Exemple #1
0
/* mask must never be zero, except for A20 change call */
static void tcg_handle_interrupt(CPUState *cpu, int mask)
{
    int old_mask;

    old_mask = cpu->interrupt_request;
    cpu->interrupt_request |= mask;

    /*
     * If called from iothread context, wake the target cpu in
     * case its halted.
     */
    if (!qemu_cpu_is_self(cpu)) {
        qemu_cpu_kick(cpu);
        return;
    }

    if (use_icount) {
        cpu->icount_decr.u16.high = 0xffff;
        if (!cpu->can_do_io
            && (mask & ~old_mask) != 0) {
            cpu_abort(cpu, "Raised interrupt while not in I/O function");
        }
    } else {
        cpu->tcg_exit_req = 1;
    }
}
Exemple #2
0
void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
{
    struct qemu_work_item wi;

    if (qemu_cpu_is_self(cpu)) {
        func(data);
        return;
    }

    wi.func = func;
    wi.data = data;
    if (cpu->queued_work_first == NULL) {
        cpu->queued_work_first = &wi;
    } else {
        cpu->queued_work_last->next = &wi;
    }
    cpu->queued_work_last = &wi;
    wi.next = NULL;
    wi.done = false;

    qemu_cpu_kick(cpu);
    while (!wi.done) {
        CPUArchState *self_env = cpu_single_env;

        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
        cpu_single_env = self_env;
    }
}
Exemple #3
0
static void kvm_handle_interrupt(CPUState *env, int mask)
{
    env->interrupt_request |= mask;

    if (!qemu_cpu_is_self(env)) {
        qemu_cpu_kick(env);
    }
}
Exemple #4
0
static void whpx_handle_interrupt(CPUState *cpu, int mask)
{
    cpu->interrupt_request |= mask;

    if (!qemu_cpu_is_self(cpu)) {
        qemu_cpu_kick(cpu);
    }
}
Exemple #5
0
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
{
    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);

    if (cpu->created && !qemu_cpu_is_self(cpu)) {
        async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
                         RUN_ON_CPU_HOST_INT(idxmap));
    } else {
        tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
    }
}
Exemple #6
0
static void apic_sync_vapic(APICCommonState *s, int sync_type)
{
    VAPICState vapic_state;
    //size_t length;
    //off_t start;
    int vector;

    if (!s->vapic_paddr) {
        return;
    }
    if (sync_type & SYNC_FROM_VAPIC) {
        cpu_physical_memory_read(NULL, s->vapic_paddr, &vapic_state,
                                 sizeof(vapic_state));
        s->tpr = vapic_state.tpr;
    }
    if (sync_type & (SYNC_TO_VAPIC | SYNC_ISR_IRR_TO_VAPIC)) {
        //start = offsetof(VAPICState, isr);
        //length = offsetof(VAPICState, enabled) - offsetof(VAPICState, isr);

        if (sync_type & SYNC_TO_VAPIC) {
            assert(qemu_cpu_is_self(CPU(s->cpu)));

            vapic_state.tpr = s->tpr;
            vapic_state.enabled = 1;
            //start = 0;
            //length = sizeof(VAPICState);
        }

        vector = get_highest_priority_int(s->isr);
        if (vector < 0) {
            vector = 0;
        }
        vapic_state.isr = vector & 0xf0;

        vapic_state.zero = 0;

        vector = get_highest_priority_int(s->irr);
        if (vector < 0) {
            vector = 0;
        }
        vapic_state.irr = vector & 0xff;

        //cpu_physical_memory_write_rom(&address_space_memory,
        //                              s->vapic_paddr + start,
        //                              ((void *)&vapic_state) + start, length);
        // FIXME qq
    }
}
Exemple #7
0
static void qemu_cpu_kick_thread(CPUState *cpu)
{
#ifndef _WIN32
    int err;

    err = pthread_kill(cpu->thread->thread, SIG_IPI);
    if (err) {
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
#else /* _WIN32 */
    if (!qemu_cpu_is_self(cpu)) {
        SuspendThread(cpu->hThread);
        cpu_signal(0);
        ResumeThread(cpu->hThread);
    }
#endif
}
Exemple #8
0
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
{
    target_ulong addr_and_mmu_idx;

    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);

    /* This should already be page aligned */
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
    addr_and_mmu_idx |= idxmap;

    if (!qemu_cpu_is_self(cpu)) {
        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
                         RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
    } else {
        tlb_flush_page_by_mmuidx_async_work(
            cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
    }
}
Exemple #9
0
static void qemu_cpu_kick_thread(CPUState *cpu)
{
#ifndef _WIN32
    int err;

    err = pthread_kill(cpu->thread->thread, SIG_IPI);
    if (err) {
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
#else /* _WIN32 */
    if (!qemu_cpu_is_self(cpu)) {
        CONTEXT tcgContext;

        if (SuspendThread(cpu->hThread) == (DWORD)-1) {
            fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
                    GetLastError());
            exit(1);
        }

        /* On multi-core systems, we are not sure that the thread is actually
         * suspended until we can get the context.
         */
        tcgContext.ContextFlags = CONTEXT_CONTROL;
        while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
            continue;
        }

        cpu_signal(0);

        if (ResumeThread(cpu->hThread) == (DWORD)-1) {
            fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
                    GetLastError());
            exit(1);
        }
    }
#endif
}
Exemple #10
0
static void qemu_cpu_kick_thread(CPUArchState *env)
{
#ifndef _WIN32
    int err;
    LOGD_CPUS("%s1\n", __func__);

    err = pthread_kill(env->thread->thread, SIG_IPI);
    LOGD_CPUS("%s2: KILL pthread\n", __func__);
    if (err) {
        LOGD_CPUS("%s3: ERROR = %d:%s\n", __func__, err, strerror(err));
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
    LOGD_CPUS("%s4\n", __func__);
#else /* _WIN32 */
    
    if (!qemu_cpu_is_self(env)) {
        SuspendThread(env->hThread);
        cpu_signal(0);
        ResumeThread(env->hThread);
    }
#endif
}
Exemple #11
0
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
                   QemuMutex *mutex)
{
    struct qemu_work_item wi;

    if (qemu_cpu_is_self(cpu)) {
        func(cpu, data);
        return;
    }

    wi.func = func;
    wi.data = data;
    wi.done = false;
    wi.free = false;
    wi.exclusive = false;

    queue_work_on_cpu(cpu, &wi);
    while (!atomic_mb_read(&wi.done)) {
        CPUState *self_cpu = current_cpu;

        qemu_cond_wait(&qemu_work_cond, mutex);
        current_cpu = self_cpu;
    }
}
Exemple #12
0
void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
{
    struct qemu_work_item *wi;

    if (qemu_cpu_is_self(cpu)) {
        func(data);
        return;
    }

    wi = g_malloc0(sizeof(struct qemu_work_item));
    wi->func = func;
    wi->data = data;
    wi->free = true;
    if (cpu->queued_work_first == NULL) {
        cpu->queued_work_first = wi;
    } else {
        cpu->queued_work_last->next = wi;
    }
    cpu->queued_work_last = wi;
    wi->next = NULL;
    wi->done = false;

    qemu_cpu_kick(cpu);
}
Exemple #13
0
static bool qemu_in_vcpu_thread(void)
{
    return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
}
Exemple #14
0
static void whpx_get_registers(CPUState *cpu)
{
    struct whpx_state *whpx = &whpx_global;
    struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu);
    struct CPUX86State *env = (CPUArchState *)(cpu->env_ptr);
    X86CPU *x86_cpu = X86_CPU(cpu);
    struct whpx_register_set vcxt;
    uint64_t tpr, apic_base;
    HRESULT hr;
    int idx = 0;
    int i;

    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));

    hr = WHvGetVirtualProcessorRegisters(whpx->partition, cpu->cpu_index,
                                         whpx_register_names,
                                         RTL_NUMBER_OF(whpx_register_names),
                                         &vcxt.values[0]);
    if (FAILED(hr)) {
        error_report("WHPX: Failed to get virtual processor context, hr=%08lx",
                     hr);
    }

    /* Indexes for first 16 registers match between HV and QEMU definitions */
    for (idx = 0; idx < CPU_NB_REGS64; idx += 1) {
        env->regs[idx] = vcxt.values[idx].Reg64;
    }

    /* Same goes for RIP and RFLAGS */
    assert(whpx_register_names[idx] == WHvX64RegisterRip);
    env->eip = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterRflags);
    env->eflags = vcxt.values[idx++].Reg64;

    /* Translate 6+4 segment registers. HV and QEMU order matches  */
    assert(idx == WHvX64RegisterEs);
    for (i = 0; i < 6; i += 1, idx += 1) {
        env->segs[i] = whpx_seg_h2q(&vcxt.values[idx].Segment);
    }

    assert(idx == WHvX64RegisterLdtr);
    env->ldt = whpx_seg_h2q(&vcxt.values[idx++].Segment);
    assert(idx == WHvX64RegisterTr);
    env->tr = whpx_seg_h2q(&vcxt.values[idx++].Segment);
    assert(idx == WHvX64RegisterIdtr);
    env->idt.base = vcxt.values[idx].Table.Base;
    env->idt.limit = vcxt.values[idx].Table.Limit;
    idx += 1;
    assert(idx == WHvX64RegisterGdtr);
    env->gdt.base = vcxt.values[idx].Table.Base;
    env->gdt.limit = vcxt.values[idx].Table.Limit;
    idx += 1;

    /* CR0, 2, 3, 4, 8 */
    assert(whpx_register_names[idx] == WHvX64RegisterCr0);
    env->cr[0] = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterCr2);
    env->cr[2] = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterCr3);
    env->cr[3] = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterCr4);
    env->cr[4] = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterCr8);
    tpr = vcxt.values[idx++].Reg64;
    if (tpr != vcpu->tpr) {
        vcpu->tpr = tpr;
        cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
    }

    /* 8 Debug Registers - Skipped */

    /* 16 XMM registers */
    assert(whpx_register_names[idx] == WHvX64RegisterXmm0);
    for (i = 0; i < 16; i += 1, idx += 1) {
        env->xmm_regs[i].ZMM_Q(0) = vcxt.values[idx].Reg128.Low64;
        env->xmm_regs[i].ZMM_Q(1) = vcxt.values[idx].Reg128.High64;
    }

    /* 8 FP registers */
    assert(whpx_register_names[idx] == WHvX64RegisterFpMmx0);
    for (i = 0; i < 8; i += 1, idx += 1) {
        env->fpregs[i].mmx.MMX_Q(0) = vcxt.values[idx].Fp.AsUINT128.Low64;
        /* env->fpregs[i].mmx.MMX_Q(1) =
               vcxt.values[idx].Fp.AsUINT128.High64;
        */
    }

    /* FP control status register */
    assert(whpx_register_names[idx] == WHvX64RegisterFpControlStatus);
    env->fpuc = vcxt.values[idx].FpControlStatus.FpControl;
    env->fpstt = (vcxt.values[idx].FpControlStatus.FpStatus >> 11) & 0x7;
    env->fpus = vcxt.values[idx].FpControlStatus.FpStatus & ~0x3800;
    for (i = 0; i < 8; ++i) {
        env->fptags[i] = !((vcxt.values[idx].FpControlStatus.FpTag >> i) & 1);
    }
    env->fpop = vcxt.values[idx].FpControlStatus.LastFpOp;
    env->fpip = vcxt.values[idx].FpControlStatus.LastFpRip;
    idx += 1;

    /* XMM control status register */
    assert(whpx_register_names[idx] == WHvX64RegisterXmmControlStatus);
    env->mxcsr = vcxt.values[idx].XmmControlStatus.XmmStatusControl;
    idx += 1;

    /* MSRs */
    assert(whpx_register_names[idx] == WHvX64RegisterTsc);
    env->tsc = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterEfer);
    env->efer = vcxt.values[idx++].Reg64;
#ifdef TARGET_X86_64
    assert(whpx_register_names[idx] == WHvX64RegisterKernelGsBase);
    env->kernelgsbase = vcxt.values[idx++].Reg64;
#endif

    assert(whpx_register_names[idx] == WHvX64RegisterApicBase);
    apic_base = vcxt.values[idx++].Reg64;
    if (apic_base != vcpu->apic_base) {
        vcpu->apic_base = apic_base;
        cpu_set_apic_base(x86_cpu->apic_state, vcpu->apic_base);
    }

    /* WHvX64RegisterPat - Skipped */

    assert(whpx_register_names[idx] == WHvX64RegisterSysenterCs);
    env->sysenter_cs = vcxt.values[idx++].Reg64;;
    assert(whpx_register_names[idx] == WHvX64RegisterSysenterEip);
    env->sysenter_eip = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterSysenterEsp);
    env->sysenter_esp = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterStar);
    env->star = vcxt.values[idx++].Reg64;
#ifdef TARGET_X86_64
    assert(whpx_register_names[idx] == WHvX64RegisterLstar);
    env->lstar = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterCstar);
    env->cstar = vcxt.values[idx++].Reg64;
    assert(whpx_register_names[idx] == WHvX64RegisterSfmask);
    env->fmask = vcxt.values[idx++].Reg64;
#endif

    /* Interrupt / Event Registers - Skipped */

    assert(idx == RTL_NUMBER_OF(whpx_register_names));

    return;
}
Exemple #15
0
static void whpx_set_registers(CPUState *cpu)
{
    struct whpx_state *whpx = &whpx_global;
    struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu);
    struct CPUX86State *env = (CPUArchState *)(cpu->env_ptr);
    X86CPU *x86_cpu = X86_CPU(cpu);
    struct whpx_register_set vcxt = {0};
    HRESULT hr;
    int idx = 0;
    int i;
    int v86, r86;

    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));

    v86 = (env->eflags & VM_MASK);
    r86 = !(env->cr[0] & CR0_PE_MASK);

    vcpu->tpr = cpu_get_apic_tpr(x86_cpu->apic_state);
    vcpu->apic_base = cpu_get_apic_base(x86_cpu->apic_state);

    /* Indexes for first 16 registers match between HV and QEMU definitions */
    for (idx = 0; idx < CPU_NB_REGS64; idx += 1) {
        vcxt.values[idx].Reg64 = env->regs[idx];
    }

    /* Same goes for RIP and RFLAGS */
    assert(whpx_register_names[idx] == WHvX64RegisterRip);
    vcxt.values[idx++].Reg64 = env->eip;

    assert(whpx_register_names[idx] == WHvX64RegisterRflags);
    vcxt.values[idx++].Reg64 = env->eflags;

    /* Translate 6+4 segment registers. HV and QEMU order matches  */
    assert(idx == WHvX64RegisterEs);
    for (i = 0; i < 6; i += 1, idx += 1) {
        vcxt.values[idx].Segment = whpx_seg_q2h(&env->segs[i], v86, r86);
    }

    assert(idx == WHvX64RegisterLdtr);
    vcxt.values[idx++].Segment = whpx_seg_q2h(&env->ldt, 0, 0);

    assert(idx == WHvX64RegisterTr);
    vcxt.values[idx++].Segment = whpx_seg_q2h(&env->tr, 0, 0);

    assert(idx == WHvX64RegisterIdtr);
    vcxt.values[idx].Table.Base = env->idt.base;
    vcxt.values[idx].Table.Limit = env->idt.limit;
    idx += 1;

    assert(idx == WHvX64RegisterGdtr);
    vcxt.values[idx].Table.Base = env->gdt.base;
    vcxt.values[idx].Table.Limit = env->gdt.limit;
    idx += 1;

    /* CR0, 2, 3, 4, 8 */
    assert(whpx_register_names[idx] == WHvX64RegisterCr0);
    vcxt.values[idx++].Reg64 = env->cr[0];
    assert(whpx_register_names[idx] == WHvX64RegisterCr2);
    vcxt.values[idx++].Reg64 = env->cr[2];
    assert(whpx_register_names[idx] == WHvX64RegisterCr3);
    vcxt.values[idx++].Reg64 = env->cr[3];
    assert(whpx_register_names[idx] == WHvX64RegisterCr4);
    vcxt.values[idx++].Reg64 = env->cr[4];
    assert(whpx_register_names[idx] == WHvX64RegisterCr8);
    vcxt.values[idx++].Reg64 = vcpu->tpr;

    /* 8 Debug Registers - Skipped */

    /* 16 XMM registers */
    assert(whpx_register_names[idx] == WHvX64RegisterXmm0);
    for (i = 0; i < 16; i += 1, idx += 1) {
        vcxt.values[idx].Reg128.Low64 = env->xmm_regs[i].ZMM_Q(0);
        vcxt.values[idx].Reg128.High64 = env->xmm_regs[i].ZMM_Q(1);
    }

    /* 8 FP registers */
    assert(whpx_register_names[idx] == WHvX64RegisterFpMmx0);
    for (i = 0; i < 8; i += 1, idx += 1) {
        vcxt.values[idx].Fp.AsUINT128.Low64 = env->fpregs[i].mmx.MMX_Q(0);
        /* vcxt.values[idx].Fp.AsUINT128.High64 =
               env->fpregs[i].mmx.MMX_Q(1);
        */
    }

    /* FP control status register */
    assert(whpx_register_names[idx] == WHvX64RegisterFpControlStatus);
    vcxt.values[idx].FpControlStatus.FpControl = env->fpuc;
    vcxt.values[idx].FpControlStatus.FpStatus =
        (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    vcxt.values[idx].FpControlStatus.FpTag = 0;
    for (i = 0; i < 8; ++i) {
        vcxt.values[idx].FpControlStatus.FpTag |= (!env->fptags[i]) << i;
    }
    vcxt.values[idx].FpControlStatus.Reserved = 0;
    vcxt.values[idx].FpControlStatus.LastFpOp = env->fpop;
    vcxt.values[idx].FpControlStatus.LastFpRip = env->fpip;
    idx += 1;

    /* XMM control status register */
    assert(whpx_register_names[idx] == WHvX64RegisterXmmControlStatus);
    vcxt.values[idx].XmmControlStatus.LastFpRdp = 0;
    vcxt.values[idx].XmmControlStatus.XmmStatusControl = env->mxcsr;
    vcxt.values[idx].XmmControlStatus.XmmStatusControlMask = 0x0000ffff;
    idx += 1;

    /* MSRs */
    assert(whpx_register_names[idx] == WHvX64RegisterTsc);
    vcxt.values[idx++].Reg64 = env->tsc;
    assert(whpx_register_names[idx] == WHvX64RegisterEfer);
    vcxt.values[idx++].Reg64 = env->efer;
#ifdef TARGET_X86_64
    assert(whpx_register_names[idx] == WHvX64RegisterKernelGsBase);
    vcxt.values[idx++].Reg64 = env->kernelgsbase;
#endif

    assert(whpx_register_names[idx] == WHvX64RegisterApicBase);
    vcxt.values[idx++].Reg64 = vcpu->apic_base;

    /* WHvX64RegisterPat - Skipped */

    assert(whpx_register_names[idx] == WHvX64RegisterSysenterCs);
    vcxt.values[idx++].Reg64 = env->sysenter_cs;
    assert(whpx_register_names[idx] == WHvX64RegisterSysenterEip);
    vcxt.values[idx++].Reg64 = env->sysenter_eip;
    assert(whpx_register_names[idx] == WHvX64RegisterSysenterEsp);
    vcxt.values[idx++].Reg64 = env->sysenter_esp;
    assert(whpx_register_names[idx] == WHvX64RegisterStar);
    vcxt.values[idx++].Reg64 = env->star;
#ifdef TARGET_X86_64
    assert(whpx_register_names[idx] == WHvX64RegisterLstar);
    vcxt.values[idx++].Reg64 = env->lstar;
    assert(whpx_register_names[idx] == WHvX64RegisterCstar);
    vcxt.values[idx++].Reg64 = env->cstar;
    assert(whpx_register_names[idx] == WHvX64RegisterSfmask);
    vcxt.values[idx++].Reg64 = env->fmask;
#endif

    /* Interrupt / Event Registers - Skipped */

    assert(idx == RTL_NUMBER_OF(whpx_register_names));

    hr = WHvSetVirtualProcessorRegisters(whpx->partition, cpu->cpu_index,
                                         whpx_register_names,
                                         RTL_NUMBER_OF(whpx_register_names),
                                         &vcxt.values[0]);

    if (FAILED(hr)) {
        error_report("WHPX: Failed to set virtual processor context, hr=%08lx",
                     hr);
    }

    return;
}
Exemple #16
0
static bool qemu_in_vcpu_thread(void)
{
    return current_cpu && qemu_cpu_is_self(current_cpu);
}