/* Subroutine */ void lmstr_(void (*fcn)(const int *m, const int *n, const double *x, double *fvec, double *fjrow, int *iflag ), const int *m, const int *n, double *x, double *fvec, double *fjac, const int *ldfjac, const double *ftol, const double *xtol, const double *gtol, const int *maxfev, double * diag, const int *mode, const double *factor, const int *nprint, int * info, int *nfev, int *njev, int *ipvt, double *qtf, double *wa1, double *wa2, double *wa3, double *wa4) { /* Table of constant values */ const int c__1 = 1; const int c_true = TRUE_; /* Initialized data */ #define p1 .1 #define p5 .5 #define p25 .25 #define p75 .75 #define p0001 1e-4 /* System generated locals */ int fjac_dim1, fjac_offset, i__1, i__2; double d__1, d__2, d__3; /* Local variables */ int i__, j, l; double par, sum; int sing; int iter; double temp, temp1, temp2; int iflag; double delta; double ratio; double fnorm, gnorm, pnorm, xnorm, fnorm1, actred, dirder, epsmch, prered; /* ********** */ /* subroutine lmstr */ /* the purpose of lmstr is to minimize the sum of the squares of */ /* m nonlinear functions in n variables by a modification of */ /* the levenberg-marquardt algorithm which uses minimal storage. */ /* the user must provide a subroutine which calculates the */ /* functions and the rows of the jacobian. */ /* the subroutine statement is */ /* subroutine lmstr(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol, */ /* maxfev,diag,mode,factor,nprint,info,nfev, */ /* njev,ipvt,qtf,wa1,wa2,wa3,wa4) */ /* where */ /* fcn is the name of the user-supplied subroutine which */ /* calculates the functions and the rows of the jacobian. */ /* fcn must be declared in an external statement in the */ /* user calling program, and should be written as follows. */ /* subroutine fcn(m,n,x,fvec,fjrow,iflag) */ /* integer m,n,iflag */ /* double precision x(n),fvec(m),fjrow(n) */ /* ---------- */ /* if iflag = 1 calculate the functions at x and */ /* return this vector in fvec. */ /* if iflag = i calculate the (i-1)-st row of the */ /* jacobian at x and return this vector in fjrow. */ /* ---------- */ /* return */ /* end */ /* the value of iflag should not be changed by fcn unless */ /* the user wants to terminate execution of lmstr. */ /* in this case set iflag to a negative integer. */ /* m is a positive integer input variable set to the number */ /* of functions. */ /* n is a positive integer input variable set to the number */ /* of variables. n must not exceed m. */ /* x is an array of length n. on input x must contain */ /* an initial estimate of the solution vector. on output x */ /* contains the final estimate of the solution vector. */ /* fvec is an output array of length m which contains */ /* the functions evaluated at the output x. */ /* fjac is an output n by n array. the upper triangle of fjac */ /* contains an upper triangular matrix r such that */ /* t t t */ /* p *(jac *jac)*p = r *r, */ /* where p is a permutation matrix and jac is the final */ /* calculated jacobian. column j of p is column ipvt(j) */ /* (see below) of the identity matrix. the lower triangular */ /* part of fjac contains information generated during */ /* the computation of r. */ /* ldfjac is a positive integer input variable not less than n */ /* which specifies the leading dimension of the array fjac. */ /* ftol is a nonnegative input variable. termination */ /* occurs when both the actual and predicted relative */ /* reductions in the sum of squares are at most ftol. */ /* therefore, ftol measures the relative error desired */ /* in the sum of squares. */ /* xtol is a nonnegative input variable. termination */ /* occurs when the relative error between two consecutive */ /* iterates is at most xtol. therefore, xtol measures the */ /* relative error desired in the approximate solution. */ /* gtol is a nonnegative input variable. termination */ /* occurs when the cosine of the angle between fvec and */ /* any column of the jacobian is at most gtol in absolute */ /* value. therefore, gtol measures the orthogonality */ /* desired between the function vector and the columns */ /* of the jacobian. */ /* maxfev is a positive integer input variable. termination */ /* occurs when the number of calls to fcn with iflag = 1 */ /* has reached maxfev. */ /* diag is an array of length n. if mode = 1 (see */ /* below), diag is internally set. if mode = 2, diag */ /* must contain positive entries that serve as */ /* multiplicative scale factors for the variables. */ /* mode is an integer input variable. if mode = 1, the */ /* variables will be scaled internally. if mode = 2, */ /* the scaling is specified by the input diag. other */ /* values of mode are equivalent to mode = 1. */ /* factor is a positive input variable used in determining the */ /* initial step bound. this bound is set to the product of */ /* factor and the euclidean norm of diag*x if nonzero, or else */ /* to factor itself. in most cases factor should lie in the */ /* interval (.1,100.). 100. is a generally recommended value. */ /* nprint is an integer input variable that enables controlled */ /* printing of iterates if it is positive. in this case, */ /* fcn is called with iflag = 0 at the beginning of the first */ /* iteration and every nprint iterations thereafter and */ /* immediately prior to return, with x and fvec available */ /* for printing. if nprint is not positive, no special calls */ /* of fcn with iflag = 0 are made. */ /* info is an integer output variable. if the user has */ /* terminated execution, info is set to the (negative) */ /* value of iflag. see description of fcn. otherwise, */ /* info is set as follows. */ /* info = 0 improper input parameters. */ /* info = 1 both actual and predicted relative reductions */ /* in the sum of squares are at most ftol. */ /* info = 2 relative error between two consecutive iterates */ /* is at most xtol. */ /* info = 3 conditions for info = 1 and info = 2 both hold. */ /* info = 4 the cosine of the angle between fvec and any */ /* column of the jacobian is at most gtol in */ /* absolute value. */ /* info = 5 number of calls to fcn with iflag = 1 has */ /* reached maxfev. */ /* info = 6 ftol is too small. no further reduction in */ /* the sum of squares is possible. */ /* info = 7 xtol is too small. no further improvement in */ /* the approximate solution x is possible. */ /* info = 8 gtol is too small. fvec is orthogonal to the */ /* columns of the jacobian to machine precision. */ /* nfev is an integer output variable set to the number of */ /* calls to fcn with iflag = 1. */ /* njev is an integer output variable set to the number of */ /* calls to fcn with iflag = 2. */ /* ipvt is an integer output array of length n. ipvt */ /* defines a permutation matrix p such that jac*p = q*r, */ /* where jac is the final calculated jacobian, q is */ /* orthogonal (not stored), and r is upper triangular. */ /* column j of p is column ipvt(j) of the identity matrix. */ /* qtf is an output array of length n which contains */ /* the first n elements of the vector (q transpose)*fvec. */ /* wa1, wa2, and wa3 are work arrays of length n. */ /* wa4 is a work array of length m. */ /* subprograms called */ /* user-supplied ...... fcn */ /* minpack-supplied ... dpmpar,enorm,lmpar,qrfac,rwupdt */ /* fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod */ /* argonne national laboratory. minpack project. march 1980. */ /* burton s. garbow, dudley v. goetschel, kenneth e. hillstrom, */ /* jorge j. more */ /* ********** */ /* Parameter adjustments */ --wa4; --fvec; --wa3; --wa2; --wa1; --qtf; --ipvt; --diag; --x; fjac_dim1 = *ldfjac; fjac_offset = 1 + fjac_dim1 * 1; fjac -= fjac_offset; /* Function Body */ /* epsmch is the machine precision. */ epsmch = dpmpar_(&c__1); *info = 0; iflag = 0; *nfev = 0; *njev = 0; /* check the input parameters for errors. */ if (*n <= 0 || *m < *n || *ldfjac < *n || *ftol < 0. || *xtol < 0. || *gtol < 0. || *maxfev <= 0 || *factor <= 0.) { goto L340; } if (*mode != 2) { goto L20; } i__1 = *n; for (j = 1; j <= i__1; ++j) { if (diag[j] <= 0.) { goto L340; } /* L10: */ } L20: /* evaluate the function at the starting point */ /* and calculate its norm. */ iflag = 1; (*fcn)(m, n, &x[1], &fvec[1], &wa3[1], &iflag); *nfev = 1; if (iflag < 0) { goto L340; } fnorm = enorm_(m, &fvec[1]); /* initialize levenberg-marquardt parameter and iteration counter. */ par = 0.; iter = 1; /* beginning of the outer loop. */ L30: /* if requested, call fcn to enable printing of iterates. */ if (*nprint <= 0) { goto L40; } iflag = 0; if ((iter - 1) % *nprint == 0) { (*fcn)(m, n, &x[1], &fvec[1], &wa3[1], &iflag); } if (iflag < 0) { goto L340; } L40: /* compute the qr factorization of the jacobian matrix */ /* calculated one row at a time, while simultaneously */ /* forming (q transpose)*fvec and storing the first */ /* n components in qtf. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { qtf[j] = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { fjac[i__ + j * fjac_dim1] = 0.; /* L50: */ } /* L60: */ } iflag = 2; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { (*fcn)(m, n, &x[1], &fvec[1], &wa3[1], &iflag); if (iflag < 0) { goto L340; } temp = fvec[i__]; rwupdt_(n, &fjac[fjac_offset], ldfjac, &wa3[1], &qtf[1], &temp, &wa1[ 1], &wa2[1]); ++iflag; /* L70: */ } ++(*njev); /* if the jacobian is rank deficient, call qrfac to */ /* reorder its columns and update the components of qtf. */ sing = FALSE_; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (fjac[j + j * fjac_dim1] == 0.) { sing = TRUE_; } ipvt[j] = j; wa2[j] = enorm_(&j, &fjac[j * fjac_dim1 + 1]); /* L80: */ } if (! sing) { goto L130; } qrfac_(n, n, &fjac[fjac_offset], ldfjac, &c_true, &ipvt[1], n, &wa1[1], & wa2[1], &wa3[1]); i__1 = *n; for (j = 1; j <= i__1; ++j) { if (fjac[j + j * fjac_dim1] == 0.) { goto L110; } sum = 0.; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { sum += fjac[i__ + j * fjac_dim1] * qtf[i__]; /* L90: */ } temp = -sum / fjac[j + j * fjac_dim1]; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { qtf[i__] += fjac[i__ + j * fjac_dim1] * temp; /* L100: */ } L110: fjac[j + j * fjac_dim1] = wa1[j]; /* L120: */ } L130: /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter != 1) { goto L170; } if (*mode == 2) { goto L150; } i__1 = *n; for (j = 1; j <= i__1; ++j) { diag[j] = wa2[j]; if (wa2[j] == 0.) { diag[j] = 1.; } /* L140: */ } L150: /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { wa3[j] = diag[j] * x[j]; /* L160: */ } xnorm = enorm_(n, &wa3[1]); delta = *factor * xnorm; if (delta == 0.) { delta = *factor; } L170: /* compute the norm of the scaled gradient. */ gnorm = 0.; if (fnorm == 0.) { goto L210; } i__1 = *n; for (j = 1; j <= i__1; ++j) { l = ipvt[j]; if (wa2[l] == 0.) { goto L190; } sum = 0.; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { sum += fjac[i__ + j * fjac_dim1] * (qtf[i__] / fnorm); /* L180: */ } /* Computing MAX */ d__2 = gnorm, d__3 = (d__1 = sum / wa2[l], abs(d__1)); gnorm = max(d__2,d__3); L190: /* L200: */ ; } L210: /* test for convergence of the gradient norm. */ if (gnorm <= *gtol) { *info = 4; } if (*info != 0) { goto L340; } /* rescale if necessary. */ if (*mode == 2) { goto L230; } i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = diag[j], d__2 = wa2[j]; diag[j] = max(d__1,d__2); /* L220: */ } L230: /* beginning of the inner loop. */ L240: /* determine the levenberg-marquardt parameter. */ lmpar_(n, &fjac[fjac_offset], ldfjac, &ipvt[1], &diag[1], &qtf[1], &delta, &par, &wa1[1], &wa2[1], &wa3[1], &wa4[1]); /* store the direction p and x + p. calculate the norm of p. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { wa1[j] = -wa1[j]; wa2[j] = x[j] + wa1[j]; wa3[j] = diag[j] * wa1[j]; /* L250: */ } pnorm = enorm_(n, &wa3[1]); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) { delta = min(delta,pnorm); } /* evaluate the function at x + p and calculate its norm. */ iflag = 1; (*fcn)(m, n, &wa2[1], &wa4[1], &wa3[1], &iflag); ++(*nfev); if (iflag < 0) { goto L340; } fnorm1 = enorm_(m, &wa4[1]); /* compute the scaled actual reduction. */ actred = -1.; if (p1 * fnorm1 < fnorm) { /* Computing 2nd power */ d__1 = fnorm1 / fnorm; actred = 1. - d__1 * d__1; } /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { wa3[j] = 0.; l = ipvt[j]; temp = wa1[l]; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { wa3[i__] += fjac[i__ + j * fjac_dim1] * temp; /* L260: */ } /* L270: */ } temp1 = enorm_(n, &wa3[1]) / fnorm; temp2 = sqrt(par) * pnorm / fnorm; /* Computing 2nd power */ d__1 = temp1; /* Computing 2nd power */ d__2 = temp2; prered = d__1 * d__1 + d__2 * d__2 / p5; /* Computing 2nd power */ d__1 = temp1; /* Computing 2nd power */ d__2 = temp2; dirder = -(d__1 * d__1 + d__2 * d__2); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered != 0.) { ratio = actred / prered; } /* update the step bound. */ if (ratio > p25) { goto L280; } if (actred >= 0.) { temp = p5; } if (actred < 0.) { temp = p5 * dirder / (dirder + p5 * actred); } if (p1 * fnorm1 >= fnorm || temp < p1) { temp = p1; } /* Computing MIN */ d__1 = delta, d__2 = pnorm / p1; delta = temp * min(d__1,d__2); par /= temp; goto L300; L280: if (par != 0. && ratio < p75) { goto L290; } delta = pnorm / p5; par = p5 * par; L290: L300: /* test for successful iteration. */ if (ratio < p0001) { goto L330; } /* successful iteration. update x, fvec, and their norms. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { x[j] = wa2[j]; wa2[j] = diag[j] * x[j]; /* L310: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { fvec[i__] = wa4[i__]; /* L320: */ } xnorm = enorm_(n, &wa2[1]); fnorm = fnorm1; ++iter; L330: /* tests for convergence. */ if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= 1.) { *info = 1; } if (delta <= *xtol * xnorm) { *info = 2; } if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= 1. && *info == 2) { *info = 3; } if (*info != 0) { goto L340; } /* tests for termination and stringent tolerances. */ if (*nfev >= *maxfev) { *info = 5; } if (abs(actred) <= epsmch && prered <= epsmch && p5 * ratio <= 1.) { *info = 6; } if (delta <= epsmch * xnorm) { *info = 7; } if (gnorm <= epsmch) { *info = 8; } if (*info != 0) { goto L340; } /* end of the inner loop. repeat if iteration unsuccessful. */ if (ratio < p0001) { goto L240; } /* end of the outer loop. */ goto L30; L340: /* termination, either normal or user imposed. */ if (iflag < 0) { *info = iflag; } iflag = 0; if (*nprint > 0) { (*fcn)(m, n, &x[1], &fvec[1], &wa3[1], &iflag); } return; /* last card of subroutine lmstr. */ } /* lmstr_ */
/* Subroutine */ int _omc_hybrd_(S_fp fcn, integer *n, doublereal *x, doublereal * fvec, doublereal *xtol, integer *maxfev, integer *ml, integer *mu, doublereal *epsfcn, doublereal *diag, integer *mode, doublereal * factor, integer *nprint, integer *info, integer *nfev, doublereal * fjac, doublereal * fjacobian, integer *ldfjac, doublereal *r__, integer *lr, doublereal *qtf, doublereal *wa1, doublereal *wa2, doublereal *wa3, doublereal *wa4, void* userdata) { /* Initialized data */ static doublereal one = 1.; static doublereal p1 = .1; static doublereal p5 = .5; static doublereal p001 = .001; static doublereal p0001 = 1e-4; static doublereal zero = 0.; /* System generated locals */ integer fjac_dim1, fjac_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ integer i__, j, l, jm1, iwa[1]; doublereal sum; logical sing; integer iter; doublereal temp; integer msum, iflag; doublereal delta; extern /* Subroutine */ int qrfac_(integer *, integer *, doublereal *, integer *, logical *, integer *, integer *, doublereal *, doublereal *, doublereal *); logical jeval; integer ncsuc; doublereal ratio; extern doublereal enorm_(integer *, doublereal *); doublereal fnorm; extern /* Subroutine */ int qform_(integer *, integer *, doublereal *, integer *, doublereal *), fdjac1_(S_fp, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, void *); doublereal pnorm, xnorm, fnorm1; extern /* Subroutine */ int r1updt_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, logical *); integer nslow1, nslow2; extern /* Subroutine */ int r1mpyq_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer ncfail; extern /* Subroutine */ int dogleg_(integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal actred, epsmch, prered; extern doublereal dpmpar_(integer *); /* ********** */ /* subroutine hybrd */ /* the purpose of hybrd is to find a zero of a system of */ /* n nonlinear functions in n variables by a modification */ /* of the powell hybrid method. the user must provide a */ /* subroutine which calculates the functions. the jacobian is */ /* then calculated by a forward-difference approximation. */ /* the subroutine statement is */ /* subroutine hybrd(fcn,n,x,fvec,xtol,maxfev,ml,mu,epsfcn, */ /* diag,mode,factor,nprint,info,nfev,fjac,fjac, */ /* ldfjac,r,lr,qtf,wa1,wa2,wa3,wa4, userdata) */ /* where */ /* fcn is the name of the user-supplied subroutine which */ /* calculates the functions. fcn must be declared */ /* in an external statement in the user calling */ /* program, and should be written as follows. */ /* subroutine fcn(n,x,fvec,iflag) */ /* integer n,iflag */ /* double precision x(n),fvec(n) */ /* ---------- */ /* calculate the functions at x and */ /* return this vector in fvec. */ /* --------- */ /* return */ /* end */ /* the value of iflag should not be changed by fcn unless */ /* the user wants to terminate execution of hybrd. */ /* in this case set iflag to a negative integer. */ /* n is a positive integer input variable set to the number */ /* of functions and variables. */ /* x is an array of length n. on input x must contain */ /* an initial estimate of the solution vector. on output x */ /* contains the final estimate of the solution vector. */ /* fvec is an output array of length n which contains */ /* the functions evaluated at the output x. */ /* xtol is a nonnegative input variable. termination */ /* occurs when the relative error between two consecutive */ /* iterates is at most xtol. */ /* maxfev is a positive integer input variable. termination */ /* occurs when the number of calls to fcn is at least maxfev */ /* by the end of an iteration. */ /* ml is a nonnegative integer input variable which specifies */ /* the number of subdiagonals within the band of the */ /* jacobian matrix. if the jacobian is not banded, set */ /* ml to at least n - 1. */ /* mu is a nonnegative integer input variable which specifies */ /* the number of superdiagonals within the band of the */ /* jacobian matrix. if the jacobian is not banded, set */ /* mu to at least n - 1. */ /* epsfcn is an input variable used in determining a suitable */ /* step length for the forward-difference approximation. this */ /* approximation assumes that the relative errors in the */ /* functions are of the order of epsfcn. if epsfcn is less */ /* than the machine precision, it is assumed that the relative */ /* errors in the functions are of the order of the machine */ /* precision. */ /* diag is an array of length n. if mode = 1 (see */ /* below), diag is internally set. if mode = 2, diag */ /* must contain positive entries that serve as */ /* multiplicative scale factors for the variables. */ /* mode is an integer input variable. if mode = 1, the */ /* variables will be scaled internally. if mode = 2, */ /* the scaling is specified by the input diag. other */ /* values of mode are equivalent to mode = 1. */ /* factor is a positive input variable used in determining the */ /* initial step bound. this bound is set to the product of */ /* factor and the euclidean norm of diag*x if nonzero, or else */ /* to factor itself. in most cases factor should lie in the */ /* interval (.1,100.). 100. is a generally recommended value. */ /* nprint is an integer input variable that enables controlled */ /* printing of iterates if it is positive. in this case, */ /* fcn is called with iflag = 0 at the beginning of the first */ /* iteration and every nprint iterations thereafter and */ /* immediately prior to return, with x and fvec available */ /* for printing. if nprint is not positive, no special calls */ /* of fcn with iflag = 0 are made. */ /* info is an integer output variable. if the user has */ /* terminated execution, info is set to the (negative) */ /* value of iflag. see description of fcn. otherwise, */ /* info is set as follows. */ /* info = 0 improper input parameters. */ /* info = 1 relative error between two consecutive iterates */ /* is at most xtol. */ /* info = 2 number of calls to fcn has reached or exceeded */ /* maxfev. */ /* info = 3 xtol is too small. no further improvement in */ /* the approximate solution x is possible. */ /* info = 4 iteration is not making good progress, as */ /* measured by the improvement from the last */ /* five jacobian evaluations. */ /* info = 5 iteration is not making good progress, as */ /* measured by the improvement from the last */ /* ten iterations. */ /* nfev is an integer output variable set to the number of */ /* calls to fcn. */ /* fjac is an output n by n array which contains the */ /* orthogonal matrix q produced by the qr factorization */ /* of the final approximate jacobian. */ /* fjacobian is an output n by n array which contains the */ /* of the final approximate jacobian. */ /* ldfjac is a positive integer input variable not less than n */ /* which specifies the leading dimension of the array fjac. */ /* r is an output array of length lr which contains the */ /* upper triangular matrix produced by the qr factorization */ /* of the final approximate jacobian, stored rowwise. */ /* lr is a positive integer input variable not less than */ /* (n*(n+1))/2. */ /* qtf is an output array of length n which contains */ /* the vector (q transpose)*fvec. */ /* wa1, wa2, wa3, and wa4 are work arrays of length n. */ /* subprograms called */ /* user-supplied ...... fcn */ /* minpack-supplied ... dogleg,dpmpar,enorm,fdjac1, */ /* qform,qrfac,r1mpyq,r1updt */ /* fortran-supplied ... dabs,dmax1,dmin1,min0,mod */ /* argonne national laboratory. minpack project. march 1980. */ /* burton s. garbow, kenneth e. hillstrom, jorge j. more */ /* ********** */ /* Parameter adjustments */ --wa4; --wa3; --wa2; --wa1; --qtf; --diag; --fvec; --x; fjac_dim1 = *ldfjac; fjac_offset = 1 + fjac_dim1; fjac -= fjac_offset; --fjacobian; --r__; /* Function Body */ /* epsmch is the machine precision. */ epsmch = dpmpar_(&c__1); *info = 0; iflag = 0; *nfev = 0; /* check the input parameters for errors. */ if(*n <= 0 || *xtol < zero || *maxfev <= 0 || *ml < 0 || *mu < 0 || * factor <= zero || *ldfjac < *n || *lr < *n * (*n + 1) / 2) { goto L300; } if(*mode != 2) { goto L20; } i__1 = *n; for(j = 1; j <= i__1; ++j) { if(diag[j] <= zero) { goto L300; } /* L10: */ } L20: /* evaluate the function at the starting point */ /* and calculate its norm. */ iflag = 1; (*fcn)(n, &x[1], &fvec[1], &iflag, userdata); *nfev = 1; if(iflag < 0) { goto L300; } fnorm = enorm_(n, &fvec[1]); /* determine the number of calls to fcn needed to compute */ /* the jacobian matrix. */ /* Computing MIN */ i__1 = *ml + *mu + 1; msum = min(i__1,*n); /* initialize iteration counter and monitors. */ iter = 1; ncsuc = 0; ncfail = 0; nslow1 = 0; nslow2 = 0; /* beginning of the outer loop. */ L30: jeval = TRUE_; /* calculate the jacobian matrix. */ iflag = 2; fdjac1_((S_fp)fcn, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &iflag, ml, mu, epsfcn, &wa1[1], &wa2[1], userdata); *nfev += msum; /* store the calculate jacobain matrix */ /* added by wbraun for scaling residuals */ { int l = fjac_offset; int k = 1; for(j = 1; j <= *n; ++j){ for(i__ = 1; i__<= *n; ++i__, l++, k++){ fjacobian[k] = fjac[l]; } } } if(iflag < 0) { goto L300; } /* compute the qr factorization of the jacobian. */ qrfac_(n, n, &fjac[fjac_offset], ldfjac, &c_false, iwa, &c__1, &wa1[1], & wa2[1], &wa3[1]); /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ if(iter != 1) { goto L70; } if(*mode == 2) { goto L50; } i__1 = *n; for(j = 1; j <= i__1; ++j) { diag[j] = wa2[j]; if(wa2[j] == zero) { diag[j] = one; } /* L40: */ } L50: /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ i__1 = *n; for(j = 1; j <= i__1; ++j) { wa3[j] = diag[j] * x[j]; /* L60: */ } xnorm = enorm_(n, &wa3[1]); delta = *factor * xnorm; if(delta == zero) { delta = *factor; } L70: /* form (q transpose)*fvec and store in qtf. */ i__1 = *n; for(i__ = 1; i__ <= i__1; ++i__) { qtf[i__] = fvec[i__]; /* L80: */ } i__1 = *n; for(j = 1; j <= i__1; ++j) { if(fjac[j + j * fjac_dim1] == zero) { goto L110; } sum = zero; i__2 = *n; for(i__ = j; i__ <= i__2; ++i__) { sum += fjac[i__ + j * fjac_dim1] * qtf[i__]; /* L90: */ } temp = -sum / fjac[j + j * fjac_dim1]; i__2 = *n; for(i__ = j; i__ <= i__2; ++i__) { qtf[i__] += fjac[i__ + j * fjac_dim1] * temp; /* L100: */ } L110: /* L120: */ ; } /* copy the triangular factor of the qr factorization into r. */ sing = FALSE_; i__1 = *n; for(j = 1; j <= i__1; ++j) { l = j; jm1 = j - 1; if(jm1 < 1) { goto L140; } i__2 = jm1; for(i__ = 1; i__ <= i__2; ++i__) { r__[l] = fjac[i__ + j * fjac_dim1]; l = l + *n - i__; /* L130: */ } L140: r__[l] = wa1[j]; if(wa1[j] == zero) { sing = TRUE_; } /* L150: */ } /* accumulate the orthogonal factor in fjac. */ qform_(n, n, &fjac[fjac_offset], ldfjac, &wa1[1]); /* rescale if necessary. */ if(*mode == 2) { goto L170; } i__1 = *n; for(j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = diag[j], d__2 = wa2[j]; diag[j] = max(d__1,d__2); /* L160: */ } L170: /* beginning of the inner loop. */ L180: /* if requested, call fcn to enable printing of iterates. */ if(*nprint <= 0) { goto L190; } iflag = 0; if((iter - 1) % *nprint == 0) { (*fcn)(n, &x[1], &fvec[1], &iflag, userdata); } if(iflag < 0) { goto L300; } L190: /* determine the direction p. */ dogleg_(n, &r__[1], lr, &diag[1], &qtf[1], &delta, &wa1[1], &wa2[1], &wa3[ 1]); /* store the direction p and x + p. calculate the norm of p. */ i__1 = *n; for(j = 1; j <= i__1; ++j) { wa1[j] = -wa1[j]; wa2[j] = x[j] + wa1[j]; wa3[j] = diag[j] * wa1[j]; /* L200: */ } pnorm = enorm_(n, &wa3[1]); /* on the first iteration, adjust the initial step bound. */ if(iter == 1) { delta = min(delta,pnorm); } /* evaluate the function at x + p and calculate its norm. */ iflag = 1; (*fcn)(n, &wa2[1], &wa4[1], &iflag, userdata); ++(*nfev); /* Scaling Residual vector */ /* added by wbraun */ /* { for(i__=1;i__<*n;i__++) wa4[i__] = diagres[i__] * wa4[i__]; } */ if(iflag < 0) { goto L300; } fnorm1 = enorm_(n, &wa4[1]); /* compute the scaled actual reduction. */ actred = -one; if(fnorm1 < fnorm) { /* Computing 2nd power */ d__1 = fnorm1 / fnorm; actred = one - d__1 * d__1; } /* compute the scaled predicted reduction. */ l = 1; i__1 = *n; for(i__ = 1; i__ <= i__1; ++i__) { sum = zero; i__2 = *n; for(j = i__; j <= i__2; ++j) { sum += r__[l] * wa1[j]; ++l; /* L210: */ } wa3[i__] = qtf[i__] + sum; /* L220: */ } temp = enorm_(n, &wa3[1]); prered = zero; if(temp < fnorm) { /* Computing 2nd power */ d__1 = temp / fnorm; prered = one - d__1 * d__1; } /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = zero; if(prered > zero) { ratio = actred / prered; } /* update the step bound. */ if(ratio >= p1) { goto L230; } ncsuc = 0; ++ncfail; delta = p5 * delta; goto L240; L230: ncfail = 0; ++ncsuc; if(ratio >= p5 || ncsuc > 1) { /* Computing MAX */ d__1 = delta, d__2 = pnorm / p5; delta = max(d__1,d__2); } if((d__1 = ratio - one, abs(d__1)) <= p1) { delta = pnorm / p5; } L240: /* test for successful iteration. */ if(ratio < p0001) { goto L260; } /* successful iteration. update x, fvec, and their norms. */ i__1 = *n; for(j = 1; j <= i__1; ++j) { x[j] = wa2[j]; wa2[j] = diag[j] * x[j]; fvec[j] = wa4[j]; /* L250: */ } xnorm = enorm_(n, &wa2[1]); fnorm = fnorm1; ++iter; L260: /* determine the progress of the iteration. */ ++nslow1; if(actred >= p001) { nslow1 = 0; } if(jeval) { ++nslow2; } if(actred >= p1) { nslow2 = 0; } /* test for convergence. */ if(delta <= *xtol * xnorm || fnorm == zero) { *info = 1; } if(*info != 0) { goto L300; } /* tests for termination and stringent tolerances. */ if(*nfev >= *maxfev) { *info = 2; } /* Computing MAX */ d__1 = p1 * delta; if(p1 * max(d__1,pnorm) <= epsmch * xnorm) { *info = 3; } if(nslow2 == 5) { *info = 4; } if(nslow1 == 10) { *info = 5; } if(*info != 0) { goto L300; } /* criterion for recalculating jacobian approximation */ /* by forward differences. */ if(ncfail == 2) { goto L290; } /* calculate the rank one modification to the jacobian */ /* and update qtf if necessary. */ i__1 = *n; for(j = 1; j <= i__1; ++j) { sum = zero; i__2 = *n; for(i__ = 1; i__ <= i__2; ++i__) { sum += fjac[i__ + j * fjac_dim1] * wa4[i__]; /* L270: */ } wa2[j] = (sum - wa3[j]) / pnorm; wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm); if(ratio >= p0001) { qtf[j] = sum; } /* L280: */ } /* compute the qr factorization of the updated jacobian. */ r1updt_(n, n, &r__[1], lr, &wa1[1], &wa2[1], &wa3[1], &sing); r1mpyq_(n, n, &fjac[fjac_offset], ldfjac, &wa2[1], &wa3[1]); r1mpyq_(&c__1, n, &qtf[1], &c__1, &wa2[1], &wa3[1]); /* end of the inner loop. */ jeval = FALSE_; goto L180; L290: /* end of the outer loop. */ goto L30; L300: /* termination, either normal or user imposed. */ if(iflag < 0) { *info = iflag; } iflag = 0; if(*nprint > 0) { (*fcn)(n, &x[1], &fvec[1], &iflag, userdata); } return 0; /* last card of subroutine hybrd. */ } /* _omc_hybrd_ */
/*< >*/ /* Subroutine */ int lmder_( void (*fcn)(v3p_netlib_integer*, v3p_netlib_integer*, v3p_netlib_doublereal*, v3p_netlib_doublereal*, v3p_netlib_doublereal*, v3p_netlib_integer*, v3p_netlib_integer*, void*), integer *m, integer *n, doublereal *x, doublereal *fvec, doublereal *fjac, integer *ldfjac, doublereal *ftol, doublereal *xtol, doublereal *gtol, integer *maxfev, doublereal * diag, integer *mode, doublereal *factor, integer *nprint, integer * info, integer *nfev, integer *njev, integer *ipvt, doublereal *qtf, doublereal *wa1, doublereal *wa2, doublereal *wa3, doublereal *wa4, void* userdata) { /* Initialized data */ static doublereal one = 1.; /* constant */ static doublereal p1 = .1; /* constant */ static doublereal p5 = .5; /* constant */ static doublereal p25 = .25; /* constant */ static doublereal p75 = .75; /* constant */ static doublereal p0001 = 1e-4; /* constant */ static doublereal zero = 0.; /* constant */ /* System generated locals */ integer fjac_dim1, fjac_offset, i__1, i__2; doublereal d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, l; doublereal par, sum; integer iter; doublereal temp=0, temp1, temp2; integer iflag; doublereal delta; extern /* Subroutine */ int qrfac_(integer *, integer *, doublereal *, integer *, logical *, integer *, integer *, doublereal *, doublereal *, doublereal *), lmpar_(integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal ratio; extern doublereal enorm_(integer *, doublereal *); doublereal fnorm, gnorm, pnorm, xnorm=0, fnorm1, actred, dirder, epsmch, prered; extern doublereal dpmpar_(integer *); /*< integer m,n,ldfjac,maxfev,mode,nprint,info,nfev,njev >*/ /*< integer ipvt(n) >*/ /*< double precision ftol,xtol,gtol,factor >*/ /*< >*/ /* ********** */ /* subroutine lmder */ /* the purpose of lmder is to minimize the sum of the squares of */ /* m nonlinear functions in n variables by a modification of */ /* the levenberg-marquardt algorithm. the user must provide a */ /* subroutine which calculates the functions and the jacobian. */ /* the subroutine statement is */ /* subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol, */ /* maxfev,diag,mode,factor,nprint,info,nfev, */ /* njev,ipvt,qtf,wa1,wa2,wa3,wa4) */ /* where */ /* fcn is the name of the user-supplied subroutine which */ /* calculates the functions and the jacobian. fcn must */ /* be declared in an external statement in the user */ /* calling program, and should be written as follows. */ /* subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag) */ /* integer m,n,ldfjac,iflag */ /* double precision x(n),fvec(m),fjac(ldfjac,n) */ /* ---------- */ /* if iflag = 1 calculate the functions at x and */ /* return this vector in fvec. do not alter fjac. */ /* if iflag = 2 calculate the jacobian at x and */ /* return this matrix in fjac. do not alter fvec. */ /* ---------- */ /* return */ /* end */ /* the value of iflag should not be changed by fcn unless */ /* the user wants to terminate execution of lmder. */ /* in this case set iflag to a negative integer. */ /* m is a positive integer input variable set to the number */ /* of functions. */ /* n is a positive integer input variable set to the number */ /* of variables. n must not exceed m. */ /* x is an array of length n. on input x must contain */ /* an initial estimate of the solution vector. on output x */ /* contains the final estimate of the solution vector. */ /* fvec is an output array of length m which contains */ /* the functions evaluated at the output x. */ /* fjac is an output m by n array. the upper n by n submatrix */ /* of fjac contains an upper triangular matrix r with */ /* diagonal elements of nonincreasing magnitude such that */ /* t t t */ /* p *(jac *jac)*p = r *r, */ /* where p is a permutation matrix and jac is the final */ /* calculated jacobian. column j of p is column ipvt(j) */ /* (see below) of the identity matrix. the lower trapezoidal */ /* part of fjac contains information generated during */ /* the computation of r. */ /* ldfjac is a positive integer input variable not less than m */ /* which specifies the leading dimension of the array fjac. */ /* ftol is a nonnegative input variable. termination */ /* occurs when both the actual and predicted relative */ /* reductions in the sum of squares are at most ftol. */ /* therefore, ftol measures the relative error desired */ /* in the sum of squares. */ /* xtol is a nonnegative input variable. termination */ /* occurs when the relative error between two consecutive */ /* iterates is at most xtol. therefore, xtol measures the */ /* relative error desired in the approximate solution. */ /* gtol is a nonnegative input variable. termination */ /* occurs when the cosine of the angle between fvec and */ /* any column of the jacobian is at most gtol in absolute */ /* value. therefore, gtol measures the orthogonality */ /* desired between the function vector and the columns */ /* of the jacobian. */ /* maxfev is a positive integer input variable. termination */ /* occurs when the number of calls to fcn with iflag = 1 */ /* has reached maxfev. */ /* diag is an array of length n. if mode = 1 (see */ /* below), diag is internally set. if mode = 2, diag */ /* must contain positive entries that serve as */ /* multiplicative scale factors for the variables. */ /* mode is an integer input variable. if mode = 1, the */ /* variables will be scaled internally. if mode = 2, */ /* the scaling is specified by the input diag. other */ /* values of mode are equivalent to mode = 1. */ /* factor is a positive input variable used in determining the */ /* initial step bound. this bound is set to the product of */ /* factor and the euclidean norm of diag*x if nonzero, or else */ /* to factor itself. in most cases factor should lie in the */ /* interval (.1,100.).100. is a generally recommended value. */ /* nprint is an integer input variable that enables controlled */ /* printing of iterates if it is positive. in this case, */ /* fcn is called with iflag = 0 at the beginning of the first */ /* iteration and every nprint iterations thereafter and */ /* immediately prior to return, with x, fvec, and fjac */ /* available for printing. fvec and fjac should not be */ /* altered. if nprint is not positive, no special calls */ /* of fcn with iflag = 0 are made. */ /* info is an integer output variable. if the user has */ /* terminated execution, info is set to the (negative) */ /* value of iflag. see description of fcn. otherwise, */ /* info is set as follows. */ /* info = 0 improper input parameters. */ /* info = 1 both actual and predicted relative reductions */ /* in the sum of squares are at most ftol. */ /* info = 2 relative error between two consecutive iterates */ /* is at most xtol. */ /* info = 3 conditions for info = 1 and info = 2 both hold. */ /* info = 4 the cosine of the angle between fvec and any */ /* column of the jacobian is at most gtol in */ /* absolute value. */ /* info = 5 number of calls to fcn with iflag = 1 has */ /* reached maxfev. */ /* info = 6 ftol is too small. no further reduction in */ /* the sum of squares is possible. */ /* info = 7 xtol is too small. no further improvement in */ /* the approximate solution x is possible. */ /* info = 8 gtol is too small. fvec is orthogonal to the */ /* columns of the jacobian to machine precision. */ /* nfev is an integer output variable set to the number of */ /* calls to fcn with iflag = 1. */ /* njev is an integer output variable set to the number of */ /* calls to fcn with iflag = 2. */ /* ipvt is an integer output array of length n. ipvt */ /* defines a permutation matrix p such that jac*p = q*r, */ /* where jac is the final calculated jacobian, q is */ /* orthogonal (not stored), and r is upper triangular */ /* with diagonal elements of nonincreasing magnitude. */ /* column j of p is column ipvt(j) of the identity matrix. */ /* qtf is an output array of length n which contains */ /* the first n elements of the vector (q transpose)*fvec. */ /* wa1, wa2, and wa3 are work arrays of length n. */ /* wa4 is a work array of length m. */ /* subprograms called */ /* user-supplied ...... fcn */ /* minpack-supplied ... dpmpar,enorm,lmpar,qrfac */ /* fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod */ /* argonne national laboratory. minpack project. march 1980. */ /* burton s. garbow, kenneth e. hillstrom, jorge j. more */ /* ********** */ /*< integer i,iflag,iter,j,l >*/ /*< >*/ /*< double precision dpmpar,enorm >*/ /*< >*/ /* Parameter adjustments */ --wa4; --fvec; --wa3; --wa2; --wa1; --qtf; --ipvt; --diag; --x; fjac_dim1 = *ldfjac; fjac_offset = 1 + fjac_dim1; fjac -= fjac_offset; /* Function Body */ /* epsmch is the machine precision. */ /*< epsmch = dpmpar(1) >*/ epsmch = dpmpar_(&c__1); /*< info = 0 >*/ *info = 0; /*< iflag = 0 >*/ iflag = 0; /*< nfev = 0 >*/ *nfev = 0; /*< njev = 0 >*/ *njev = 0; /* check the input parameters for errors. */ /*< >*/ if (*n <= 0 || *m < *n || *ldfjac < *m || *ftol < zero || *xtol < zero || *gtol < zero || *maxfev <= 0 || *factor <= zero) { goto L300; } /*< if (mode .ne. 2) go to 20 >*/ if (*mode != 2) { goto L20; } /*< do 10 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< if (diag(j) .le. zero) go to 300 >*/ if (diag[j] <= zero) { goto L300; } /*< 10 continue >*/ /* L10: */ } /*< 20 continue >*/ L20: /* evaluate the function at the starting point */ /* and calculate its norm. */ /*< iflag = 1 >*/ iflag = 1; /*< call fcn(m,n,x,fvec,fjac,ldfjac,iflag) >*/ (*fcn)(m, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &iflag, userdata); /*< nfev = 1 >*/ *nfev = 1; /*< if (iflag .lt. 0) go to 300 >*/ if (iflag < 0) { goto L300; } /*< fnorm = enorm(m,fvec) >*/ fnorm = enorm_(m, &fvec[1]); /* initialize levenberg-marquardt parameter and iteration counter. */ /*< par = zero >*/ par = zero; /*< iter = 1 >*/ iter = 1; /* beginning of the outer loop. */ /*< 30 continue >*/ L30: /* calculate the jacobian matrix. */ /*< iflag = 2 >*/ iflag = 2; /*< call fcn(m,n,x,fvec,fjac,ldfjac,iflag) >*/ (*fcn)(m, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &iflag, userdata); /*< njev = njev + 1 >*/ ++(*njev); /*< if (iflag .lt. 0) go to 300 >*/ if (iflag < 0) { goto L300; } /* if requested, call fcn to enable printing of iterates. */ /*< if (nprint .le. 0) go to 40 >*/ if (*nprint <= 0) { goto L40; } /*< iflag = 0 >*/ iflag = 0; /*< >*/ if ((iter - 1) % *nprint == 0) { (*fcn)(m, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &iflag, userdata); } /*< if (iflag .lt. 0) go to 300 >*/ if (iflag < 0) { goto L300; } /*< 40 continue >*/ L40: /* compute the qr factorization of the jacobian. */ /*< call qrfac(m,n,fjac,ldfjac,.true.,ipvt,n,wa1,wa2,wa3) >*/ qrfac_(m, n, &fjac[fjac_offset], ldfjac, &c_true, &ipvt[1], n, &wa1[1], & wa2[1], &wa3[1]); /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ /*< if (iter .ne. 1) go to 80 >*/ if (iter != 1) { goto L80; } /*< if (mode .eq. 2) go to 60 >*/ if (*mode == 2) { goto L60; } /*< do 50 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< diag(j) = wa2(j) >*/ diag[j] = wa2[j]; /*< if (wa2(j) .eq. zero) diag(j) = one >*/ if (wa2[j] == zero) { diag[j] = one; } /*< 50 continue >*/ /* L50: */ } /*< 60 continue >*/ L60: /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ /*< do 70 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< wa3(j) = diag(j)*x(j) >*/ wa3[j] = diag[j] * x[j]; /*< 70 continue >*/ /* L70: */ } /*< xnorm = enorm(n,wa3) >*/ xnorm = enorm_(n, &wa3[1]); /*< delta = factor*xnorm >*/ delta = *factor * xnorm; /*< if (delta .eq. zero) delta = factor >*/ if (delta == zero) { delta = *factor; } /*< 80 continue >*/ L80: /* form (q transpose)*fvec and store the first n components in */ /* qtf. */ /*< do 90 i = 1, m >*/ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /*< wa4(i) = fvec(i) >*/ wa4[i__] = fvec[i__]; /*< 90 continue >*/ /* L90: */ } /*< do 130 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< if (fjac(j,j) .eq. zero) go to 120 >*/ if (fjac[j + j * fjac_dim1] == zero) { goto L120; } /*< sum = zero >*/ sum = zero; /*< do 100 i = j, m >*/ i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { /*< sum = sum + fjac(i,j)*wa4(i) >*/ sum += fjac[i__ + j * fjac_dim1] * wa4[i__]; /*< 100 continue >*/ /* L100: */ } /*< temp = -sum/fjac(j,j) >*/ temp = -sum / fjac[j + j * fjac_dim1]; /*< do 110 i = j, m >*/ i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { /*< wa4(i) = wa4(i) + fjac(i,j)*temp >*/ wa4[i__] += fjac[i__ + j * fjac_dim1] * temp; /*< 110 continue >*/ /* L110: */ } /*< 120 continue >*/ L120: /*< fjac(j,j) = wa1(j) >*/ fjac[j + j * fjac_dim1] = wa1[j]; /*< qtf(j) = wa4(j) >*/ qtf[j] = wa4[j]; /*< 130 continue >*/ /* L130: */ } /* compute the norm of the scaled gradient. */ /*< gnorm = zero >*/ gnorm = zero; /*< if (fnorm .eq. zero) go to 170 >*/ if (fnorm == zero) { goto L170; } /*< do 160 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< l = ipvt(j) >*/ l = ipvt[j]; /*< if (wa2(l) .eq. zero) go to 150 >*/ if (wa2[l] == zero) { goto L150; } /*< sum = zero >*/ sum = zero; /*< do 140 i = 1, j >*/ i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { /*< sum = sum + fjac(i,j)*(qtf(i)/fnorm) >*/ sum += fjac[i__ + j * fjac_dim1] * (qtf[i__] / fnorm); /*< 140 continue >*/ /* L140: */ } /*< gnorm = dmax1(gnorm,dabs(sum/wa2(l))) >*/ /* Computing MAX */ d__2 = gnorm, d__3 = (d__1 = sum / wa2[l], abs(d__1)); gnorm = max(d__2,d__3); /*< 150 continue >*/ L150: /*< 160 continue >*/ /* L160: */ ; } /*< 170 continue >*/ L170: /* test for convergence of the gradient norm. */ /*< if (gnorm .le. gtol) info = 4 >*/ if (gnorm <= *gtol) { *info = 4; } /*< if (info .ne. 0) go to 300 >*/ if (*info != 0) { goto L300; } /* rescale if necessary. */ /*< if (mode .eq. 2) go to 190 >*/ if (*mode == 2) { goto L190; } /*< do 180 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< diag(j) = dmax1(diag(j),wa2(j)) >*/ /* Computing MAX */ d__1 = diag[j], d__2 = wa2[j]; diag[j] = max(d__1,d__2); /*< 180 continue >*/ /* L180: */ } /*< 190 continue >*/ L190: /* beginning of the inner loop. */ /*< 200 continue >*/ L200: /* determine the levenberg-marquardt parameter. */ /*< >*/ lmpar_(n, &fjac[fjac_offset], ldfjac, &ipvt[1], &diag[1], &qtf[1], &delta, &par, &wa1[1], &wa2[1], &wa3[1], &wa4[1]); /* store the direction p and x + p. calculate the norm of p. */ /*< do 210 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< wa1(j) = -wa1(j) >*/ wa1[j] = -wa1[j]; /*< wa2(j) = x(j) + wa1(j) >*/ wa2[j] = x[j] + wa1[j]; /*< wa3(j) = diag(j)*wa1(j) >*/ wa3[j] = diag[j] * wa1[j]; /*< 210 continue >*/ /* L210: */ } /*< pnorm = enorm(n,wa3) >*/ pnorm = enorm_(n, &wa3[1]); /* on the first iteration, adjust the initial step bound. */ /*< if (iter .eq. 1) delta = dmin1(delta,pnorm) >*/ if (iter == 1) { delta = min(delta,pnorm); } /* evaluate the function at x + p and calculate its norm. */ /*< iflag = 1 >*/ iflag = 1; /*< call fcn(m,n,wa2,wa4,fjac,ldfjac,iflag) >*/ (*fcn)(m, n, &wa2[1], &wa4[1], &fjac[fjac_offset], ldfjac, &iflag, userdata); /*< nfev = nfev + 1 >*/ ++(*nfev); /*< if (iflag .lt. 0) go to 300 >*/ if (iflag < 0) { goto L300; } /*< fnorm1 = enorm(m,wa4) >*/ fnorm1 = enorm_(m, &wa4[1]); /* compute the scaled actual reduction. */ /*< actred = -one >*/ actred = -one; /*< if (p1*fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2 >*/ if (p1 * fnorm1 < fnorm) { /* Computing 2nd power */ d__1 = fnorm1 / fnorm; actred = one - d__1 * d__1; } /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ /*< do 230 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< wa3(j) = zero >*/ wa3[j] = zero; /*< l = ipvt(j) >*/ l = ipvt[j]; /*< temp = wa1(l) >*/ temp = wa1[l]; /*< do 220 i = 1, j >*/ i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { /*< wa3(i) = wa3(i) + fjac(i,j)*temp >*/ wa3[i__] += fjac[i__ + j * fjac_dim1] * temp; /*< 220 continue >*/ /* L220: */ } /*< 230 continue >*/ /* L230: */ } /*< temp1 = enorm(n,wa3)/fnorm >*/ temp1 = enorm_(n, &wa3[1]) / fnorm; /*< temp2 = (dsqrt(par)*pnorm)/fnorm >*/ temp2 = sqrt(par) * pnorm / fnorm; /*< prered = temp1**2 + temp2**2/p5 >*/ /* Computing 2nd power */ d__1 = temp1; /* Computing 2nd power */ d__2 = temp2; prered = d__1 * d__1 + d__2 * d__2 / p5; /*< dirder = -(temp1**2 + temp2**2) >*/ /* Computing 2nd power */ d__1 = temp1; /* Computing 2nd power */ d__2 = temp2; dirder = -(d__1 * d__1 + d__2 * d__2); /* compute the ratio of the actual to the predicted */ /* reduction. */ /*< ratio = zero >*/ ratio = zero; /*< if (prered .ne. zero) ratio = actred/prered >*/ if (prered != zero) { ratio = actred / prered; } /* update the step bound. */ /*< if (ratio .gt. p25) go to 240 >*/ if (ratio > p25) { goto L240; } /*< if (actred .ge. zero) temp = p5 >*/ if (actred >= zero) { temp = p5; } /*< >*/ if (actred < zero) { temp = p5 * dirder / (dirder + p5 * actred); } /*< if (p1*fnorm1 .ge. fnorm .or. temp .lt. p1) temp = p1 >*/ if (p1 * fnorm1 >= fnorm || temp < p1) { temp = p1; } /*< delta = temp*dmin1(delta,pnorm/p1) >*/ /* Computing MIN */ d__1 = delta, d__2 = pnorm / p1; delta = temp * min(d__1,d__2); /*< par = par/temp >*/ par /= temp; /*< go to 260 >*/ goto L260; /*< 240 continue >*/ L240: /*< if (par .ne. zero .and. ratio .lt. p75) go to 250 >*/ if (par != zero && ratio < p75) { goto L250; } /*< delta = pnorm/p5 >*/ delta = pnorm / p5; /*< par = p5*par >*/ par = p5 * par; /*< 250 continue >*/ L250: /*< 260 continue >*/ L260: /* test for successful iteration. */ /*< if (ratio .lt. p0001) go to 290 >*/ if (ratio < p0001) { goto L290; } /* successful iteration. update x, fvec, and their norms. */ /*< do 270 j = 1, n >*/ i__1 = *n; for (j = 1; j <= i__1; ++j) { /*< x(j) = wa2(j) >*/ x[j] = wa2[j]; /*< wa2(j) = diag(j)*x(j) >*/ wa2[j] = diag[j] * x[j]; /*< 270 continue >*/ /* L270: */ } /*< do 280 i = 1, m >*/ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /*< fvec(i) = wa4(i) >*/ fvec[i__] = wa4[i__]; /*< 280 continue >*/ /* L280: */ } /*< xnorm = enorm(n,wa2) >*/ xnorm = enorm_(n, &wa2[1]); /*< fnorm = fnorm1 >*/ fnorm = fnorm1; /*< iter = iter + 1 >*/ ++iter; /*< 290 continue >*/ L290: /* tests for convergence. */ /*< >*/ if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= one) { *info = 1; } /*< if (delta .le. xtol*xnorm) info = 2 >*/ if (delta <= *xtol * xnorm) { *info = 2; } /*< >*/ if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= one && *info == 2) { *info = 3; } /*< if (info .ne. 0) go to 300 >*/ if (*info != 0) { goto L300; } /* tests for termination and stringent tolerances. */ /*< if (nfev .ge. maxfev) info = 5 >*/ if (*nfev >= *maxfev) { *info = 5; } /*< >*/ if (abs(actred) <= epsmch && prered <= epsmch && p5 * ratio <= one) { *info = 6; } /*< if (delta .le. epsmch*xnorm) info = 7 >*/ if (delta <= epsmch * xnorm) { *info = 7; } /*< if (gnorm .le. epsmch) info = 8 >*/ if (gnorm <= epsmch) { *info = 8; } /*< if (info .ne. 0) go to 300 >*/ if (*info != 0) { goto L300; } /* end of the inner loop. repeat if iteration unsuccessful. */ /*< if (ratio .lt. p0001) go to 200 >*/ if (ratio < p0001) { goto L200; } /* end of the outer loop. */ /*< go to 30 >*/ goto L30; /*< 300 continue >*/ L300: /* termination, either normal or user imposed. */ /*< if (iflag .lt. 0) info = iflag >*/ if (iflag < 0) { *info = iflag; } /*< iflag = 0 >*/ iflag = 0; /*< if (nprint .gt. 0) call fcn(m,n,x,fvec,fjac,ldfjac,iflag) >*/ if (*nprint > 0) { (*fcn)(m, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &iflag, userdata); } /*< return >*/ return 0; /* last card of subroutine lmder. */ /*< end >*/ } /* lmder_ */
/* DECK SCOV */ /* Subroutine */ int scov_(S_fp fcn, integer *iopt, integer *m, integer *n, real *x, real *fvec, real *r__, integer *ldr, integer *info, real * wa1, real *wa2, real *wa3, real *wa4) { /* Initialized data */ static real zero = 0.f; static real one = 1.f; /* System generated locals */ integer r_dim1, r_offset, i__1, i__2, i__3; /* Local variables */ static integer i__, j, k, kp1, nm1, idum; static logical sing; static real temp; static integer nrow, iflag; extern /* Subroutine */ int qrfac_(integer *, integer *, real *, integer * , logical *, integer *, integer *, real *, real *, real *); static real sigma; extern doublereal enorm_(integer *, real *); extern /* Subroutine */ int fdjac3_(S_fp, integer *, integer *, real *, real *, real *, integer *, integer *, real *, real *), xermsg_( char *, char *, char *, integer *, integer *, ftnlen, ftnlen, ftnlen), rwupdt_(integer *, real *, integer *, real *, real *, real *, real *, real *); /* ***BEGIN PROLOGUE SCOV */ /* ***PURPOSE Calculate the covariance matrix for a nonlinear data */ /* fitting problem. It is intended to be used after a */ /* successful return from either SNLS1 or SNLS1E. */ /* ***LIBRARY SLATEC */ /* ***CATEGORY K1B1 */ /* ***TYPE SINGLE PRECISION (SCOV-S, DCOV-D) */ /* ***KEYWORDS COVARIANCE MATRIX, NONLINEAR DATA FITTING, */ /* NONLINEAR LEAST SQUARES */ /* ***AUTHOR Hiebert, K. L., (SNLA) */ /* ***DESCRIPTION */ /* 1. Purpose. */ /* SCOV calculates the covariance matrix for a nonlinear data */ /* fitting problem. It is intended to be used after a */ /* successful return from either SNLS1 or SNLS1E. SCOV */ /* and SNLS1 (and SNLS1E) have compatible parameters. The */ /* required external subroutine, FCN, is the same */ /* for all three codes, SCOV, SNLS1, and SNLS1E. */ /* 2. Subroutine and Type Statements. */ /* SUBROUTINE SCOV(FCN,IOPT,M,N,X,FVEC,R,LDR,INFO, */ /* WA1,WA2,WA3,WA4) */ /* INTEGER IOPT,M,N,LDR,INFO */ /* REAL X(N),FVEC(M),R(LDR,N),WA1(N),WA2(N),WA3(N),WA4(M) */ /* EXTERNAL FCN */ /* 3. Parameters. */ /* FCN is the name of the user-supplied subroutine which calculates */ /* the functions. If the user wants to supply the Jacobian */ /* (IOPT=2 or 3), then FCN must be written to calculate the */ /* Jacobian, as well as the functions. See the explanation */ /* of the IOPT argument below. FCN must be declared in an */ /* EXTERNAL statement in the calling program and should be */ /* written as follows. */ /* SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC) */ /* INTEGER IFLAG,LDFJAC,M,N */ /* REAL X(N),FVEC(M) */ /* ---------- */ /* FJAC and LDFJAC may be ignored , if IOPT=1. */ /* REAL FJAC(LDFJAC,N) , if IOPT=2. */ /* REAL FJAC(N) , if IOPT=3. */ /* ---------- */ /* IFLAG will never be zero when FCN is called by SCOV. */ /* RETURN */ /* ---------- */ /* If IFLAG=1, calculate the functions at X and return */ /* this vector in FVEC. */ /* RETURN */ /* ---------- */ /* If IFLAG=2, calculate the full Jacobian at X and return */ /* this matrix in FJAC. Note that IFLAG will never be 2 unless */ /* IOPT=2. FVEC contains the function values at X and must */ /* not be altered. FJAC(I,J) must be set to the derivative */ /* of FVEC(I) with respect to X(J). */ /* RETURN */ /* ---------- */ /* If IFLAG=3, calculate the LDFJAC-th row of the Jacobian */ /* and return this vector in FJAC. Note that IFLAG will */ /* never be 3 unless IOPT=3. FJAC(J) must be set to */ /* the derivative of FVEC(LDFJAC) with respect to X(J). */ /* RETURN */ /* ---------- */ /* END */ /* The value of IFLAG should not be changed by FCN unless the */ /* user wants to terminate execution of SCOV. In this case, set */ /* IFLAG to a negative integer. */ /* IOPT is an input variable which specifies how the Jacobian will */ /* be calculated. If IOPT=2 or 3, then the user must supply the */ /* Jacobian, as well as the function values, through the */ /* subroutine FCN. If IOPT=2, the user supplies the full */ /* Jacobian with one call to FCN. If IOPT=3, the user supplies */ /* one row of the Jacobian with each call. (In this manner, */ /* storage can be saved because the full Jacobian is not stored.) */ /* If IOPT=1, the code will approximate the Jacobian by forward */ /* differencing. */ /* M is a positive integer input variable set to the number of */ /* functions. */ /* N is a positive integer input variable set to the number of */ /* variables. N must not exceed M. */ /* X is an array of length N. On input X must contain the value */ /* at which the covariance matrix is to be evaluated. This is */ /* usually the value for X returned from a successful run of */ /* SNLS1 (or SNLS1E). The value of X will not be changed. */ /* FVEC is an output array of length M which contains the functions */ /* evaluated at X. */ /* R is an output array. For IOPT=1 and 2, R is an M by N array. */ /* For IOPT=3, R is an N by N array. On output, if INFO=1, */ /* the upper N by N submatrix of R contains the covariance */ /* matrix evaluated at X. */ /* LDR is a positive integer input variable which specifies */ /* the leading dimension of the array R. For IOPT=1 and 2, */ /* LDR must not be less than M. For IOPT=3, LDR must not */ /* be less than N. */ /* INFO is an integer output variable. If the user has terminated */ /* execution, INFO is set to the (negative) value of IFLAG. See */ /* description of FCN. Otherwise, INFO is set as follows. */ /* INFO = 0 Improper input parameters (M.LE.0 or N.LE.0). */ /* INFO = 1 Successful return. The covariance matrix has been */ /* calculated and stored in the upper N by N */ /* submatrix of R. */ /* INFO = 2 The Jacobian matrix is singular for the input value */ /* of X. The covariance matrix cannot be calculated. */ /* The upper N by N submatrix of R contains the QR */ /* factorization of the Jacobian (probably not of */ /* interest to the user). */ /* WA1 is a work array of length N. */ /* WA2 is a work array of length N. */ /* WA3 is a work array of length N. */ /* WA4 is a work array of length M. */ /* ***REFERENCES (NONE) */ /* ***ROUTINES CALLED ENORM, FDJAC3, QRFAC, RWUPDT, XERMSG */ /* ***REVISION HISTORY (YYMMDD) */ /* 810522 DATE WRITTEN */ /* 890505 REVISION DATE from Version 3.2 */ /* 891214 Prologue converted to Version 4.0 format. (BAB) */ /* 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) */ /* 900510 Fixed an error message. (RWC) */ /* ***END PROLOGUE SCOV */ /* REVISED 820707-1100 */ /* REVISED YYMMDD HHMM */ /* Parameter adjustments */ --x; --fvec; r_dim1 = *ldr; r_offset = 1 + r_dim1; r__ -= r_offset; --wa1; --wa2; --wa3; --wa4; /* Function Body */ /* ***FIRST EXECUTABLE STATEMENT SCOV */ sing = FALSE_; iflag = 0; if (*m <= 0 || *n <= 0) { goto L300; } /* CALCULATE SIGMA = (SUM OF THE SQUARED RESIDUALS) / (M-N) */ iflag = 1; (*fcn)(&iflag, m, n, &x[1], &fvec[1], &r__[r_offset], ldr); if (iflag < 0) { goto L300; } temp = enorm_(m, &fvec[1]); sigma = one; if (*m != *n) { sigma = temp * temp / (*m - *n); } /* CALCULATE THE JACOBIAN */ if (*iopt == 3) { goto L200; } /* STORE THE FULL JACOBIAN USING M*N STORAGE */ if (*iopt == 1) { goto L100; } /* USER SUPPLIES THE JACOBIAN */ iflag = 2; (*fcn)(&iflag, m, n, &x[1], &fvec[1], &r__[r_offset], ldr); goto L110; /* CODE APPROXIMATES THE JACOBIAN */ L100: fdjac3_((S_fp)fcn, m, n, &x[1], &fvec[1], &r__[r_offset], ldr, &iflag, & zero, &wa4[1]); L110: if (iflag < 0) { goto L300; } /* COMPUTE THE QR DECOMPOSITION */ qrfac_(m, n, &r__[r_offset], ldr, &c_false, &idum, &c__1, &wa1[1], &wa1[1] , &wa1[1]); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* L120: */ r__[i__ + i__ * r_dim1] = wa1[i__]; } goto L225; /* COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX CALCULATED ONE */ /* ROW AT A TIME AND STORED IN THE UPPER TRIANGLE OF R. */ /* ( (Q TRANSPOSE)*FVEC IS ALSO CALCULATED BUT NOT USED.) */ L200: i__1 = *n; for (j = 1; j <= i__1; ++j) { wa2[j] = zero; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { r__[i__ + j * r_dim1] = zero; /* L205: */ } /* L210: */ } iflag = 3; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { nrow = i__; (*fcn)(&iflag, m, n, &x[1], &fvec[1], &wa1[1], &nrow); if (iflag < 0) { goto L300; } temp = fvec[i__]; rwupdt_(n, &r__[r_offset], ldr, &wa1[1], &wa2[1], &temp, &wa3[1], & wa4[1]); /* L220: */ } /* CHECK IF R IS SINGULAR. */ L225: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (r__[i__ + i__ * r_dim1] == zero) { sing = TRUE_; } /* L230: */ } if (sing) { goto L300; } /* R IS UPPER TRIANGULAR. CALCULATE (R TRANSPOSE) INVERSE AND STORE */ /* IN THE UPPER TRIANGLE OF R. */ if (*n == 1) { goto L275; } nm1 = *n - 1; i__1 = nm1; for (k = 1; k <= i__1; ++k) { /* INITIALIZE THE RIGHT-HAND SIDE (WA1(*)) AS THE K-TH COLUMN OF THE */ /* IDENTITY MATRIX. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { wa1[i__] = zero; /* L240: */ } wa1[k] = one; r__[k + k * r_dim1] = wa1[k] / r__[k + k * r_dim1]; kp1 = k + 1; i__2 = *n; for (i__ = kp1; i__ <= i__2; ++i__) { /* SUBTRACT R(K,I-1)*R(I-1,*) FROM THE RIGHT-HAND SIDE, WA1(*). */ i__3 = *n; for (j = i__; j <= i__3; ++j) { wa1[j] -= r__[k + (i__ - 1) * r_dim1] * r__[i__ - 1 + j * r_dim1]; /* L250: */ } r__[k + i__ * r_dim1] = wa1[i__] / r__[i__ + i__ * r_dim1]; /* L260: */ } /* L270: */ } L275: r__[*n + *n * r_dim1] = one / r__[*n + *n * r_dim1]; /* CALCULATE R-INVERSE * (R TRANSPOSE) INVERSE AND STORE IN THE UPPER */ /* TRIANGLE OF R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = i__; j <= i__2; ++j) { temp = zero; i__3 = *n; for (k = j; k <= i__3; ++k) { temp += r__[i__ + k * r_dim1] * r__[j + k * r_dim1]; /* L280: */ } r__[i__ + j * r_dim1] = temp * sigma; /* L290: */ } } *info = 1; L300: if (*m <= 0 || *n <= 0) { *info = 0; } if (iflag < 0) { *info = iflag; } if (sing) { *info = 2; } if (*info < 0) { xermsg_("SLATEC", "SCOV", "EXECUTION TERMINATED BECAUSE USER SET IFL" "AG NEGATIVE.", &c__1, &c__1, (ftnlen)6, (ftnlen)4, (ftnlen)53) ; } if (*info == 0) { xermsg_("SLATEC", "SCOV", "INVALID INPUT PARAMETER.", &c__2, &c__1, ( ftnlen)6, (ftnlen)4, (ftnlen)24); } if (*info == 2) { xermsg_("SLATEC", "SCOV", "SINGULAR JACOBIAN MATRIX, COVARIANCE MATR" "IX CANNOT BE CALCULATED.", &c__1, &c__1, (ftnlen)6, (ftnlen)4, (ftnlen)65); } return 0; } /* scov_ */