Exemple #1
0
static void uart_send_breaks(UartState *s)
{
    int break_enabled = 1;

    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
                               &break_enabled);
}
Exemple #2
0
static void uart_send_breaks(CadenceUARTState *s)
{
    int break_enabled = 1;

    if (s->chr) {
        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
                                   &break_enabled);
    }
}
Exemple #3
0
static void uart_parameters_setup(CadenceUARTState *s)
{
    QEMUSerialSetParams ssp;
    unsigned int baud_rate, packet_size;

    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
            UART_INPUT_CLK / 8 : UART_INPUT_CLK;

    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
    packet_size = 1;

    switch (s->r[R_MR] & UART_MR_PAR) {
    case UART_PARITY_EVEN:
        ssp.parity = 'E';
        packet_size++;
        break;
    case UART_PARITY_ODD:
        ssp.parity = 'O';
        packet_size++;
        break;
    default:
        ssp.parity = 'N';
        break;
    }

    switch (s->r[R_MR] & UART_MR_CHRL) {
    case UART_DATA_BITS_6:
        ssp.data_bits = 6;
        break;
    case UART_DATA_BITS_7:
        ssp.data_bits = 7;
        break;
    default:
        ssp.data_bits = 8;
        break;
    }

    switch (s->r[R_MR] & UART_MR_NBSTOP) {
    case UART_STOP_BITS_1:
        ssp.stop_bits = 1;
        break;
    default:
        ssp.stop_bits = 2;
        break;
    }

    packet_size += ssp.data_bits + ssp.stop_bits;
    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
    if (s->chr) {
        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
    }
}
Exemple #4
0
static int parallel_isa_initfn(ISADevice *dev)
{
    static int index;
    ISAParallelState *isa = DO_UPCAST(ISAParallelState, dev, dev);
    ParallelState *s = &isa->state;
    int base;
    uint8_t dummy;

    if (!s->chr) {
        fprintf(stderr, "Can't create parallel device, empty char device\n");
        exit(1);
    }

    if (isa->index == -1)
        isa->index = index;
    if (isa->index >= MAX_PARALLEL_PORTS)
        return -1;
    if (isa->iobase == -1)
        isa->iobase = isa_parallel_io[isa->index];
    index++;

    base = isa->iobase;
    isa_init_irq(dev, &s->irq, isa->isairq);
    qemu_register_reset(parallel_reset, s);

    if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) {
        s->hw_driver = 1;
        s->status = dummy;
    }

    if (s->hw_driver) {
        register_ioport_write(base, 8, 1, parallel_ioport_write_hw, s);
        register_ioport_read(base, 8, 1, parallel_ioport_read_hw, s);
        isa_init_ioport_range(dev, base, 8);

        register_ioport_write(base+4, 1, 2, parallel_ioport_eppdata_write_hw2, s);
        register_ioport_read(base+4, 1, 2, parallel_ioport_eppdata_read_hw2, s);
        register_ioport_write(base+4, 1, 4, parallel_ioport_eppdata_write_hw4, s);
        register_ioport_read(base+4, 1, 4, parallel_ioport_eppdata_read_hw4, s);
        isa_init_ioport(dev, base+4);
        register_ioport_write(base+0x400, 8, 1, parallel_ioport_ecp_write, s);
        register_ioport_read(base+0x400, 8, 1, parallel_ioport_ecp_read, s);
        isa_init_ioport_range(dev, base+0x400, 8);
    }
    else {
        register_ioport_write(base, 8, 1, parallel_ioport_write_sw, s);
        register_ioport_read(base, 8, 1, parallel_ioport_read_sw, s);
        isa_init_ioport_range(dev, base, 8);
    }
    return 0;
}
Exemple #5
0
static void parallel_isa_realizefn(DeviceState *dev, Error **errp)
{
    static int index;
    ISADevice *isadev = ISA_DEVICE(dev);
    ISAParallelState *isa = ISA_PARALLEL(dev);
    ParallelState *s = &isa->state;
    int base;
    uint8_t dummy;

    if (!s->chr) {
        error_setg(errp, "Can't create parallel device, empty char device");
        return;
    }

    if (isa->index == -1) {
        isa->index = index;
    }
    if (isa->index >= MAX_PARALLEL_PORTS) {
        error_setg(errp, "Max. supported number of parallel ports is %d.",
                   MAX_PARALLEL_PORTS);
        return;
    }
    if (isa->iobase == -1) {
        isa->iobase = isa_parallel_io[isa->index];
    }
    index++;

    base = isa->iobase;
    isa_init_irq(isadev, &s->irq, isa->isairq);
    qemu_register_reset(parallel_reset, s);

    if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) {
        s->hw_driver = 1;
        s->status = dummy;
    }

    isa_register_portio_list(isadev, base,
                             (s->hw_driver
                              ? &isa_parallel_portio_hw_list[0]
                              : &isa_parallel_portio_sw_list[0]),
                             s, "parallel");
}
Exemple #6
0
static uint8_t usb_get_modem_lines(USBSerialState *s)
{
    int flags;
    uint8_t ret;

    if (qemu_chr_fe_ioctl(s->cs, CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP)
        return FTDI_CTS|FTDI_DSR|FTDI_RLSD;

    ret = 0;
    if (flags & CHR_TIOCM_CTS)
        ret |= FTDI_CTS;
    if (flags & CHR_TIOCM_DSR)
        ret |= FTDI_DSR;
    if (flags & CHR_TIOCM_RI)
        ret |= FTDI_RI;
    if (flags & CHR_TIOCM_CAR)
        ret |= FTDI_RLSD;

    return ret;
}
Exemple #7
0
static int parallel_isa_initfn(ISADevice *dev)
{
    static int index;
    ISAParallelState *isa = DO_UPCAST(ISAParallelState, dev, dev);
    ParallelState *s = &isa->state;
    int base;
    uint8_t dummy;

    if (!s->chr) {
        fprintf(stderr, "Can't create parallel device, empty char device\n");
        exit(1);
    }

    if (isa->index == -1)
        isa->index = index;
    if (isa->index >= MAX_PARALLEL_PORTS)
        return -1;
    if (isa->iobase == -1)
        isa->iobase = isa_parallel_io[isa->index];
    index++;

    base = isa->iobase;
    isa_init_irq(dev, &s->irq, isa->isairq);
    qemu_register_reset(parallel_reset, s);

    if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) {
        s->hw_driver = 1;
        s->status = dummy;
    }

    isa_register_portio_list(dev, base,
                             (s->hw_driver
                              ? &isa_parallel_portio_hw_list[0]
                              : &isa_parallel_portio_sw_list[0]),
                             s, "parallel");
    return 0;
}
Exemple #8
0
static void parallel_ioport_write_hw(void *opaque, uint32_t addr, uint32_t val)
{
    ParallelState *s = opaque;
    uint8_t parm = val;
    int dir;

    /* Sometimes programs do several writes for timing purposes on old
       HW. Take care not to waste time on writes that do nothing. */

    s->last_read_offset = ~0U;

    addr &= 7;
    switch(addr) {
    case PARA_REG_DATA:
        if (s->dataw == val)
            return;
        pdebug("wd%02x\n", val);
        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_WRITE_DATA, &parm);
        s->dataw = val;
        break;
    case PARA_REG_STS:
        pdebug("ws%02x\n", val);
        if (val & PARA_STS_TMOUT)
            s->epp_timeout = 0;
        break;
    case PARA_REG_CTR:
        val |= 0xc0;
        if (s->control == val)
            return;
        pdebug("wc%02x\n", val);

        if ((val & PARA_CTR_DIR) != (s->control & PARA_CTR_DIR)) {
            if (val & PARA_CTR_DIR) {
                dir = 1;
            } else {
                dir = 0;
            }
            qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_DATA_DIR, &dir);
            parm &= ~PARA_CTR_DIR;
        }

        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_WRITE_CONTROL, &parm);
        s->control = val;
        break;
    case PARA_REG_EPP_ADDR:
        if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
            /* Controls not correct for EPP address cycle, so do nothing */
            pdebug("wa%02x s\n", val);
        else {
            struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
            if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE_ADDR, &ioarg)) {
                s->epp_timeout = 1;
                pdebug("wa%02x t\n", val);
            }
            else
                pdebug("wa%02x\n", val);
        }
        break;
    case PARA_REG_EPP_DATA:
        if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
            /* Controls not correct for EPP data cycle, so do nothing */
            pdebug("we%02x s\n", val);
        else {
            struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
            if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg)) {
                s->epp_timeout = 1;
                pdebug("we%02x t\n", val);
            }
            else
                pdebug("we%02x\n", val);
        }
        break;
    }
}

static void
parallel_ioport_eppdata_write_hw2(void *opaque, uint32_t addr, uint32_t val)
{
    ParallelState *s = opaque;
    uint16_t eppdata = cpu_to_le16(val);
    int err;
    struct ParallelIOArg ioarg = {
        .buffer = &eppdata, .count = sizeof(eppdata)
    };
    if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
        /* Controls not correct for EPP data cycle, so do nothing */
        pdebug("we%04x s\n", val);
        return;
    }
    err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
    if (err) {
        s->epp_timeout = 1;
        pdebug("we%04x t\n", val);
    }
    else
        pdebug("we%04x\n", val);
}

static void
parallel_ioport_eppdata_write_hw4(void *opaque, uint32_t addr, uint32_t val)
{
    ParallelState *s = opaque;
    uint32_t eppdata = cpu_to_le32(val);
    int err;
    struct ParallelIOArg ioarg = {
        .buffer = &eppdata, .count = sizeof(eppdata)
    };
    if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
        /* Controls not correct for EPP data cycle, so do nothing */
        pdebug("we%08x s\n", val);
        return;
    }
    err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
    if (err) {
        s->epp_timeout = 1;
        pdebug("we%08x t\n", val);
    }
    else
        pdebug("we%08x\n", val);
}

static uint32_t parallel_ioport_read_sw(void *opaque, uint32_t addr)
{
    ParallelState *s = opaque;
    uint32_t ret = 0xff;

    addr &= 7;
    switch(addr) {
    case PARA_REG_DATA:
        if (s->control & PARA_CTR_DIR)
            ret = s->datar;
        else
            ret = s->dataw;
        break;
    case PARA_REG_STS:
        ret = s->status;
        s->irq_pending = 0;
        if ((s->status & PARA_STS_BUSY) == 0 && (s->control & PARA_CTR_STROBE) == 0) {
            /* XXX Fixme: wait 5 microseconds */
            if (s->status & PARA_STS_ACK)
                s->status &= ~PARA_STS_ACK;
            else {
                /* XXX Fixme: wait 5 microseconds */
                s->status |= PARA_STS_ACK;
                s->status |= PARA_STS_BUSY;
            }
        }
        parallel_update_irq(s);
        break;
    case PARA_REG_CTR:
        ret = s->control;
        break;
    }
    pdebug("read addr=0x%02x val=0x%02x\n", addr, ret);
    return ret;
}

static uint32_t parallel_ioport_read_hw(void *opaque, uint32_t addr)
{
    ParallelState *s = opaque;
    uint8_t ret = 0xff;
    addr &= 7;
    switch(addr) {
    case PARA_REG_DATA:
        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_DATA, &ret);
        if (s->last_read_offset != addr || s->datar != ret)
            pdebug("rd%02x\n", ret);
        s->datar = ret;
        break;
    case PARA_REG_STS:
        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &ret);
        ret &= ~PARA_STS_TMOUT;
        if (s->epp_timeout)
            ret |= PARA_STS_TMOUT;
        if (s->last_read_offset != addr || s->status != ret)
            pdebug("rs%02x\n", ret);
        s->status = ret;
        break;
    case PARA_REG_CTR:
        /* s->control has some bits fixed to 1. It is zero only when
           it has not been yet written to.  */
        if (s->control == 0) {
            qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_CONTROL, &ret);
            if (s->last_read_offset != addr)
                pdebug("rc%02x\n", ret);
            s->control = ret;
        }
        else {
            ret = s->control;
            if (s->last_read_offset != addr)
                pdebug("rc%02x\n", ret);
        }
        break;
    case PARA_REG_EPP_ADDR:
        if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
            /* Controls not correct for EPP addr cycle, so do nothing */
            pdebug("ra%02x s\n", ret);
        else {
            struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
            if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ_ADDR, &ioarg)) {
                s->epp_timeout = 1;
                pdebug("ra%02x t\n", ret);
            }
            else
                pdebug("ra%02x\n", ret);
        }
        break;
    case PARA_REG_EPP_DATA:
        if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
            /* Controls not correct for EPP data cycle, so do nothing */
            pdebug("re%02x s\n", ret);
        else {
            struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
            if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg)) {
                s->epp_timeout = 1;
                pdebug("re%02x t\n", ret);
            }
            else
                pdebug("re%02x\n", ret);
        }
        break;
    }
    s->last_read_offset = addr;
    return ret;
}

static uint32_t
parallel_ioport_eppdata_read_hw2(void *opaque, uint32_t addr)
{
    ParallelState *s = opaque;
    uint32_t ret;
    uint16_t eppdata = ~0;
    int err;
    struct ParallelIOArg ioarg = {
        .buffer = &eppdata, .count = sizeof(eppdata)
    };
    if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
        /* Controls not correct for EPP data cycle, so do nothing */
        pdebug("re%04x s\n", eppdata);
        return eppdata;
    }
    err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
    ret = le16_to_cpu(eppdata);

    if (err) {
        s->epp_timeout = 1;
        pdebug("re%04x t\n", ret);
    }
    else
        pdebug("re%04x\n", ret);
    return ret;
}

static uint32_t
parallel_ioport_eppdata_read_hw4(void *opaque, uint32_t addr)
{
    ParallelState *s = opaque;
    uint32_t ret;
    uint32_t eppdata = ~0U;
    int err;
    struct ParallelIOArg ioarg = {
        .buffer = &eppdata, .count = sizeof(eppdata)
    };
    if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
        /* Controls not correct for EPP data cycle, so do nothing */
        pdebug("re%08x s\n", eppdata);
        return eppdata;
    }
    err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
    ret = le32_to_cpu(eppdata);

    if (err) {
        s->epp_timeout = 1;
        pdebug("re%08x t\n", ret);
    }
    else
        pdebug("re%08x\n", ret);
    return ret;
}

static void parallel_ioport_ecp_write(void *opaque, uint32_t addr, uint32_t val)
{
    pdebug("wecp%d=%02x\n", addr & 7, val);
}

static uint32_t parallel_ioport_ecp_read(void *opaque, uint32_t addr)
{
    uint8_t ret = 0xff;

    pdebug("recp%d:%02x\n", addr & 7, ret);
    return ret;
}
Exemple #9
0
static void usb_serial_handle_control(USBDevice *dev, USBPacket *p,
                                      int request, int value, int index, int length, uint8_t *data)
{
    USBSerialState *s = (USBSerialState *)dev;
    int ret;

    DPRINTF("got control %x, value %x\n",request, value);
    ret = usb_desc_handle_control(dev, p, request, value, index, length, data);
    if (ret >= 0) {
        return;
    }

    switch (request) {
    case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
        break;

    /* Class specific requests.  */
    case DeviceOutVendor | FTDI_RESET:
        switch (value) {
        case FTDI_RESET_SIO:
            usb_serial_reset(s);
            break;
        case FTDI_RESET_RX:
            s->recv_ptr = 0;
            s->recv_used = 0;
            /* TODO: purge from char device */
            break;
        case FTDI_RESET_TX:
            /* TODO: purge from char device */
            break;
        }
        break;
    case DeviceOutVendor | FTDI_SET_MDM_CTRL:
    {
        static int flags;
        qemu_chr_fe_ioctl(s->cs,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
        if (value & FTDI_SET_RTS) {
            if (value & FTDI_RTS)
                flags |= CHR_TIOCM_RTS;
            else
                flags &= ~CHR_TIOCM_RTS;
        }
        if (value & FTDI_SET_DTR) {
            if (value & FTDI_DTR)
                flags |= CHR_TIOCM_DTR;
            else
                flags &= ~CHR_TIOCM_DTR;
        }
        qemu_chr_fe_ioctl(s->cs,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
        break;
    }
    case DeviceOutVendor | FTDI_SET_FLOW_CTRL:
        /* TODO: ioctl */
        break;
    case DeviceOutVendor | FTDI_SET_BAUD: {
        static const int subdivisors8[8] = { 0, 4, 2, 1, 3, 5, 6, 7 };
        int subdivisor8 = subdivisors8[((value & 0xc000) >> 14)
                                       | ((index & 1) << 2)];
        int divisor = value & 0x3fff;

        /* chip special cases */
        if (divisor == 1 && subdivisor8 == 0)
            subdivisor8 = 4;
        if (divisor == 0 && subdivisor8 == 0)
            divisor = 1;

        s->params.speed = (48000000 / 2) / (8 * divisor + subdivisor8);
        qemu_chr_fe_ioctl(s->cs, CHR_IOCTL_SERIAL_SET_PARAMS, &s->params);
        break;
    }
    case DeviceOutVendor | FTDI_SET_DATA:
        switch (value & FTDI_PARITY) {
        case 0:
            s->params.parity = 'N';
            break;
        case FTDI_ODD:
            s->params.parity = 'O';
            break;
        case FTDI_EVEN:
            s->params.parity = 'E';
            break;
        default:
            DPRINTF("unsupported parity %d\n", value & FTDI_PARITY);
            goto fail;
        }
        switch (value & FTDI_STOP) {
        case FTDI_STOP1:
            s->params.stop_bits = 1;
            break;
        case FTDI_STOP2:
            s->params.stop_bits = 2;
            break;
        default:
            DPRINTF("unsupported stop bits %d\n", value & FTDI_STOP);
            goto fail;
        }
        qemu_chr_fe_ioctl(s->cs, CHR_IOCTL_SERIAL_SET_PARAMS, &s->params);
        /* TODO: TX ON/OFF */
        break;
    case DeviceInVendor | FTDI_GET_MDM_ST:
        data[0] = usb_get_modem_lines(s) | 1;
        data[1] = 0;
        p->actual_length = 2;
        break;
    case DeviceOutVendor | FTDI_SET_EVENT_CHR:
        /* TODO: handle it */
        s->event_chr = value;
        break;
    case DeviceOutVendor | FTDI_SET_ERROR_CHR:
        /* TODO: handle it */
        s->error_chr = value;
        break;
    case DeviceOutVendor | FTDI_SET_LATENCY:
        s->latency = value;
        break;
    case DeviceInVendor | FTDI_GET_LATENCY:
        data[0] = s->latency;
        p->actual_length = 1;
        break;
    default:
fail:
        DPRINTF("got unsupported/bogus control %x, value %x\n", request, value);
        p->status = USB_RET_STALL;
        break;
    }
}