); if (!NT_STATUS_IS_OK(nt_status)) return False; nt_status = ntlmssp_set_domain(cli->ntlmssp_pipe_state, cli->domain); if (!NT_STATUS_IS_OK(nt_status)) return False; if (cli->pwd.null_pwd) { nt_status = ntlmssp_set_password(cli->ntlmssp_pipe_state, NULL); if (!NT_STATUS_IS_OK(nt_status)) return False; } else { pwd_get_cleartext(&cli->pwd, password); nt_status = ntlmssp_set_password(cli->ntlmssp_pipe_state, password); if (!NT_STATUS_IS_OK(nt_status)) return False; } if (cli->pipe_auth_flags & AUTH_PIPE_SIGN) { cli->ntlmssp_pipe_state->neg_flags |= NTLMSSP_NEGOTIATE_SIGN; } if (cli->pipe_auth_flags & AUTH_PIPE_SEAL) { cli->ntlmssp_pipe_state->neg_flags |= NTLMSSP_NEGOTIATE_SEAL; } } else if (cli->pipe_auth_flags & AUTH_PIPE_NETSEC) { cli->auth_info.seq_num = 0; } /* Marshall the outgoing data. */ create_rpc_bind_req(cli, &rpc_out, rpc_call_id, &abstract, &transfer, global_myname(), cli->domain); /* Initialize the incoming data struct. */ prs_init(&rdata, 0, cli->mem_ctx, UNMARSHALL); /* send data on \PIPE\. receive a response */ if (rpc_api_pipe(cli, &rpc_out, &rdata, RPC_BINDACK)) { RPC_HDR_BA hdr_ba; DEBUG(5, ("rpc_pipe_bind: rpc_api_pipe returned OK.\n")); if(!smb_io_rpc_hdr_ba("", &hdr_ba, &rdata, 0)) { DEBUG(0,("rpc_pipe_bind: Failed to unmarshall RPC_HDR_BA.\n")); prs_mem_free(&rdata); return False; } if(!check_bind_response(&hdr_ba, pipe_idx, &transfer)) { DEBUG(2,("rpc_pipe_bind: check_bind_response failed.\n")); prs_mem_free(&rdata); return False; } cli->max_xmit_frag = hdr_ba.bba.max_tsize; cli->max_recv_frag = hdr_ba.bba.max_rsize; /* * If we're doing NTLMSSP auth we need to send a reply to * the bind-ack to complete the 3-way challenge response * handshake. */ if ((cli->pipe_auth_flags & AUTH_PIPE_NTLMSSP) && !rpc_send_auth_reply(cli, &rdata, rpc_call_id)) { DEBUG(0,("rpc_pipe_bind: rpc_send_auth_reply failed.\n")); prs_mem_free(&rdata); return False; } prs_mem_free(&rdata); return True; } return False; }
BOOL create_next_pdu(pipes_struct *p) { RPC_HDR_RESP hdr_resp; BOOL auth_verify = ((p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_SIGN) != 0); BOOL auth_seal = ((p->ntlmssp_chal_flags & NTLMSSP_NEGOTIATE_SEAL) != 0); uint32 data_len; uint32 data_space_available; uint32 data_len_left; prs_struct outgoing_pdu; uint32 data_pos; /* * If we're in the fault state, keep returning fault PDU's until * the pipe gets closed. JRA. */ if(p->fault_state) { setup_fault_pdu(p, NT_STATUS(0x1c010002)); return True; } memset((char *)&hdr_resp, '\0', sizeof(hdr_resp)); /* Change the incoming request header to a response. */ p->hdr.pkt_type = RPC_RESPONSE; /* Set up rpc header flags. */ if (p->out_data.data_sent_length == 0) p->hdr.flags = RPC_FLG_FIRST; else p->hdr.flags = 0; /* * Work out how much we can fit in a single PDU. */ data_space_available = sizeof(p->out_data.current_pdu) - RPC_HEADER_LEN - RPC_HDR_RESP_LEN; if(p->ntlmssp_auth_validated) data_space_available -= (RPC_HDR_AUTH_LEN + RPC_AUTH_NTLMSSP_CHK_LEN); if(p->netsec_auth_validated) data_space_available -= (RPC_HDR_AUTH_LEN + RPC_AUTH_NETSEC_CHK_LEN); /* * The amount we send is the minimum of the available * space and the amount left to send. */ data_len_left = prs_offset(&p->out_data.rdata) - p->out_data.data_sent_length; /* * Ensure there really is data left to send. */ if(!data_len_left) { DEBUG(0,("create_next_pdu: no data left to send !\n")); return False; } data_len = MIN(data_len_left, data_space_available); /* * Set up the alloc hint. This should be the data left to * send. */ hdr_resp.alloc_hint = data_len_left; /* * Set up the header lengths. */ if (p->ntlmssp_auth_validated) { p->hdr.frag_len = RPC_HEADER_LEN + RPC_HDR_RESP_LEN + data_len + RPC_HDR_AUTH_LEN + RPC_AUTH_NTLMSSP_CHK_LEN; p->hdr.auth_len = RPC_AUTH_NTLMSSP_CHK_LEN; } else if (p->netsec_auth_validated) { p->hdr.frag_len = RPC_HEADER_LEN + RPC_HDR_RESP_LEN + data_len + RPC_HDR_AUTH_LEN + RPC_AUTH_NETSEC_CHK_LEN; p->hdr.auth_len = RPC_AUTH_NETSEC_CHK_LEN; } else { p->hdr.frag_len = RPC_HEADER_LEN + RPC_HDR_RESP_LEN + data_len; p->hdr.auth_len = 0; } /* * Work out if this PDU will be the last. */ if(p->out_data.data_sent_length + data_len >= prs_offset(&p->out_data.rdata)) p->hdr.flags |= RPC_FLG_LAST; /* * Init the parse struct to point at the outgoing * data. */ prs_init( &outgoing_pdu, 0, p->mem_ctx, MARSHALL); prs_give_memory( &outgoing_pdu, (char *)p->out_data.current_pdu, sizeof(p->out_data.current_pdu), False); /* Store the header in the data stream. */ if(!smb_io_rpc_hdr("hdr", &p->hdr, &outgoing_pdu, 0)) { DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR.\n")); prs_mem_free(&outgoing_pdu); return False; } if(!smb_io_rpc_hdr_resp("resp", &hdr_resp, &outgoing_pdu, 0)) { DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR_RESP.\n")); prs_mem_free(&outgoing_pdu); return False; } /* Store the current offset. */ data_pos = prs_offset(&outgoing_pdu); /* Copy the data into the PDU. */ if(!prs_append_some_prs_data(&outgoing_pdu, &p->out_data.rdata, p->out_data.data_sent_length, data_len)) { DEBUG(0,("create_next_pdu: failed to copy %u bytes of data.\n", (unsigned int)data_len)); prs_mem_free(&outgoing_pdu); return False; } if (p->ntlmssp_auth_validated) { uint32 crc32 = 0; char *data; DEBUG(5,("create_next_pdu: sign: %s seal: %s data %d auth %d\n", BOOLSTR(auth_verify), BOOLSTR(auth_seal), data_len, p->hdr.auth_len)); /* * Set data to point to where we copied the data into. */ data = prs_data_p(&outgoing_pdu) + data_pos; if (auth_seal) { crc32 = crc32_calc_buffer(data, data_len); NTLMSSPcalc_p(p, (uchar*)data, data_len); } if (auth_seal || auth_verify) { RPC_HDR_AUTH auth_info; init_rpc_hdr_auth(&auth_info, NTLMSSP_AUTH_TYPE, auth_info.auth_level, (auth_verify ? RPC_HDR_AUTH_LEN : 0), (auth_verify ? 1 : 0)); if(!smb_io_rpc_hdr_auth("hdr_auth", &auth_info, &outgoing_pdu, 0)) { DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR_AUTH.\n")); prs_mem_free(&outgoing_pdu); return False; } } if (auth_verify) { RPC_AUTH_NTLMSSP_CHK ntlmssp_chk; char *auth_data = prs_data_p(&outgoing_pdu); p->ntlmssp_seq_num++; init_rpc_auth_ntlmssp_chk(&ntlmssp_chk, NTLMSSP_SIGN_VERSION, crc32, p->ntlmssp_seq_num++); auth_data = prs_data_p(&outgoing_pdu) + prs_offset(&outgoing_pdu) + 4; if(!smb_io_rpc_auth_ntlmssp_chk("auth_sign", &ntlmssp_chk, &outgoing_pdu, 0)) { DEBUG(0,("create_next_pdu: failed to marshall RPC_AUTH_NTLMSSP_CHK.\n")); prs_mem_free(&outgoing_pdu); return False; } NTLMSSPcalc_p(p, (uchar*)auth_data, RPC_AUTH_NTLMSSP_CHK_LEN - 4); } } if (p->netsec_auth_validated) { int auth_type, auth_level; char *data; RPC_HDR_AUTH auth_info; RPC_AUTH_NETSEC_CHK verf; prs_struct rverf; prs_struct rauth; data = prs_data_p(&outgoing_pdu) + data_pos; /* Check it's the type of reply we were expecting to decode */ get_auth_type_level(p->netsec_auth.auth_flags, &auth_type, &auth_level); init_rpc_hdr_auth(&auth_info, auth_type, auth_level, RPC_HDR_AUTH_LEN, 1); if(!smb_io_rpc_hdr_auth("hdr_auth", &auth_info, &outgoing_pdu, 0)) { DEBUG(0,("create_next_pdu: failed to marshall RPC_HDR_AUTH.\n")); prs_mem_free(&outgoing_pdu); return False; } prs_init(&rverf, 0, p->mem_ctx, MARSHALL); prs_init(&rauth, 0, p->mem_ctx, MARSHALL); netsec_encode(&p->netsec_auth, p->netsec_auth.auth_flags, SENDER_IS_ACCEPTOR, &verf, data, data_len); smb_io_rpc_auth_netsec_chk("", &verf, &outgoing_pdu, 0); p->netsec_auth.seq_num++; } /* * Setup the counts for this PDU. */ p->out_data.data_sent_length += data_len; p->out_data.current_pdu_len = p->hdr.frag_len; p->out_data.current_pdu_sent = 0; prs_mem_free(&outgoing_pdu); return True; }
static ssize_t unmarshall_rpc_header(pipes_struct *p) { /* * Unmarshall the header to determine the needed length. */ prs_struct rpc_in; if(p->in_data.pdu_received_len != RPC_HEADER_LEN) { DEBUG(0,("unmarshall_rpc_header: assert on rpc header length failed.\n")); set_incoming_fault(p); return -1; } prs_init( &rpc_in, 0, p->mem_ctx, UNMARSHALL); prs_set_endian_data( &rpc_in, p->endian); prs_give_memory( &rpc_in, (char *)&p->in_data.current_in_pdu[0], p->in_data.pdu_received_len, False); /* * Unmarshall the header as this will tell us how much * data we need to read to get the complete pdu. * This also sets the endian flag in rpc_in. */ if(!smb_io_rpc_hdr("", &p->hdr, &rpc_in, 0)) { DEBUG(0,("unmarshall_rpc_header: failed to unmarshall RPC_HDR.\n")); set_incoming_fault(p); prs_mem_free(&rpc_in); return -1; } /* * Validate the RPC header. */ if(p->hdr.major != 5 && p->hdr.minor != 0) { DEBUG(0,("unmarshall_rpc_header: invalid major/minor numbers in RPC_HDR.\n")); set_incoming_fault(p); prs_mem_free(&rpc_in); return -1; } /* * If there's not data in the incoming buffer this should be the start of a new RPC. */ if(prs_offset(&p->in_data.data) == 0) { /* * AS/U doesn't set FIRST flag in a BIND packet it seems. */ if ((p->hdr.pkt_type == RPC_REQUEST) && !(p->hdr.flags & RPC_FLG_FIRST)) { /* * Ensure that the FIRST flag is set. If not then we have * a stream missmatch. */ DEBUG(0,("unmarshall_rpc_header: FIRST flag not set in first PDU !\n")); set_incoming_fault(p); prs_mem_free(&rpc_in); return -1; } /* * If this is the first PDU then set the endianness * flag in the pipe. We will need this when parsing all * data in this RPC. */ p->endian = rpc_in.bigendian_data; DEBUG(5,("unmarshall_rpc_header: using %sendian RPC\n", p->endian == RPC_LITTLE_ENDIAN ? "little-" : "big-" )); } else { /* * If this is *NOT* the first PDU then check the endianness * flag in the pipe is the same as that in the PDU. */ if (p->endian != rpc_in.bigendian_data) { DEBUG(0,("unmarshall_rpc_header: FIRST endianness flag (%d) different in next PDU !\n", (int)p->endian)); set_incoming_fault(p); prs_mem_free(&rpc_in); return -1; } } /* * Ensure that the pdu length is sane. */ if((p->hdr.frag_len < RPC_HEADER_LEN) || (p->hdr.frag_len > RPC_MAX_PDU_FRAG_LEN)) { DEBUG(0,("unmarshall_rpc_header: assert on frag length failed.\n")); set_incoming_fault(p); prs_mem_free(&rpc_in); return -1; } DEBUG(10,("unmarshall_rpc_header: type = %u, flags = %u\n", (unsigned int)p->hdr.pkt_type, (unsigned int)p->hdr.flags )); p->in_data.pdu_needed_len = (uint32)p->hdr.frag_len - RPC_HEADER_LEN; prs_mem_free(&rpc_in); return 0; /* No extra data processed. */ }
WERROR cli_srvsvc_net_file_enum(struct cli_state *cli, TALLOC_CTX *mem_ctx, uint32 file_level, const char *user_name, SRV_FILE_INFO_CTR *ctr, int preferred_len, ENUM_HND *hnd) { prs_struct qbuf, rbuf; SRV_Q_NET_FILE_ENUM q; SRV_R_NET_FILE_ENUM r; WERROR result = W_ERROR(ERRgeneral); int i; ZERO_STRUCT(q); ZERO_STRUCT(r); /* Initialise parse structures */ prs_init(&qbuf, MAX_PDU_FRAG_LEN, mem_ctx, MARSHALL); prs_init(&rbuf, 0, mem_ctx, UNMARSHALL); /* Initialise input parameters */ init_srv_q_net_file_enum(&q, cli->srv_name_slash, NULL, user_name, file_level, ctr, preferred_len, hnd); /* Marshall data and send request */ if (!srv_io_q_net_file_enum("", &q, &qbuf, 0) || !rpc_api_pipe_req(cli, SRV_NET_FILE_ENUM, &qbuf, &rbuf)) goto done; /* Unmarshall response */ if (!srv_io_r_net_file_enum("", &r, &rbuf, 0)) goto done; result = r.status; if (!W_ERROR_IS_OK(result)) goto done; /* copy the data over to the ctr */ ZERO_STRUCTP(ctr); ctr->switch_value = file_level; ctr->num_entries = ctr->num_entries2 = r.ctr.num_entries; switch(file_level) { case 3: ctr->file.info3 = (SRV_FILE_INFO_3 *)talloc( mem_ctx, sizeof(SRV_FILE_INFO_3) * ctr->num_entries); memset(ctr->file.info3, 0, sizeof(SRV_FILE_INFO_3) * ctr->num_entries); for (i = 0; i < r.ctr.num_entries; i++) { SRV_FILE_INFO_3 *info3 = &ctr->file.info3[i]; char *s; /* Copy pointer crap */ memcpy(&info3->info_3, &r.ctr.file.info3[i].info_3, sizeof(FILE_INFO_3)); /* Duplicate strings */ s = unistr2_tdup(mem_ctx, &r.ctr.file.info3[i].info_3_str.uni_path_name); if (s) init_unistr2(&info3->info_3_str.uni_path_name, s, UNI_STR_TERMINATE); s = unistr2_tdup(mem_ctx, &r.ctr.file.info3[i].info_3_str.uni_user_name); if (s) init_unistr2(&info3->info_3_str.uni_user_name, s, UNI_STR_TERMINATE); } break; } done: prs_mem_free(&qbuf); prs_mem_free(&rbuf); return result; }
WERROR cli_srvsvc_net_share_enum(struct cli_state *cli, TALLOC_CTX *mem_ctx, uint32 info_level, SRV_SHARE_INFO_CTR *ctr, int preferred_len, ENUM_HND *hnd) { prs_struct qbuf, rbuf; SRV_Q_NET_SHARE_ENUM q; SRV_R_NET_SHARE_ENUM r; WERROR result = W_ERROR(ERRgeneral); int i; ZERO_STRUCT(q); ZERO_STRUCT(r); /* Initialise parse structures */ prs_init(&qbuf, MAX_PDU_FRAG_LEN, mem_ctx, MARSHALL); prs_init(&rbuf, 0, mem_ctx, UNMARSHALL); /* Initialise input parameters */ init_srv_q_net_share_enum( &q, cli->srv_name_slash, info_level, preferred_len, hnd); /* Marshall data and send request */ if (!srv_io_q_net_share_enum("", &q, &qbuf, 0) || !rpc_api_pipe_req(cli, SRV_NET_SHARE_ENUM_ALL, &qbuf, &rbuf)) goto done; /* Unmarshall response */ if (!srv_io_r_net_share_enum("", &r, &rbuf, 0)) goto done; result = r.status; if (!W_ERROR_IS_OK(result)) goto done; /* Oh yuck yuck yuck - we have to copy all the info out of the SRV_SHARE_INFO_CTR in the SRV_R_NET_SHARE_ENUM as when we do a prs_mem_free() it will all be invalidated. The various share info structures suck badly too. This really is gross. */ ZERO_STRUCTP(ctr); if (!r.ctr.num_entries) goto done; ctr->info_level = info_level; ctr->num_entries = r.ctr.num_entries; switch(info_level) { case 1: ctr->share.info1 = (SRV_SHARE_INFO_1 *)talloc( mem_ctx, sizeof(SRV_SHARE_INFO_1) * ctr->num_entries); memset(ctr->share.info1, 0, sizeof(SRV_SHARE_INFO_1)); for (i = 0; i < ctr->num_entries; i++) { SRV_SHARE_INFO_1 *info1 = &ctr->share.info1[i]; char *s; /* Copy pointer crap */ memcpy(&info1->info_1, &r.ctr.share.info1[i].info_1, sizeof(SH_INFO_1)); /* Duplicate strings */ s = unistr2_tdup(mem_ctx, &r.ctr.share.info1[i].info_1_str.uni_netname); if (s) init_unistr2(&info1->info_1_str.uni_netname, s, UNI_STR_TERMINATE); s = unistr2_tdup(mem_ctx, &r.ctr.share.info1[i].info_1_str.uni_remark); if (s) init_unistr2(&info1->info_1_str.uni_remark, s, UNI_STR_TERMINATE); } break; case 2: ctr->share.info2 = (SRV_SHARE_INFO_2 *)talloc( mem_ctx, sizeof(SRV_SHARE_INFO_2) * ctr->num_entries); memset(ctr->share.info2, 0, sizeof(SRV_SHARE_INFO_2)); for (i = 0; i < ctr->num_entries; i++) { SRV_SHARE_INFO_2 *info2 = &ctr->share.info2[i]; char *s; /* Copy pointer crap */ memcpy(&info2->info_2, &r.ctr.share.info2[i].info_2, sizeof(SH_INFO_2)); /* Duplicate strings */ s = unistr2_tdup(mem_ctx, &r.ctr.share.info2[i].info_2_str.uni_netname); if (s) init_unistr2(&info2->info_2_str.uni_netname, s, UNI_STR_TERMINATE); s = unistr2_tdup(mem_ctx, &r.ctr.share.info2[i].info_2_str.uni_remark); if (s) init_unistr2(&info2->info_2_str.uni_remark, s, UNI_STR_TERMINATE); s = unistr2_tdup(mem_ctx, &r.ctr.share.info2[i].info_2_str.uni_path); if (s) init_unistr2(&info2->info_2_str.uni_path, s, UNI_STR_TERMINATE); s = unistr2_tdup(mem_ctx, &r.ctr.share.info2[i].info_2_str.uni_passwd); if (s) init_unistr2(&info2->info_2_str.uni_passwd, s, UNI_STR_TERMINATE); } break; } done: prs_mem_free(&qbuf); prs_mem_free(&rbuf); return result; }
static ssize_t process_complete_pdu(pipes_struct *p) { prs_struct rpc_in; size_t data_len = p->in_data.pdu_received_len; char *data_p = (char *)&p->in_data.current_in_pdu[0]; BOOL reply = False; if(p->fault_state) { DEBUG(10,("process_complete_pdu: pipe %s in fault state.\n", p->name )); set_incoming_fault(p); setup_fault_pdu(p, NT_STATUS(0x1c010002)); return (ssize_t)data_len; } prs_init( &rpc_in, 0, p->mem_ctx, UNMARSHALL); /* * Ensure we're using the corrent endianness for both the * RPC header flags and the raw data we will be reading from. */ prs_set_endian_data( &rpc_in, p->endian); prs_set_endian_data( &p->in_data.data, p->endian); prs_give_memory( &rpc_in, data_p, (uint32)data_len, False); DEBUG(10,("process_complete_pdu: processing packet type %u\n", (unsigned int)p->hdr.pkt_type )); switch (p->hdr.pkt_type) { case RPC_BIND: case RPC_ALTCONT: /* * We assume that a pipe bind is only in one pdu. */ if(pipe_init_outgoing_data(p)) reply = api_pipe_bind_req(p, &rpc_in); break; case RPC_BINDRESP: /* * We assume that a pipe bind_resp is only in one pdu. */ if(pipe_init_outgoing_data(p)) reply = api_pipe_bind_auth_resp(p, &rpc_in); break; case RPC_REQUEST: reply = process_request_pdu(p, &rpc_in); break; default: DEBUG(0,("process_complete_pdu: Unknown rpc type = %u received.\n", (unsigned int)p->hdr.pkt_type )); break; } /* Reset to little endian. Probably don't need this but it won't hurt. */ prs_set_endian_data( &p->in_data.data, RPC_LITTLE_ENDIAN); if (!reply) { DEBUG(3,("process_complete_pdu: DCE/RPC fault sent on pipe %s\n", p->pipe_srv_name)); set_incoming_fault(p); setup_fault_pdu(p, NT_STATUS(0x1c010002)); prs_mem_free(&rpc_in); } else { /* * Reset the lengths. We're ready for a new pdu. */ p->in_data.pdu_needed_len = 0; p->in_data.pdu_received_len = 0; } prs_mem_free(&rpc_in); return (ssize_t)data_len; }
NTSTATUS cli_do_rpc_ndr(struct rpc_pipe_client *cli, TALLOC_CTX *mem_ctx, const struct ndr_interface_table *table, uint32 opnum, void *r) { #ifdef AVM_SMALL return NT_STATUS_NO_MEMORY; #else prs_struct q_ps, r_ps; const struct ndr_interface_call *call; struct ndr_pull *pull; DATA_BLOB blob; struct ndr_push *push; NTSTATUS status; enum ndr_err_code ndr_err; SMB_ASSERT(ndr_syntax_id_equal(&table->syntax_id, &cli->abstract_syntax)); SMB_ASSERT(table->num_calls > opnum); call = &table->calls[opnum]; push = ndr_push_init_ctx(mem_ctx); if (!push) { return NT_STATUS_NO_MEMORY; } ndr_err = call->ndr_push(push, NDR_IN, r); if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) { return ndr_map_error2ntstatus(ndr_err); } blob = ndr_push_blob(push); if (!prs_init_data_blob(&q_ps, &blob, mem_ctx)) { return NT_STATUS_NO_MEMORY; } talloc_free(push); prs_init_empty( &r_ps, mem_ctx, UNMARSHALL ); status = rpc_api_pipe_req(cli, opnum, &q_ps, &r_ps); prs_mem_free( &q_ps ); if (!NT_STATUS_IS_OK(status)) { prs_mem_free( &r_ps ); return status; } if (!prs_data_blob(&r_ps, &blob, mem_ctx)) { prs_mem_free( &r_ps ); return NT_STATUS_NO_MEMORY; } prs_mem_free( &r_ps ); pull = ndr_pull_init_blob(&blob, mem_ctx); if (pull == NULL) { return NT_STATUS_NO_MEMORY; } /* have the ndr parser alloc memory for us */ pull->flags |= LIBNDR_FLAG_REF_ALLOC; ndr_err = call->ndr_pull(pull, NDR_OUT, r); talloc_free(pull); if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) { return ndr_map_error2ntstatus(ndr_err); } return NT_STATUS_OK; #endif }
int psec_getsec(char *printer) { SEC_DESC_BUF *secdesc_ctr = NULL; TALLOC_CTX *mem_ctx = NULL; fstring keystr, sidstr, tdb_path; prs_struct ps; int result = 0, i; ZERO_STRUCT(ps); /* Open tdb for reading */ slprintf(tdb_path, sizeof(tdb_path) - 1, "%s/ntdrivers.tdb", lp_lockdir()); tdb = tdb_open(tdb_path, 0, 0, O_RDONLY, 0600); if (!tdb) { printf("psec: failed to open nt drivers database: %s\n", sys_errlist[errno]); return 1; } /* Get security blob from tdb */ slprintf(keystr, sizeof(keystr) - 1, "SECDESC/%s", printer); mem_ctx = talloc_init(); if (!mem_ctx) { printf("memory allocation error\n"); result = 1; goto done; } if (tdb_prs_fetch(tdb, keystr, &ps, mem_ctx) != 0) { printf("error fetching descriptor for printer %s\n", printer); /* cannot do a prs_mem_free() when tdb_prs_fetch fails */ /* as the prs structure has not been initialized */ tdb_close(tdb); talloc_destroy(mem_ctx); return 1; } /* Unpack into security descriptor buffer */ if (!sec_io_desc_buf("nt_printing_getsec", &secdesc_ctr, &ps, 1)) { printf("error unpacking sec_desc_buf\n"); result = 1; goto done; } /* Print owner and group sid */ if (secdesc_ctr->sec->owner_sid) { sid_to_string(sidstr, secdesc_ctr->sec->owner_sid); } else { fstrcpy(sidstr, ""); } printf("%s\n", sidstr); if (secdesc_ctr->sec->grp_sid) { sid_to_string(sidstr, secdesc_ctr->sec->grp_sid); } else { fstrcpy(sidstr, ""); } printf("%s\n", sidstr); /* Print aces */ if (!secdesc_ctr->sec->dacl) { result = 0; goto done; } for (i = 0; i < secdesc_ctr->sec->dacl->num_aces; i++) { SEC_ACE *ace = &secdesc_ctr->sec->dacl->ace[i]; sid_to_string(sidstr, &ace->sid); printf("%d %d 0x%08x %s\n", ace->type, ace->flags, ace->info.mask, sidstr); } done: if (tdb) tdb_close(tdb); if (mem_ctx) talloc_destroy(mem_ctx); if (secdesc_ctr) free_sec_desc_buf(&secdesc_ctr); prs_mem_free(&ps); return result; }
int psec_setsec(char *printer) { DOM_SID user_sid, group_sid; SEC_ACE *ace_list = NULL; SEC_ACL *dacl = NULL; SEC_DESC *sd; SEC_DESC_BUF *sdb = NULL; int result = 0, num_aces = 0; fstring line, keystr, tdb_path; size_t size; prs_struct ps; TALLOC_CTX *mem_ctx = NULL; BOOL has_user_sid = False, has_group_sid = False; ZERO_STRUCT(ps); /* Open tdb for reading */ slprintf(tdb_path, sizeof(tdb_path) - 1, "%s/ntdrivers.tdb", lp_lockdir()); tdb = tdb_open(tdb_path, 0, 0, O_RDWR, 0600); if (!tdb) { printf("psec: failed to open nt drivers database: %s\n", sys_errlist[errno]); result = 1; goto done; } /* Read owner and group sid */ fgets(line, sizeof(fstring), stdin); if (line[0] != '\n') { string_to_sid(&user_sid, line); has_user_sid = True; } fgets(line, sizeof(fstring), stdin); if (line[0] != '\n') { string_to_sid(&group_sid, line); has_group_sid = True; } /* Read ACEs from standard input for discretionary ACL */ while(fgets(line, sizeof(fstring), stdin)) { int ace_type, ace_flags; uint32 ace_mask; fstring sidstr; DOM_SID sid; SEC_ACCESS sa; if (sscanf(line, "%d %d 0x%x %s", &ace_type, &ace_flags, &ace_mask, sidstr) != 4) { continue; } string_to_sid(&sid, sidstr); ace_list = Realloc(ace_list, sizeof(SEC_ACE) * (num_aces + 1)); init_sec_access(&sa, ace_mask); init_sec_ace(&ace_list[num_aces], &sid, ace_type, sa, ace_flags); num_aces++; } dacl = make_sec_acl(ACL_REVISION, num_aces, ace_list); free(ace_list); /* Create security descriptor */ sd = make_sec_desc(SEC_DESC_REVISION, has_user_sid ? &user_sid : NULL, has_group_sid ? &group_sid : NULL, NULL, /* System ACL */ dacl, /* Discretionary ACL */ &size); free_sec_acl(&dacl); sdb = make_sec_desc_buf(size, sd); free_sec_desc(&sd); /* Write security descriptor to tdb */ mem_ctx = talloc_init(); if (!mem_ctx) { printf("memory allocation error\n"); result = 1; goto done; } prs_init(&ps, (uint32)sec_desc_size(sdb->sec) + sizeof(SEC_DESC_BUF), 4, mem_ctx, MARSHALL); if (!sec_io_desc_buf("nt_printing_setsec", &sdb, &ps, 1)) { printf("sec_io_desc_buf failed\n"); goto done; } slprintf(keystr, sizeof(keystr) - 1, "SECDESC/%s", printer); if (!tdb_prs_store(tdb, keystr, &ps)==0) { printf("Failed to store secdesc for %s\n", printer); goto done; } done: if (tdb) tdb_close(tdb); if (sdb) free_sec_desc_buf(&sdb); if (mem_ctx) talloc_destroy(mem_ctx); prs_mem_free(&ps); return result; }
NTSTATUS cli_do_rpc_ndr(struct rpc_pipe_client *cli, TALLOC_CTX *mem_ctx, int p_idx, int opnum, void *data, ndr_pull_flags_fn_t pull_fn, ndr_push_flags_fn_t push_fn) { prs_struct q_ps, r_ps; struct ndr_pull *pull; DATA_BLOB blob; struct ndr_push *push; NTSTATUS status; SMB_ASSERT(cli->pipe_idx == p_idx); push = ndr_push_init_ctx(mem_ctx); if (!push) { return NT_STATUS_NO_MEMORY; } status = push_fn(push, NDR_IN, data); if (!NT_STATUS_IS_OK(status)) { return status; } blob = ndr_push_blob(push); if (!prs_init_data_blob(&q_ps, &blob, mem_ctx)) { return NT_STATUS_NO_MEMORY; } talloc_free(push); if (!prs_init( &r_ps, 0, mem_ctx, UNMARSHALL )) { prs_mem_free( &q_ps ); return NT_STATUS_NO_MEMORY; } status = rpc_api_pipe_req(cli, opnum, &q_ps, &r_ps); prs_mem_free( &q_ps ); if (!NT_STATUS_IS_OK(status)) { prs_mem_free( &r_ps ); return status; } if (!prs_data_blob(&r_ps, &blob, mem_ctx)) { prs_mem_free( &r_ps ); return NT_STATUS_NO_MEMORY; } prs_mem_free( &r_ps ); pull = ndr_pull_init_blob(&blob, mem_ctx); if (pull == NULL) { return NT_STATUS_NO_MEMORY; } /* have the ndr parser alloc memory for us */ pull->flags |= LIBNDR_FLAG_REF_ALLOC; status = pull_fn(pull, NDR_OUT, data); talloc_free(pull); if (!NT_STATUS_IS_OK(status)) { return status; } return NT_STATUS_OK; }