Exemple #1
0
/// build the timing table
static void 
tdm_build_timing_table(void)
{
	__pdata uint8_t j;
	__pdata uint16_t rate;
	bool golay_saved = feature_golay;
	feature_golay = false;

	for (rate=2; rate<256; rate=(rate*3)/2) {
		__pdata uint32_t latency_sum=0, per_byte_sum=0;
		uint8_t size = MAX_PACKET_LENGTH;
		radio_configure(rate);
		for (j=0; j<50; j++) {
			__pdata uint16_t time_0, time_max, t1, t2;
			radio_set_channel(1);
			radio_receiver_on();
			if (serial_read_available() > 0) {
				feature_golay = golay_saved;
				return;
			}
			t1 = timer2_tick();
			if (!radio_transmit(0, pbuf, 0xFFFF)) {
				break;
			}
			t2 = timer2_tick();
			radio_receiver_on();

			time_0 = t2-t1;

			radio_set_channel(2);
			t1 = timer2_tick();
			if (!radio_transmit(size, pbuf, 0xFFFF)) {
				if (size == 0) {
					break;
				}
				size /= 4;
				j--;
				continue;
			}

			t2 = timer2_tick();
			radio_receiver_on();

			time_max = t2-t1;
			latency_sum += time_0;
			per_byte_sum += ((size/2) + (time_max - time_0))/size;
		}
		if (j > 0) {
			printf("{ %u, %u, %u },\n",
			       (unsigned)(radio_air_rate()),
			       (unsigned)(latency_sum/j),
			       (unsigned)(per_byte_sum/j));
		}
	}
	feature_golay = golay_saved;
}
Exemple #2
0
void
main(void)
{
    // Stash board info from the bootloader before we let anything touch
    // the SFRs.
    //
    g_board_frequency = BOARD_FREQUENCY_REG;
    g_board_bl_version = BOARD_BL_VERSION_REG;

    // try to load parameters; set them to defaults if that fails.
    // this is done before hardware_init() to get the serial speed
    // XXX default parameter selection should be based on board info
    //
    if (!param_load())
        param_default();

    // setup boolean features
    feature_mavlink_framing = param_get(PARAM_MAVLINK)?true:false;
    feature_opportunistic_resend = param_get(PARAM_OPPRESEND)?true:false;
    feature_golay = param_get(PARAM_ECC)?true:false;
    feature_rtscts = param_get(PARAM_RTSCTS)?true:false;

    // Do hardware initialisation.
    hardware_init();

    // do radio initialisation
    radio_init();

    // turn on the receiver
    if (!radio_receiver_on()) {
        panic("failed to enable receiver");
    }

    tdm_serial_loop();
}
Exemple #3
0
/// update the TDM state machine
///
static void
tdm_state_update(__pdata uint16_t tdelta)
{
	// update the amount of time we are waiting for a preamble
	// to turn into a real packet
	if (tdelta > transmit_wait) {
		transmit_wait = 0;
	} else {
		transmit_wait -= tdelta;
	}

	// have we passed the next transition point?
	while (tdelta >= tdm_state_remaining) {
		// advance the tdm state machine
		tdm_state = (tdm_state+1) % 4;

		// work out the time remaining in this state
		tdelta -= tdm_state_remaining;

		if (tdm_state == TDM_TRANSMIT || tdm_state == TDM_RECEIVE) {
			tdm_state_remaining = tx_window_width;
		} else {
			tdm_state_remaining = silence_period;
		}

		// change frequency at the start and end of our transmit window
		// this maximises the chance we will be on the right frequency
		// to match the other radio
		if (tdm_state == TDM_TRANSMIT || tdm_state == TDM_SILENCE1) {
			fhop_window_change();
			radio_receiver_on();

			if (num_fh_channels > 1) {
				// reset the LBT listen time
				lbt_listen_time = 0;
				lbt_rand = 0;
			}
		}

		if (tdm_state == TDM_TRANSMIT && (duty_cycle - duty_cycle_offset) != 100) {
			// update duty cycle averages
			average_duty_cycle = (0.95*average_duty_cycle) + (0.05*(100.0*transmitted_ticks)/(2*(silence_period+tx_window_width)));
			transmitted_ticks = 0;
			duty_cycle_wait = (average_duty_cycle >= (duty_cycle - duty_cycle_offset));
		}

		// we lose the bonus on all state changes
		bonus_transmit = 0;

		// reset yield flag on all state changes
		transmit_yield = 0;

		// no longer waiting for a packet
		transmit_wait = 0;
	}

	tdm_state_remaining -= tdelta;
}
Exemple #4
0
/// main loop for time division multiplexing transparent serial
///
void
tdm_serial_loop(void)
{
	__pdata uint16_t last_t = timer2_tick();
	__pdata uint16_t last_link_update = last_t;

	_canary = 42;

	for (;;) {
		__pdata uint8_t	len;
		__pdata uint16_t tnow, tdelta;
		__pdata uint8_t max_xmit;

		if (_canary != 42) {
			panic("stack blown\n");
		}

		if (pdata_canary != 0x41) {
			panic("pdata canary changed\n");
		}

		// give the AT command processor a chance to handle a command
		at_command();

		// display test data if needed
		if (test_display) {
			display_test_output();
			test_display = 0;
		}

		if (seen_mavlink && feature_mavlink_framing && !at_mode_active) {
			seen_mavlink = false;
			MAVLink_report();
		}

		// set right receive channel
		radio_set_channel(fhop_receive_channel());

		// get the time before we check for a packet coming in
		tnow = timer2_tick();

		// see if we have received a packet
		if (radio_receive_packet(&len, pbuf)) {

			// update the activity indication
			received_packet = true;
			fhop_set_locked(true);
			
			// update filtered RSSI value and packet stats
			statistics.average_rssi = (radio_last_rssi() + 7*(uint16_t)statistics.average_rssi)/8;
			statistics.receive_count++;
			
			// we're not waiting for a preamble
			// any more
			transmit_wait = 0;

			if (len < 2) {
				// not a valid packet. We always send
				// two control bytes at the end of every packet
				continue;
			}

			// extract control bytes from end of packet
			memcpy(&trailer, &pbuf[len-sizeof(trailer)], sizeof(trailer));
			len -= sizeof(trailer);

			if (trailer.window == 0 && len != 0) {
				// its a control packet
				if (len == sizeof(struct statistics)) {
					memcpy(&remote_statistics, pbuf, len);
				}

				// don't count control packets in the stats
				statistics.receive_count--;
			} else if (trailer.window != 0) {
				// sync our transmit windows based on
				// received header
				sync_tx_windows(len);
				last_t = tnow;

				if (trailer.command == 1) {
					handle_at_command(len);
				} else if (len != 0 && 
					   !packet_is_duplicate(len, pbuf, trailer.resend) &&
					   !at_mode_active) {
					// its user data - send it out
					// the serial port
					//printf("rcv(%d,[", len);
					LED_ACTIVITY = LED_ON;
					serial_write_buf(pbuf, len);
					LED_ACTIVITY = LED_OFF;
					//printf("]\n");
				}
			}
			continue;
		}

		// see how many 16usec ticks have passed and update
		// the tdm state machine. We re-fetch tnow as a bad
		// packet could have cost us a lot of time.
		tnow = timer2_tick();
		tdelta = tnow - last_t;
		tdm_state_update(tdelta);
		last_t = tnow;

		// update link status every 0.5s
		if (tnow - last_link_update > 32768) {
			link_update();
			last_link_update = tnow;
		}

		if (lbt_rssi != 0) {
			// implement listen before talk
			if (radio_current_rssi() < lbt_rssi) {
				lbt_listen_time += tdelta;
			} else {
				lbt_listen_time = 0;
				if (lbt_rand == 0) {
					lbt_rand = ((uint16_t)rand()) % lbt_min_time;
				}
			}
			if (lbt_listen_time < lbt_min_time + lbt_rand) {
				// we need to listen some more
				continue;
			}
		}

		// we are allowed to transmit in our transmit window
		// or in the other radios transmit window if we have
		// bonus ticks
#if USE_TICK_YIELD
		if (tdm_state != TDM_TRANSMIT &&
		    !(bonus_transmit && tdm_state == TDM_RECEIVE)) {
			// we cannot transmit now
			continue;
		}
#else
		if (tdm_state != TDM_TRANSMIT) {
			continue;
		}		
#endif

		if (transmit_yield != 0) {
			// we've give up our window
			continue;
		}

		if (transmit_wait != 0) {
			// we're waiting for a preamble to turn into a packet
			continue;
		}

		if (!received_packet &&
		    radio_preamble_detected() ||
		    radio_receive_in_progress()) {
			// a preamble has been detected. Don't
			// transmit for a while
			transmit_wait = packet_latency;
			continue;
		}

		// sample the background noise when it is out turn to
		// transmit, but we are not transmitting,
		// averaged over around 4 samples
		statistics.average_noise = (radio_current_rssi() + 3*(uint16_t)statistics.average_noise)/4;

		if (duty_cycle_wait) {
			// we're waiting for our duty cycle to drop
			continue;
		}

		// how many bytes could we transmit in the time we
		// have left?
		if (tdm_state_remaining < packet_latency) {
			// none ....
			continue;
		}
		max_xmit = (tdm_state_remaining - packet_latency) / ticks_per_byte;
		if (max_xmit < PACKET_OVERHEAD) {
			// can't fit the trailer in with a byte to spare
			continue;
		}
		max_xmit -= PACKET_OVERHEAD;
		if (max_xmit > max_data_packet_length) {
			max_xmit = max_data_packet_length;
		}

		// ask the packet system for the next packet to send
		if (send_at_command && 
		    max_xmit >= strlen(remote_at_cmd)) {
			// send a remote AT command
			len = strlen(remote_at_cmd);
			memcpy(pbuf, remote_at_cmd, len);
			trailer.command = 1;
			send_at_command = false;
		} else {
			// get a packet from the serial port
			memset(pbuf, 0x40, 16);
			len = packet_get_next(max_xmit-16, pbuf+16) + 16;
			trailer.command = packet_is_injected();
			if (len == 16)
				len = 0;
		}

		if (len > max_data_packet_length) {
			panic("oversized tdm packet");
		}

		trailer.bonus = (tdm_state == TDM_RECEIVE);
		trailer.resend = packet_is_resend();

		if (tdm_state == TDM_TRANSMIT &&
		    len == 0 && 
		    send_statistics && 
		    max_xmit >= sizeof(statistics)) {
			// send a statistics packet
			send_statistics = 0;
			memcpy(pbuf, &statistics, sizeof(statistics));
			len = sizeof(statistics);
		
			// mark a stats packet with a zero window
			trailer.window = 0;
			trailer.resend = 0;
		} else {
			// calculate the control word as the number of
			// 16usec ticks that will be left in this
			// tdm state after this packet is transmitted
			trailer.window = (uint16_t)(tdm_state_remaining - flight_time_estimate(len+sizeof(trailer)));
		}

		// set right transmit channel
		radio_set_channel(fhop_transmit_channel());

		memcpy(&pbuf[len], &trailer, sizeof(trailer));

		if (len != 0 && trailer.window != 0) {
			// show the user that we're sending real data
			LED_ACTIVITY = LED_ON;
		}

		if (len == 0) {
			// sending a zero byte packet gives up
			// our window, but doesn't change the
			// start of the next window
			transmit_yield = 1;
		}

		// after sending a packet leave a bit of time before
		// sending the next one. The receivers don't cope well
		// with back to back packets
		transmit_wait = packet_latency;

		// if we're implementing a duty cycle, add the
		// transmit time to the number of ticks we've been transmitting
		if ((duty_cycle - duty_cycle_offset) != 100) {
			transmitted_ticks += flight_time_estimate(len+sizeof(trailer));
		}

		// start transmitting the packet
		if (!radio_transmit(len + sizeof(trailer), pbuf, tdm_state_remaining + (silence_period/2)) &&
		    len != 0 && trailer.window != 0 && trailer.command == 0) {
			packet_force_resend();
		}

		if (lbt_rssi != 0) {
			// reset the LBT listen time
			lbt_listen_time = 0;
			lbt_rand = 0;
		}

		// set right receive channel
		radio_set_channel(fhop_receive_channel());

		// re-enable the receiver
		radio_receiver_on();

		if (len != 0 && trailer.window != 0) {
			LED_ACTIVITY = LED_OFF;
		}
	}
}