void pruneTree(KDNode<T> *node) { if(node == NULL) { return; } else { pruneTree(node->left); pruneTree(node->right); delete node; } }
TEST_F(TreeOperatorsTest, PruneLengths3) { vector<string> tokens; vector<string> leaves; tokens.resize(5); string toks[] = {"h", "7", "A", "8", "B"}; copy (toks, toks+5, tokens.begin()); leaves.push_back("A"); pruneTree(tokens, leaves); ASSERT_EQ("B", detokenize(tokens)); }
// make sure branch lenghts are kept for nodes moved “up” in a tree as it is // pruned TEST_F(TreeOperatorsTest, PruneLengths2) { vector<string> tokens; vector<string> leaves; tokens.resize(13); string toks[] = {"h", "7", "A", "8", "h", "9", "h", "11", "B", "12", "C", "10", "D"}; copy (toks, toks+13, tokens.begin()); leaves.push_back("A"); leaves.push_back("D"); pruneTree(tokens, leaves); ASSERT_EQ("h\t11\tB\t12\tC", detokenize(tokens)); }
TreeNode* pruneTree(TreeNode* root) { if (!root) return NULL; root->left = pruneTree(root->left); root->right = pruneTree(root->right); return !root->left && !root->right && !root->val ? NULL : root; }
void BTreeBase::pruneTree(BTreeNode *root, bool /*conditionalRoot*/) { Traverser t(root); t.descendLeftwardToTerminal(); bool done = false; while(!done) { //t.descendLeftwardToTerminal(); if( t.current()->parent() ) { if( t.oppositeNode()->hasChildren() ) pruneTree(t.oppositeNode()); } t.moveToParent(); if( !t.current()->hasChildren() ) { //if(t.current() == t.root()) done = true; if(!t.current()->parent()) done = true; continue; } BTreeNode *l = t.current()->left(); BTreeNode *r = t.current()->right(); BTreeNode *n = 0; BTreeNode *z = 0; // Deal with situations where there are two constants so we want // to evaluate at compile time if( (l->type() == number && r->type() == number) ) // && !(t.current()==root&&conditionalRoot) ) { if(t.current()->childOp() == Expression::division && r->value() == "0" ) { t.current()->setChildOp(Expression::divbyzero); return; } QString value = QString::number(Parser::doArithmetic(l->value().toInt(),r->value().toInt(),t.current()->childOp())); t.current()->deleteChildren(); t.current()->setChildOp(Expression::noop); t.current()->setType(number); t.current()->setValue(value); } // Addition and subtraction else if(t.current()->childOp() == Expression::addition || t.current()->childOp() == Expression::subtraction) { // See if one of the nodes is 0, and set n to the node that actually has data, // z to the one containing zero. bool zero = false; if( l->value() == "0" ) { zero = true; n = r; z = l; } else if( r->value() == "0" ) { zero = true; n = l; z = r; } // Now get rid of the useless nodes if(zero) { BTreeNode *p = t.current(); // save in order to delete after replaceNode(p,n); t.setCurrent(n); // Delete the old nodes delete p; delete z; } } // Multiplication and division else if(t.current()->childOp() == Expression::multiplication || t.current()->childOp() == Expression::division) { // See if one of the nodes is 0, and set n to the node that actually has data, // z to the one containing zero. bool zero = false; bool one = false; if( l->value() == "1" ) { one = true; n = r; z = l; } else if( r->value() == "1" ) { one = true; n = l; z = r; } if( l->value() == "0" ) { zero = true; n = r; z = l; } else if( r->value() == "0" ) { // since we can't call compileError from in this class, we have a special way of handling it: // Leave the children as they are, and set childOp to divbyzero if( t.current()->childOp() == Expression::division ) { t.current()->setChildOp(Expression::divbyzero); return; // no point doing any more since we are going to raise a compileError later anyway. } zero = true; n = l; z = r; } // Now get rid of the useless nodes if(one) { BTreeNode *p = t.current(); // save in order to delete after replaceNode(p,n); t.setCurrent(n); // Delete the old nodes delete p; delete z; } if(zero) { BTreeNode *p = t.current(); p->deleteChildren(); p->setChildOp(Expression::noop); p->setType(number); p->setValue("0"); } } else if( t.current()->childOp() == Expression::bwand || t.current()->childOp() == Expression::bwor || t.current()->childOp() == Expression::bwxor ) { bool zero = false; if( l->value() == "0" ) { zero = true; n = r; z = l; } else if( r->value() == "0" ) { zero = true; n = l; z = r; } // Now get rid of the useless nodes if(zero) { BTreeNode *p = t.current(); QString value; if( p->childOp() == Expression::bwand ) { value = "0"; p->deleteChildren(); p->setChildOp(Expression::noop); p->setType(number); } if( p->childOp() == Expression::bwor || p->childOp() == Expression::bwxor ) { value = n->value(); BTreeNode *p = t.current(); // save in order to delete after replaceNode(p,n); t.setCurrent(n); // Delete the old nodes delete p; delete z; } p->setValue(value); } } if(!t.current()->parent() || t.current() == root) done = true; else { } } }
ompl::base::PlannerStatus ompl::geometric::RRTsharp::solve(const base::PlannerTerminationCondition &ptc) { checkValidity(); base::Goal *goal = pdef_->getGoal().get(); base::GoalSampleableRegion *goal_s = dynamic_cast<base::GoalSampleableRegion*>(goal); bool symCost = opt_->isSymmetric(); while (const base::State *st = pis_.nextStart()) { Motion *motion = new Motion(si_); si_->copyState(motion->state, st); motion->cost = opt_->identityCost(); nn_->add(motion); startMotion_ = motion; } if (nn_->size() == 0) { OMPL_ERROR("%s: There are no valid initial states!", getName().c_str()); return base::PlannerStatus::INVALID_START; } if (!sampler_) sampler_ = si_->allocStateSampler(); OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), nn_->size()); if (prune_ && !si_->getStateSpace()->isMetricSpace()) OMPL_WARN("%s: tree pruning was activated but since the state space %s is not a metric space, " "the optimization objective might not satisfy the triangle inequality. You may need to disable pruning." , getName().c_str(), si_->getStateSpace()->getName().c_str()); const base::ReportIntermediateSolutionFn intermediateSolutionCallback = pdef_->getIntermediateSolutionCallback(); Motion *solution = lastGoalMotion_; // \todo Make this variable unnecessary, or at least have it // persist across solve runs base::Cost bestCost = opt_->infiniteCost(); bestCost_ = opt_->infiniteCost(); Motion *approximation = NULL; double approximatedist = std::numeric_limits<double>::infinity(); bool sufficientlyShort = false; Motion *rmotion = new Motion(si_); base::State *rstate = rmotion->state; base::State *xstate = si_->allocState(); // e+e/d. K-nearest RRT* double k_rrg = boost::math::constants::e<double>() + (boost::math::constants::e<double>() / (double)si_->getStateSpace()->getDimension()); std::vector<Motion*> nbh; std::vector<base::Cost> costs; std::vector<base::Cost> incCosts; std::vector<std::size_t> sortedCostIndices; std::vector<int> valid; rewireTest = 0; statesGenerated = 0; if (solution) OMPL_INFORM("%s: Starting planning with existing solution of cost %.5f", getName().c_str(), solution->cost.value()); OMPL_INFORM("%s: Initial k-nearest value of %u", getName().c_str(), (unsigned int)std::ceil(k_rrg * log((double)(nn_->size() + 1)))); // our functor for sorting nearest neighbors CostIndexCompare compareFn(costs, *opt_); while (ptc == false) { iterations_++; // sample random state (with goal biasing) // Goal samples are only sampled until maxSampleCount() goals are in the tree, to prohibit duplicate goal states. if (goal_s && goalMotions_.size() < goal_s->maxSampleCount() && rng_.uniform01() < goalBias_ && goal_s->canSample()) goal_s->sampleGoal(rstate); else { sampler_->sampleUniform(rstate); if (prune_ && opt_->isCostBetterThan(bestCost_, costToGo(rmotion))) continue; } // find closest state in the tree Motion *nmotion = nn_->nearest(rmotion); if (intermediateSolutionCallback && si_->equalStates(nmotion->state, rstate)) continue; base::State *dstate = rstate; // find state to add to the tree double d = si_->distance(nmotion->state, rstate); if (d > maxDistance_) { si_->getStateSpace()->interpolate(nmotion->state, rstate, maxDistance_ / d, xstate); dstate = xstate; } // Check if the motion between the nearest state and the state to add is valid if (si_->checkMotion(nmotion->state, dstate)) { // create a motion Motion *motion = new Motion(si_); si_->copyState(motion->state, dstate); motion->parent = nmotion; motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // Find nearby neighbors of the new motion - k-nearest RRT* unsigned int k = std::ceil(k_rrg * log((double)(nn_->size() + 1))); nn_->nearestK(motion, k, nbh); rewireTest += nbh.size(); statesGenerated++; // cache for distance computations // // Our cost caches only increase in size, so they're only // resized if they can't fit the current neighborhood if (costs.size() < nbh.size()) { costs.resize(nbh.size()); incCosts.resize(nbh.size()); sortedCostIndices.resize(nbh.size()); } // cache for motion validity (only useful in a symmetric space) // // Our validity caches only increase in size, so they're // only resized if they can't fit the current neighborhood if (valid.size() < nbh.size()) valid.resize(nbh.size()); std::fill(valid.begin(), valid.begin() + nbh.size(), 0); // Finding the nearest neighbor to connect to // By default, neighborhood states are sorted by cost, and collision checking // is performed in increasing order of cost if (delayCC_) { // calculate all costs and distances for (std::size_t i = 0 ; i < nbh.size(); ++i) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); } // sort the nodes // // we're using index-value pairs so that we can get at // original, unsorted indices for (std::size_t i = 0; i < nbh.size(); ++i) sortedCostIndices[i] = i; std::sort(sortedCostIndices.begin(), sortedCostIndices.begin() + nbh.size(), compareFn); // collision check until a valid motion is found // // ASYMMETRIC CASE: it's possible that none of these // neighbors are valid. This is fine, because motion // already has a connection to the tree through // nmotion (with populated cost fields!). for (std::vector<std::size_t>::const_iterator i = sortedCostIndices.begin(); i != sortedCostIndices.begin() + nbh.size(); ++i) { if (nbh[*i] == nmotion || si_->checkMotion(nbh[*i]->state, motion->state)) { motion->incCost = incCosts[*i]; motion->cost = costs[*i]; motion->parent = nbh[*i]; valid[*i] = 1; break; } else valid[*i] = -1; } } else // if not delayCC { motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // find which one we connect the new state to for (std::size_t i = 0 ; i < nbh.size(); ++i) { if (nbh[i] != nmotion) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); if (opt_->isCostBetterThan(costs[i], motion->cost)) { if (si_->checkMotion(nbh[i]->state, motion->state)) { motion->incCost = incCosts[i]; motion->cost = costs[i]; motion->parent = nbh[i]; valid[i] = 1; } else valid[i] = -1; } } else { incCosts[i] = motion->incCost; costs[i] = motion->cost; valid[i] = 1; } } } if (prune_) { if (opt_->isCostBetterThan(costToGo(motion, false), bestCost_)) { nn_->add(motion); motion->parent->children.push_back(motion); } else // If the new motion does not improve the best cost it is ignored. { --statesGenerated; si_->freeState(motion->state); delete motion; continue; } } else { // add motion to the tree nn_->add(motion); motion->parent->children.push_back(motion); } this->nodesToAnalyzeForRewiring = std::priority_queue< Motion* ,std::vector<Motion*>, std::greater<Motion*>>(); assert(nodesToAnalyzeForRewiring.empty()); this->visitedMotions.clear(); this->toVisitMotions.clear(); bool checkForSolution = false; toVisitMotions.insert(motion); nodesToAnalyzeForRewiring.push(motion); while (!nodesToAnalyzeForRewiring.empty()) { // if (((int)nn_->size())>7000) // usleep(200000); Motion* mc = nodesToAnalyzeForRewiring.top(); nodesToAnalyzeForRewiring.pop(); visitedMotions.insert(mc); toVisitMotions.erase(mc); nn_->nearestK(mc, k, nbh); // Cost minNbhCost = mc->cost; bool updatedWiring = false; if (mc!=motion){ for (std::size_t i = 0; i < nbh.size(); ++i){ rewireTest++; // TODO: add if(symCost) option base::Cost temp_incCost = opt_->motionCost(nbh[i]->state, mc->state); base::Cost temp_Cost = opt_->combineCosts(nbh[i]->cost, temp_incCost); if (opt_->isCostBetterThan(temp_Cost,mc->cost)){ if (si_->checkMotion(nbh[i]->state, mc->state)) { removeFromParent (mc); mc->parent = nbh[i]; mc->cost = temp_Cost; mc->incCost = temp_incCost; mc->parent->children.push_back(mc); updatedWiring = true; checkForSolution = true; } } } } else { updatedWiring = true; } if (updatedWiring){ // add children to update list for (std::size_t j = 0; j < mc->children.size(); ++j){ if (toVisitMotions.count(mc->children[j])==0 && visitedMotions.count(mc->children[j])==0){ nodesToAnalyzeForRewiring.push(mc->children[j]); toVisitMotions.insert(mc->children[j]); } } for (std::size_t i = 0; i < nbh.size(); ++i){ // TODO: avoid repeated calculation of same value if (opt_->isCostBetterThan(opt_->combineCosts(mc->cost, opt_->motionCost(mc->state, nbh[i]->state)),nbh[i]->cost) && toVisitMotions.count(nbh[i])==0 && visitedMotions.count(nbh[i])==0){ nodesToAnalyzeForRewiring.push(nbh[i]); toVisitMotions.insert(nbh[i]); } } } } // Add the new motion to the goalMotion_ list, if it satisfies the goal double distanceFromGoal; if (goal->isSatisfied(motion->state, &distanceFromGoal)) { goalMotions_.push_back(motion); checkForSolution = true; } // Checking for solution or iterative improvement if (checkForSolution) { bool updatedSolution = false; for (size_t i = 0; i < goalMotions_.size(); ++i) { if (opt_->isCostBetterThan(goalMotions_[i]->cost, bestCost)) { bestCost = goalMotions_[i]->cost; bestCost_ = bestCost; updatedSolution = true; } sufficientlyShort = opt_->isSatisfied(goalMotions_[i]->cost); if (sufficientlyShort) { solution = goalMotions_[i]; break; } else if (!solution || opt_->isCostBetterThan(goalMotions_[i]->cost,solution->cost)) { solution = goalMotions_[i]; updatedSolution = true; } } if (updatedSolution) { if (prune_) { int n = pruneTree(bestCost_); statesGenerated -= n; } if (intermediateSolutionCallback) { std::vector<const base::State *> spath; Motion *intermediate_solution = solution->parent; // Do not include goal state to simplify code. do { spath.push_back(intermediate_solution->state); intermediate_solution = intermediate_solution->parent; } while (intermediate_solution->parent != 0); // Do not include the start state. intermediateSolutionCallback(this, spath, bestCost_); } } } // Checking for approximate solution (closest state found to the goal) if (goalMotions_.size() == 0 && distanceFromGoal < approximatedist) { approximation = motion; approximatedist = distanceFromGoal; } } // terminate if a sufficient solution is found if (solution && sufficientlyShort) break; } bool approximate = (solution == NULL); bool addedSolution = false; if (approximate) solution = approximation; else lastGoalMotion_ = solution; if (solution != NULL) { ptc.terminate(); // construct the solution path std::vector<Motion*> mpath; while (solution != NULL) { mpath.push_back(solution); solution = solution->parent; } // set the solution path PathGeometric *geoPath = new PathGeometric(si_); for (int i = mpath.size() - 1 ; i >= 0 ; --i) geoPath->append(mpath[i]->state); base::PathPtr path(geoPath); // Add the solution path. base::PlannerSolution psol(path); psol.setPlannerName(getName()); if (approximate) psol.setApproximate(approximatedist); // Does the solution satisfy the optimization objective? psol.setOptimized(opt_, bestCost, sufficientlyShort); pdef_->addSolutionPath(psol); addedSolution = true; } si_->freeState(xstate); if (rmotion->state) si_->freeState(rmotion->state); delete rmotion; OMPL_INFORM("%s: Created %u new states. Checked %u rewire options. %u goal states in tree.", getName().c_str(), statesGenerated, rewireTest, goalMotions_.size()); return base::PlannerStatus(addedSolution, approximate); }
ompl::base::PlannerStatus ompl::geometric::RRTstar::solve(const base::PlannerTerminationCondition &ptc) { checkValidity(); base::Goal *goal = pdef_->getGoal().get(); base::GoalSampleableRegion *goal_s = dynamic_cast<base::GoalSampleableRegion*>(goal); bool symCost = opt_->isSymmetric(); // Check if there are more starts if (pis_.haveMoreStartStates() == true) { // There are, add them while (const base::State *st = pis_.nextStart()) { auto *motion = new Motion(si_); si_->copyState(motion->state, st); motion->cost = opt_->identityCost(); nn_->add(motion); startMotions_.push_back(motion); } // And assure that, if we're using an informed sampler, it's reset infSampler_.reset(); } // No else if (nn_->size() == 0) { OMPL_ERROR("%s: There are no valid initial states!", getName().c_str()); return base::PlannerStatus::INVALID_START; } //Allocate a sampler if necessary if (!sampler_ && !infSampler_) { allocSampler(); } OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), nn_->size()); if ((useTreePruning_ || useRejectionSampling_ || useInformedSampling_ || useNewStateRejection_) && !si_->getStateSpace()->isMetricSpace()) OMPL_WARN("%s: The state space (%s) is not metric and as a result the optimization objective may not satisfy the triangle inequality. " "You may need to disable pruning or rejection." , getName().c_str(), si_->getStateSpace()->getName().c_str()); const base::ReportIntermediateSolutionFn intermediateSolutionCallback = pdef_->getIntermediateSolutionCallback(); Motion *solution = lastGoalMotion_; Motion *approximation = nullptr; double approximatedist = std::numeric_limits<double>::infinity(); bool sufficientlyShort = false; auto *rmotion = new Motion(si_); base::State *rstate = rmotion->state; base::State *xstate = si_->allocState(); std::vector<Motion*> nbh; std::vector<base::Cost> costs; std::vector<base::Cost> incCosts; std::vector<std::size_t> sortedCostIndices; std::vector<int> valid; unsigned int rewireTest = 0; unsigned int statesGenerated = 0; if (solution) OMPL_INFORM("%s: Starting planning with existing solution of cost %.5f", getName().c_str(), solution->cost.value()); if (useKNearest_) OMPL_INFORM("%s: Initial k-nearest value of %u", getName().c_str(), (unsigned int)std::ceil(k_rrg_ * log((double)(nn_->size() + 1u)))); else OMPL_INFORM("%s: Initial rewiring radius of %.2f", getName().c_str(), std::min(maxDistance_, r_rrg_*std::pow(log((double)(nn_->size() + 1u))/((double)(nn_->size() + 1u)), 1/(double)(si_->getStateDimension())))); // our functor for sorting nearest neighbors CostIndexCompare compareFn(costs, *opt_); while (ptc == false) { iterations_++; // sample random state (with goal biasing) // Goal samples are only sampled until maxSampleCount() goals are in the tree, to prohibit duplicate goal states. if (goal_s && goalMotions_.size() < goal_s->maxSampleCount() && rng_.uniform01() < goalBias_ && goal_s->canSample()) goal_s->sampleGoal(rstate); else { // Attempt to generate a sample, if we fail (e.g., too many rejection attempts), skip the remainder of this loop and return to try again if (!sampleUniform(rstate)) continue; } // find closest state in the tree Motion *nmotion = nn_->nearest(rmotion); if (intermediateSolutionCallback && si_->equalStates(nmotion->state, rstate)) continue; base::State *dstate = rstate; // find state to add to the tree double d = si_->distance(nmotion->state, rstate); if (d > maxDistance_) { si_->getStateSpace()->interpolate(nmotion->state, rstate, maxDistance_ / d, xstate); dstate = xstate; } // Check if the motion between the nearest state and the state to add is valid if (si_->checkMotion(nmotion->state, dstate)) { // create a motion auto *motion = new Motion(si_); si_->copyState(motion->state, dstate); motion->parent = nmotion; motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // Find nearby neighbors of the new motion getNeighbors(motion, nbh); rewireTest += nbh.size(); ++statesGenerated; // cache for distance computations // // Our cost caches only increase in size, so they're only // resized if they can't fit the current neighborhood if (costs.size() < nbh.size()) { costs.resize(nbh.size()); incCosts.resize(nbh.size()); sortedCostIndices.resize(nbh.size()); } // cache for motion validity (only useful in a symmetric space) // // Our validity caches only increase in size, so they're // only resized if they can't fit the current neighborhood if (valid.size() < nbh.size()) valid.resize(nbh.size()); std::fill(valid.begin(), valid.begin() + nbh.size(), 0); // Finding the nearest neighbor to connect to // By default, neighborhood states are sorted by cost, and collision checking // is performed in increasing order of cost if (delayCC_) { // calculate all costs and distances for (std::size_t i = 0 ; i < nbh.size(); ++i) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); } // sort the nodes // // we're using index-value pairs so that we can get at // original, unsorted indices for (std::size_t i = 0; i < nbh.size(); ++i) sortedCostIndices[i] = i; std::sort(sortedCostIndices.begin(), sortedCostIndices.begin() + nbh.size(), compareFn); // collision check until a valid motion is found // // ASYMMETRIC CASE: it's possible that none of these // neighbors are valid. This is fine, because motion // already has a connection to the tree through // nmotion (with populated cost fields!). for (std::vector<std::size_t>::const_iterator i = sortedCostIndices.begin(); i != sortedCostIndices.begin() + nbh.size(); ++i) { if (nbh[*i] == nmotion || si_->checkMotion(nbh[*i]->state, motion->state)) { motion->incCost = incCosts[*i]; motion->cost = costs[*i]; motion->parent = nbh[*i]; valid[*i] = 1; break; } else valid[*i] = -1; } } else // if not delayCC { motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // find which one we connect the new state to for (std::size_t i = 0 ; i < nbh.size(); ++i) { if (nbh[i] != nmotion) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); if (opt_->isCostBetterThan(costs[i], motion->cost)) { if (si_->checkMotion(nbh[i]->state, motion->state)) { motion->incCost = incCosts[i]; motion->cost = costs[i]; motion->parent = nbh[i]; valid[i] = 1; } else valid[i] = -1; } } else { incCosts[i] = motion->incCost; costs[i] = motion->cost; valid[i] = 1; } } } if (useNewStateRejection_) { if (opt_->isCostBetterThan(solutionHeuristic(motion), bestCost_)) { nn_->add(motion); motion->parent->children.push_back(motion); } else // If the new motion does not improve the best cost it is ignored. { si_->freeState(motion->state); delete motion; continue; } } else { // add motion to the tree nn_->add(motion); motion->parent->children.push_back(motion); } bool checkForSolution = false; for (std::size_t i = 0; i < nbh.size(); ++i) { if (nbh[i] != motion->parent) { base::Cost nbhIncCost; if (symCost) nbhIncCost = incCosts[i]; else nbhIncCost = opt_->motionCost(motion->state, nbh[i]->state); base::Cost nbhNewCost = opt_->combineCosts(motion->cost, nbhIncCost); if (opt_->isCostBetterThan(nbhNewCost, nbh[i]->cost)) { bool motionValid; if (valid[i] == 0) { motionValid = si_->checkMotion(motion->state, nbh[i]->state); } else { motionValid = (valid[i] == 1); } if (motionValid) { // Remove this node from its parent list removeFromParent (nbh[i]); // Add this node to the new parent nbh[i]->parent = motion; nbh[i]->incCost = nbhIncCost; nbh[i]->cost = nbhNewCost; nbh[i]->parent->children.push_back(nbh[i]); // Update the costs of the node's children updateChildCosts(nbh[i]); checkForSolution = true; } } } } // Add the new motion to the goalMotion_ list, if it satisfies the goal double distanceFromGoal; if (goal->isSatisfied(motion->state, &distanceFromGoal)) { goalMotions_.push_back(motion); checkForSolution = true; } // Checking for solution or iterative improvement if (checkForSolution) { bool updatedSolution = false; for (auto & goalMotion : goalMotions_) { if (opt_->isCostBetterThan(goalMotion->cost, bestCost_)) { if (opt_->isFinite(bestCost_) == false) { OMPL_INFORM("%s: Found an initial solution with a cost of %.2f in %u iterations (%u vertices in the graph)", getName().c_str(), goalMotion->cost.value(), iterations_, nn_->size()); } bestCost_ = goalMotion->cost; updatedSolution = true; } sufficientlyShort = opt_->isSatisfied(goalMotion->cost); if (sufficientlyShort) { solution = goalMotion; break; } else if (!solution || opt_->isCostBetterThan(goalMotion->cost,solution->cost)) { solution = goalMotion; updatedSolution = true; } } if (updatedSolution) { if (useTreePruning_) { pruneTree(bestCost_); } if (intermediateSolutionCallback) { std::vector<const base::State *> spath; Motion *intermediate_solution = solution->parent; // Do not include goal state to simplify code. //Push back until we find the start, but not the start itself while (intermediate_solution->parent != nullptr) { spath.push_back(intermediate_solution->state); intermediate_solution = intermediate_solution->parent; } intermediateSolutionCallback(this, spath, bestCost_); } } } // Checking for approximate solution (closest state found to the goal) if (goalMotions_.size() == 0 && distanceFromGoal < approximatedist) { approximation = motion; approximatedist = distanceFromGoal; } } // terminate if a sufficient solution is found if (solution && sufficientlyShort) break; } bool approximate = (solution == nullptr); bool addedSolution = false; if (approximate) solution = approximation; else lastGoalMotion_ = solution; if (solution != nullptr) { ptc.terminate(); // construct the solution path std::vector<Motion*> mpath; while (solution != nullptr) { mpath.push_back(solution); solution = solution->parent; } // set the solution path auto *geoPath = new PathGeometric(si_); for (int i = mpath.size() - 1 ; i >= 0 ; --i) geoPath->append(mpath[i]->state); base::PathPtr path(geoPath); // Add the solution path. base::PlannerSolution psol(path); psol.setPlannerName(getName()); if (approximate) psol.setApproximate(approximatedist); // Does the solution satisfy the optimization objective? psol.setOptimized(opt_, bestCost_, sufficientlyShort); pdef_->addSolutionPath(psol); addedSolution = true; } si_->freeState(xstate); if (rmotion->state) si_->freeState(rmotion->state); delete rmotion; OMPL_INFORM("%s: Created %u new states. Checked %u rewire options. %u goal states in tree. Final solution cost %.3f", getName().c_str(), statesGenerated, rewireTest, goalMotions_.size(), bestCost_.value()); return base::PlannerStatus(addedSolution, approximate); }