void NavMeshCreator::allocIntermediateResults() { if (m_success) { if ((m_intermediateContourSet = rcAllocContourSet()) == 0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the contour set."); m_success = false; } else if ((m_intermediatePolyMesh = rcAllocPolyMesh()) == 0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the polygon mesh."); m_success = false; } else if ((m_intermediateHeightfield = rcAllocHeightfield()) == 0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the heightfield."); m_success = false; } else if ((m_intermediateCompactHeightfield = rcAllocCompactHeightfield()) == 0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the compact heightfield."); m_success = false; } else if ((m_intermediatePolyMeshDetail = rcAllocPolyMeshDetail()) == 0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the detail polygon mesh."); m_success = false; } else if ((m_intermediateTriangleTags = static_cast<unsigned char*>(rcAlloc(sizeof(unsigned char) * m_inputTrianglesCount,RC_ALLOC_TEMP))) == 0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the triangle tags."); m_success = false; } else if ((m_intermediateNavMeshCreateParams = static_cast<dtNavMeshCreateParams*>(rcAlloc(sizeof(dtNavMeshCreateParams),RC_ALLOC_TEMP)))==0) { m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to allocate memory for the Detour navmesh creation parameters."); m_success = false; } } }
unsigned char* Sample_TileMesh::buildTileMesh(const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize) { if (!m_geom || !m_geom->getMesh() || !m_geom->getChunkyMesh()) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified."); return 0; } m_tileMemUsage = 0; m_tileBuildTime = 0; cleanup(); const float* verts = m_geom->getMesh()->getVerts(); const int nverts = m_geom->getMesh()->getVertCount(); const int ntris = m_geom->getMesh()->getTriCount(); const rcChunkyTriMesh* chunkyMesh = m_geom->getChunkyMesh(); // Init build configuration from GUI memset(&m_cfg, 0, sizeof(m_cfg)); m_cfg.cs = m_cellSize; m_cfg.ch = m_cellHeight; m_cfg.walkableSlopeAngle = m_agentMaxSlope; m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize); m_cfg.maxSimplificationError = m_edgeMaxError; m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly; m_cfg.tileSize = (int)m_tileSize; m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding. m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2; m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2; m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist; m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError; // Expand the heighfield bounding box by border size to find the extents of geometry we need to build this tile. // // This is done in order to make sure that the navmesh tiles connect correctly at the borders, // and the obstacles close to the border work correctly with the dilation process. // No polygons (or contours) will be created on the border area. // // IMPORTANT! // // :''''''''': // : +-----+ : // : | | : // : | |<--- tile to build // : | | : // : +-----+ :<-- geometry needed // :.........: // // You should use this bounding box to query your input geometry. // // For example if you build a navmesh for terrain, and want the navmesh tiles to match the terrain tile size // you will need to pass in data from neighbour terrain tiles too! In a simple case, just pass in all the 8 neighbours, // or use the bounding box below to only pass in a sliver of each of the 8 neighbours. rcVcopy(m_cfg.bmin, bmin); rcVcopy(m_cfg.bmax, bmax); m_cfg.bmin[0] -= m_cfg.borderSize*m_cfg.cs; m_cfg.bmin[2] -= m_cfg.borderSize*m_cfg.cs; m_cfg.bmax[0] += m_cfg.borderSize*m_cfg.cs; m_cfg.bmax[2] += m_cfg.borderSize*m_cfg.cs; // Reset build times gathering. m_ctx->resetTimers(); // Start the build process. m_ctx->startTimer(RC_TIMER_TOTAL); m_ctx->log(RC_LOG_PROGRESS, "Building navigation:"); m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height); m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f); // Allocate voxel heightfield where we rasterize our input data to. m_solid = rcAllocHeightfield(); if (!m_solid) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return 0; } if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return 0; } // Allocate array that can hold triangle flags. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk]; if (!m_triareas) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk); return 0; } float tbmin[2], tbmax[2]; tbmin[0] = m_cfg.bmin[0]; tbmin[1] = m_cfg.bmin[2]; tbmax[0] = m_cfg.bmax[0]; tbmax[1] = m_cfg.bmax[2]; int cid[512];// TODO: Make grow when returning too many items. const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512); if (!ncid) return 0; m_tileTriCount = 0; for (int i = 0; i < ncid; ++i) { const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]]; const int* ctris = &chunkyMesh->tris[node.i*3]; const int nctris = node.n; m_tileTriCount += nctris; memset(m_triareas, 0, nctris*sizeof(unsigned char)); rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, ctris, nctris, m_triareas); if (!rcRasterizeTriangles(m_ctx, verts, nverts, ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb)) return 0; } if (!m_keepInterResults) { delete [] m_triareas; m_triareas = 0; } // Once all geometry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. if (m_filterLowHangingObstacles) rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid); if (m_filterLedgeSpans) rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid); if (m_filterWalkableLowHeightSpans) rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid); // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return 0; } if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return 0; } if (!m_keepInterResults) { rcFreeHeightField(m_solid); m_solid = 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return 0; } // (Optional) Mark areas. const ConvexVolume* vols = m_geom->getConvexVolumes(); for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); // Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas. // There are 3 martitioning methods, each with some pros and cons: // 1) Watershed partitioning // - the classic Recast partitioning // - creates the nicest tessellation // - usually slowest // - partitions the heightfield into nice regions without holes or overlaps // - the are some corner cases where this method creates produces holes and overlaps // - holes may appear when a small obstacles is close to large open area (triangulation can handle this) // - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail // * generally the best choice if you precompute the nacmesh, use this if you have large open areas // 2) Monotone partioning // - fastest // - partitions the heightfield into regions without holes and overlaps (guaranteed) // - creates long thin polygons, which sometimes causes paths with detours // * use this if you want fast navmesh generation // 3) Layer partitoining // - quite fast // - partitions the heighfield into non-overlapping regions // - relies on the triangulation code to cope with holes (thus slower than monotone partitioning) // - produces better triangles than monotone partitioning // - does not have the corner cases of watershed partitioning // - can be slow and create a bit ugly tessellation (still better than monotone) // if you have large open areas with small obstacles (not a problem if you use tiles) // * good choice to use for tiled navmesh with medium and small sized tiles if (m_partitionType == SAMPLE_PARTITION_WATERSHED) { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return 0; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions."); return 0; } } else if (m_partitionType == SAMPLE_PARTITION_MONOTONE) { // Partition the walkable surface into simple regions without holes. // Monotone partitioning does not need distancefield. if (!rcBuildRegionsMonotone(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions."); return 0; } } else // SAMPLE_PARTITION_LAYERS { // Partition the walkable surface into simple regions without holes. if (!rcBuildLayerRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions."); return 0; } } // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return 0; } if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours."); return 0; } if (m_cset->nconts == 0) { return 0; } // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return 0; } if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return 0; } // Build detail mesh. m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'."); return 0; } if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail."); return 0; } if (!m_keepInterResults) { rcFreeCompactHeightfield(m_chf); m_chf = 0; rcFreeContourSet(m_cset); m_cset = 0; } unsigned char* navData = 0; int navDataSize = 0; if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { if (m_pmesh->nverts >= 0xffff) { // The vertex indices are ushorts, and cannot point to more than 0xffff vertices. m_ctx->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff); return 0; } // Update poly flags from areas. for (int i = 0; i < m_pmesh->npolys; ++i) { if (m_pmesh->areas[i] == RC_WALKABLE_AREA) m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND || m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS || m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; } } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = m_pmesh->verts; params.vertCount = m_pmesh->nverts; params.polys = m_pmesh->polys; params.polyAreas = m_pmesh->areas; params.polyFlags = m_pmesh->flags; params.polyCount = m_pmesh->npolys; params.nvp = m_pmesh->nvp; params.detailMeshes = m_dmesh->meshes; params.detailVerts = m_dmesh->verts; params.detailVertsCount = m_dmesh->nverts; params.detailTris = m_dmesh->tris; params.detailTriCount = m_dmesh->ntris; params.offMeshConVerts = m_geom->getOffMeshConnectionVerts(); params.offMeshConRad = m_geom->getOffMeshConnectionRads(); params.offMeshConDir = m_geom->getOffMeshConnectionDirs(); params.offMeshConAreas = m_geom->getOffMeshConnectionAreas(); params.offMeshConFlags = m_geom->getOffMeshConnectionFlags(); params.offMeshConUserID = m_geom->getOffMeshConnectionId(); params.offMeshConCount = m_geom->getOffMeshConnectionCount(); params.walkableHeight = m_agentHeight; params.walkableRadius = m_agentRadius; params.walkableClimb = m_agentMaxClimb; params.tileX = tx; params.tileY = ty; params.tileLayer = 0; rcVcopy(params.bmin, m_pmesh->bmin); rcVcopy(params.bmax, m_pmesh->bmax); params.cs = m_cfg.cs; params.ch = m_cfg.ch; params.buildBvTree = true; if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return 0; } } m_tileMemUsage = navDataSize/1024.0f; m_ctx->stopTimer(RC_TIMER_TOTAL); // Show performance stats. duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)); m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys); m_tileBuildTime = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f; dataSize = navDataSize; return navData; }
static int rasterizeTileLayers(BuildContext* ctx, CMapMesh* geom, const int tx, const int ty, const rcConfig& cfg, TileCacheData* tiles, const int maxTiles) { if (!geom || !geom->GetChunkyMesh()) { ctx->log(RC_LOG_ERROR, "buildTile: Input mesh is not specified."); return 0; } FastLZCompressor comp; RasterizationContext rc; const float* verts = geom->GetVerts(); const int nverts = geom->GetNumVerts(); const rcChunkyTriMesh* chunkyMesh = geom->GetChunkyMesh(); // Tile bounds. const float tcs = cfg.tileSize * cfg.cs; rcConfig tcfg; memcpy(&tcfg, &cfg, sizeof(tcfg)); tcfg.bmin[0] = cfg.bmin[0] + tx*tcs; tcfg.bmin[1] = cfg.bmin[1]; tcfg.bmin[2] = cfg.bmin[2] + ty*tcs; tcfg.bmax[0] = cfg.bmin[0] + (tx+1)*tcs; tcfg.bmax[1] = cfg.bmax[1]; tcfg.bmax[2] = cfg.bmin[2] + (ty+1)*tcs; tcfg.bmin[0] -= tcfg.borderSize*tcfg.cs; tcfg.bmin[2] -= tcfg.borderSize*tcfg.cs; tcfg.bmax[0] += tcfg.borderSize*tcfg.cs; tcfg.bmax[2] += tcfg.borderSize*tcfg.cs; // Allocate voxel heightfield where we rasterize our input data to. rc.solid = rcAllocHeightfield(); if (!rc.solid) { ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return 0; } if (!rcCreateHeightfield(ctx, *rc.solid, tcfg.width, tcfg.height, tcfg.bmin, tcfg.bmax, tcfg.cs, tcfg.ch)) { ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return 0; } // Allocate array that can hold triangle flags. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. rc.triareas = new unsigned char[chunkyMesh->maxTrisPerChunk]; if (!rc.triareas) { ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk); return 0; } float tbmin[2], tbmax[2]; tbmin[0] = tcfg.bmin[0]; tbmin[1] = tcfg.bmin[2]; tbmax[0] = tcfg.bmax[0]; tbmax[1] = tcfg.bmax[2]; int cid[512];// TODO: Make grow when returning too many items. const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512); if (!ncid) { return 0; // empty } for (int i = 0; i < ncid; ++i) { const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]]; const int* tris = &chunkyMesh->tris[node.i*3]; const int ntris = node.n; memset(rc.triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(ctx, tcfg.walkableSlopeAngle, verts, nverts, tris, ntris, rc.triareas); rcRasterizeTriangles(ctx, verts, nverts, tris, rc.triareas, ntris, *rc.solid, tcfg.walkableClimb); } // Once all geometry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(ctx, tcfg.walkableClimb, *rc.solid); rcFilterLedgeSpans(ctx, tcfg.walkableHeight, tcfg.walkableClimb, *rc.solid); rcFilterWalkableLowHeightSpans(ctx, tcfg.walkableHeight, *rc.solid); rc.chf = rcAllocCompactHeightfield(); if (!rc.chf) { ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return 0; } if (!rcBuildCompactHeightfield(ctx, tcfg.walkableHeight, tcfg.walkableClimb, *rc.solid, *rc.chf)) { ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(ctx, tcfg.walkableRadius, *rc.chf)) { ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return 0; } #if 0 // (Optional) Mark areas. const ConvexVolume* vols = geom->getConvexVolumes(); for (int i = 0; i < geom->getConvexVolumeCount(); ++i) { rcMarkConvexPolyArea(ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *rc.chf); } #endif // 0 rc.lset = rcAllocHeightfieldLayerSet(); if (!rc.lset) { ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'lset'."); return 0; } if (!rcBuildHeightfieldLayers(ctx, *rc.chf, tcfg.borderSize, tcfg.walkableHeight, *rc.lset)) { ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build heighfield layers."); return 0; } rc.ntiles = 0; for (int i = 0; i < rcMin(rc.lset->nlayers, MAX_LAYERS); ++i) { TileCacheData* tile = &rc.tiles[rc.ntiles++]; const rcHeightfieldLayer* layer = &rc.lset->layers[i]; // Store header dtTileCacheLayerHeader header; header.magic = DT_TILECACHE_MAGIC; header.version = DT_TILECACHE_VERSION; // Tile layer location in the navmesh. header.tx = tx; header.ty = ty; header.tlayer = i; dtVcopy(header.bmin, layer->bmin); dtVcopy(header.bmax, layer->bmax); // Tile info. header.width = (unsigned char)layer->width; header.height = (unsigned char)layer->height; header.minx = (unsigned char)layer->minx; header.maxx = (unsigned char)layer->maxx; header.miny = (unsigned char)layer->miny; header.maxy = (unsigned char)layer->maxy; header.hmin = (unsigned short)layer->hmin; header.hmax = (unsigned short)layer->hmax; dtStatus status = dtBuildTileCacheLayer(&comp, &header, layer->heights, layer->areas, layer->cons, &tile->data, &tile->dataSize); if (dtStatusFailed(status)) { return 0; } } // Transfer ownsership of tile data from build context to the caller. int n = 0; for (int i = 0; i < rcMin(rc.ntiles, maxTiles); ++i) { tiles[n++] = rc.tiles[i]; rc.tiles[i].data = 0; rc.tiles[i].dataSize = 0; } return n; }
unsigned char* Sample_TileMesh::buildTileMesh(const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize) { if (!m_geom || !m_geom->getMesh() || !m_geom->getChunkyMesh()) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified."); return 0; } m_tileMemUsage = 0; m_tileBuildTime = 0; cleanup(); const float* verts = m_geom->getMesh()->getVerts(); const int nverts = m_geom->getMesh()->getVertCount(); const int ntris = m_geom->getMesh()->getTriCount(); const rcChunkyTriMesh* chunkyMesh = m_geom->getChunkyMesh(); // Init build configuration from GUI memset(&m_cfg, 0, sizeof(m_cfg)); m_cfg.cs = m_cellSize; m_cfg.ch = m_cellHeight; m_cfg.walkableSlopeAngle = m_agentMaxSlope; m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize); m_cfg.maxSimplificationError = m_edgeMaxError; m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly; m_cfg.tileSize = (int)m_tileSize; m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding. m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2; m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2; m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist; m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError; rcVcopy(m_cfg.bmin, bmin); rcVcopy(m_cfg.bmax, bmax); m_cfg.bmin[0] -= m_cfg.borderSize*m_cfg.cs; m_cfg.bmin[2] -= m_cfg.borderSize*m_cfg.cs; m_cfg.bmax[0] += m_cfg.borderSize*m_cfg.cs; m_cfg.bmax[2] += m_cfg.borderSize*m_cfg.cs; // Reset build times gathering. m_ctx->resetTimers(); // Start the build process. m_ctx->startTimer(RC_TIMER_TOTAL); m_ctx->log(RC_LOG_PROGRESS, "Building navigation:"); m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height); m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f); // Allocate voxel heightfield where we rasterize our input data to. m_solid = rcAllocHeightfield(); if (!m_solid) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return 0; } if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return 0; } // Allocate array that can hold triangle flags. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk]; if (!m_triareas) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk); return 0; } float tbmin[2], tbmax[2]; tbmin[0] = m_cfg.bmin[0]; tbmin[1] = m_cfg.bmin[2]; tbmax[0] = m_cfg.bmax[0]; tbmax[1] = m_cfg.bmax[2]; int cid[512];// TODO: Make grow when returning too many items. const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512); if (!ncid) return 0; m_tileTriCount = 0; for (int i = 0; i < ncid; ++i) { const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]]; const int* tris = &chunkyMesh->tris[node.i*3]; const int ntris = node.n; m_tileTriCount += ntris; memset(m_triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas); rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb); } if (!m_keepInterResults) { delete [] m_triareas; m_triareas = 0; } // Once all geometry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid); rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid); rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid); // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return 0; } if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return 0; } if (!m_keepInterResults) { rcFreeHeightField(m_solid); m_solid = 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return false; } // (Optional) Mark areas. const ConvexVolume* vols = m_geom->getConvexVolumes(); for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return 0; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); return 0; } // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return 0; } if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours."); return 0; } if (m_cset->nconts == 0) { return 0; } // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return 0; } if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return 0; } // Build detail mesh. m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'."); return 0; } if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail."); return 0; } if (!m_keepInterResults) { rcFreeCompactHeightfield(m_chf); m_chf = 0; rcFreeContourSet(m_cset); m_cset = 0; } unsigned char* navData = 0; int navDataSize = 0; if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { // Remove padding from the polymesh data. TODO: Remove this odditity. for (int i = 0; i < m_pmesh->nverts; ++i) { unsigned short* v = &m_pmesh->verts[i*3]; v[0] -= (unsigned short)m_cfg.borderSize; v[2] -= (unsigned short)m_cfg.borderSize; } if (m_pmesh->nverts >= 0xffff) { // The vertex indices are ushorts, and cannot point to more than 0xffff vertices. m_ctx->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff); return false; } // Update poly flags from areas. for (int i = 0; i < m_pmesh->npolys; ++i) { if (m_pmesh->areas[i] == RC_WALKABLE_AREA) m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND || m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS || m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; } } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = m_pmesh->verts; params.vertCount = m_pmesh->nverts; params.polys = m_pmesh->polys; params.polyAreas = m_pmesh->areas; params.polyFlags = m_pmesh->flags; params.polyCount = m_pmesh->npolys; params.nvp = m_pmesh->nvp; params.detailMeshes = m_dmesh->meshes; params.detailVerts = m_dmesh->verts; params.detailVertsCount = m_dmesh->nverts; params.detailTris = m_dmesh->tris; params.detailTriCount = m_dmesh->ntris; params.offMeshConVerts = m_geom->getOffMeshConnectionVerts(); params.offMeshConRad = m_geom->getOffMeshConnectionRads(); params.offMeshConDir = m_geom->getOffMeshConnectionDirs(); params.offMeshConAreas = m_geom->getOffMeshConnectionAreas(); params.offMeshConFlags = m_geom->getOffMeshConnectionFlags(); params.offMeshConUserID = m_geom->getOffMeshConnectionId(); params.offMeshConCount = m_geom->getOffMeshConnectionCount(); params.walkableHeight = m_agentHeight; params.walkableRadius = m_agentRadius; params.walkableClimb = m_agentMaxClimb; params.tileX = tx; params.tileY = ty; rcVcopy(params.bmin, bmin); rcVcopy(params.bmax, bmax); params.cs = m_cfg.cs; params.ch = m_cfg.ch; params.tileSize = m_cfg.tileSize; if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return 0; } // Restore padding so that the debug visualization is correct. for (int i = 0; i < m_pmesh->nverts; ++i) { unsigned short* v = &m_pmesh->verts[i*3]; v[0] += (unsigned short)m_cfg.borderSize; v[2] += (unsigned short)m_cfg.borderSize; } } m_tileMemUsage = navDataSize/1024.0f; m_ctx->stopTimer(RC_TIMER_TOTAL); // Show performance stats. duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)); m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys); m_tileBuildTime = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f; dataSize = navDataSize; return navData; }
struct recast_compactHeightfield *recast_newCompactHeightfield(void) { return (struct recast_compactHeightfield *) rcAllocCompactHeightfield(); }
bool Sample_SoloMesh::handleBuild() { if (!m_geom || !m_geom->getMesh()) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified."); return false; } cleanup(); const float* bmin = m_geom->getMeshBoundsMin(); const float* bmax = m_geom->getMeshBoundsMax(); const float* verts = m_geom->getMesh()->getVerts(); const int nverts = m_geom->getMesh()->getVertCount(); const int* tris = m_geom->getMesh()->getTris(); const int ntris = m_geom->getMesh()->getTriCount(); // // Step 1. Initialize build config. // // Init build configuration from GUI memset(&m_cfg, 0, sizeof(m_cfg)); m_cfg.cs = m_cellSize; m_cfg.ch = m_cellHeight; m_cfg.walkableSlopeAngle = m_agentMaxSlope; m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize); m_cfg.maxSimplificationError = m_edgeMaxError; m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly; m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist; m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError; // Set the area where the navigation will be build. // Here the bounds of the input mesh are used, but the // area could be specified by an user defined box, etc. rcVcopy(m_cfg.bmin, bmin); rcVcopy(m_cfg.bmax, bmax); rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height); // Reset build times gathering. m_ctx->resetTimers(); // Start the build process. m_ctx->startTimer(RC_TIMER_TOTAL); m_ctx->log(RC_LOG_PROGRESS, "Building navigation:"); m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height); m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f); // // Step 2. Rasterize input polygon soup. // // Allocate voxel heightfield where we rasterize our input data to. m_solid = rcAllocHeightfield(); if (!m_solid) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return false; } if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return false; } // Allocate array that can hold triangle area types. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new unsigned char[ntris]; if (!m_triareas) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris); return false; } // Find triangles which are walkable based on their slope and rasterize them. // If your input data is multiple meshes, you can transform them here, calculate // the are type for each of the meshes and rasterize them. memset(m_triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas); rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb); if (!m_keepInterResults) { delete [] m_triareas; m_triareas = 0; } // // Step 3. Filter walkables surfaces. // // Once all geoemtry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid); rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid); rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid); // // Step 4. Partition walkable surface to simple regions. // // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return false; } if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return false; } if (!m_keepInterResults) { rcFreeHeightField(m_solid); m_solid = 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return false; } // (Optional) Mark areas. const ConvexVolume* vols = m_geom->getConvexVolumes(); for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); // Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas. // There are 3 martitioning methods, each with some pros and cons: // 1) Watershed partitioning // - the classic Recast partitioning // - creates the nicest tessellation // - usually slowest // - partitions the heightfield into nice regions without holes or overlaps // - the are some corner cases where this method creates produces holes and overlaps // - holes may appear when a small obstacles is close to large open area (triangulation can handle this) // - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail // * generally the best choice if you precompute the nacmesh, use this if you have large open areas // 2) Monotone partioning // - fastest // - partitions the heightfield into regions without holes and overlaps (guaranteed) // - creates long thin polygons, which sometimes causes paths with detours // * use this if you want fast navmesh generation // 3) Layer partitoining // - quite fast // - partitions the heighfield into non-overlapping regions // - relies on the triangulation code to cope with holes (thus slower than monotone partitioning) // - produces better triangles than monotone partitioning // - does not have the corner cases of watershed partitioning // - can be slow and create a bit ugly tessellation (still better than monotone) // if you have large open areas with small obstacles (not a problem if you use tiles) // * good choice to use for tiled navmesh with medium and small sized tiles if (m_partitionType == SAMPLE_PARTITION_WATERSHED) { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return false; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions."); return false; } } else if (m_partitionType == SAMPLE_PARTITION_MONOTONE) { // Partition the walkable surface into simple regions without holes. // Monotone partitioning does not need distancefield. if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions."); return false; } } else // SAMPLE_PARTITION_LAYERS { // Partition the walkable surface into simple regions without holes. if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions."); return false; } } // // Step 5. Trace and simplify region contours. // // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return false; } if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours."); return false; } // // Step 6. Build polygons mesh from contours. // // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return false; } if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return false; } // // Step 7. Create detail mesh which allows to access approximate height on each polygon. // m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'."); return false; } if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh."); return false; } if (!m_keepInterResults) { rcFreeCompactHeightfield(m_chf); m_chf = 0; rcFreeContourSet(m_cset); m_cset = 0; } // At this point the navigation mesh data is ready, you can access it from m_pmesh. // See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data. // // (Optional) Step 8. Create Detour data from Recast poly mesh. // // The GUI may allow more max points per polygon than Detour can handle. // Only build the detour navmesh if we do not exceed the limit. if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { unsigned char* navData = 0; int navDataSize = 0; // Update poly flags from areas. for (int i = 0; i < m_pmesh->npolys; ++i) { if (m_pmesh->areas[i] == RC_WALKABLE_AREA) m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND || m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS || m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; } } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = m_pmesh->verts; params.vertCount = m_pmesh->nverts; params.polys = m_pmesh->polys; params.polyAreas = m_pmesh->areas; params.polyFlags = m_pmesh->flags; params.polyCount = m_pmesh->npolys; params.nvp = m_pmesh->nvp; params.detailMeshes = m_dmesh->meshes; params.detailVerts = m_dmesh->verts; params.detailVertsCount = m_dmesh->nverts; params.detailTris = m_dmesh->tris; params.detailTriCount = m_dmesh->ntris; params.offMeshConVerts = m_geom->getOffMeshConnectionVerts(); params.offMeshConRad = m_geom->getOffMeshConnectionRads(); params.offMeshConDir = m_geom->getOffMeshConnectionDirs(); params.offMeshConAreas = m_geom->getOffMeshConnectionAreas(); params.offMeshConFlags = m_geom->getOffMeshConnectionFlags(); params.offMeshConUserID = m_geom->getOffMeshConnectionId(); params.offMeshConCount = m_geom->getOffMeshConnectionCount(); params.walkableHeight = m_agentHeight; params.walkableRadius = m_agentRadius; params.walkableClimb = m_agentMaxClimb; rcVcopy(params.bmin, m_pmesh->bmin); rcVcopy(params.bmax, m_pmesh->bmax); params.cs = m_cfg.cs; params.ch = m_cfg.ch; params.buildBvTree = true; if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return false; } m_navMesh = dtAllocNavMesh(); if (!m_navMesh) { dtFree(navData); m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh"); return false; } dtStatus status; status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA); if (dtStatusFailed(status)) { dtFree(navData); m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh"); return false; } status = m_navQuery->init(m_navMesh, 2048); if (dtStatusFailed(status)) { m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query"); return false; } } m_ctx->stopTimer(RC_TIMER_TOTAL); // Show performance stats. duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)); m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys); m_totalBuildTimeMs = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f; if (m_tool) m_tool->init(this); initToolStates(this); return true; }
bool NavigationMesh::BuildTile(Vector<NavigationGeometryInfo>& geometryList, int x, int z) { PROFILE(BuildNavigationMeshTile); // Remove previous tile (if any) navMesh_->removeTile(navMesh_->getTileRefAt(x, z, 0), 0, 0); float tileEdgeLength = (float)tileSize_ * cellSize_; BoundingBox tileBoundingBox(Vector3( boundingBox_.min_.x_ + tileEdgeLength * (float)x, boundingBox_.min_.y_, boundingBox_.min_.z_ + tileEdgeLength * (float)z ), Vector3( boundingBox_.min_.x_ + tileEdgeLength * (float)(x + 1), boundingBox_.max_.y_, boundingBox_.min_.z_ + tileEdgeLength * (float)(z + 1) )); NavigationBuildData build; rcConfig cfg; memset(&cfg, 0, sizeof cfg); cfg.cs = cellSize_; cfg.ch = cellHeight_; cfg.walkableSlopeAngle = agentMaxSlope_; cfg.walkableHeight = (int)ceilf(agentHeight_ / cfg.ch); cfg.walkableClimb = (int)floorf(agentMaxClimb_ / cfg.ch); cfg.walkableRadius = (int)ceilf(agentRadius_ / cfg.cs); cfg.maxEdgeLen = (int)(edgeMaxLength_ / cellSize_); cfg.maxSimplificationError = edgeMaxError_; cfg.minRegionArea = (int)sqrtf(regionMinSize_); cfg.mergeRegionArea = (int)sqrtf(regionMergeSize_); cfg.maxVertsPerPoly = 6; cfg.tileSize = tileSize_; cfg.borderSize = cfg.walkableRadius + 3; // Add padding cfg.width = cfg.tileSize + cfg.borderSize * 2; cfg.height = cfg.tileSize + cfg.borderSize * 2; cfg.detailSampleDist = detailSampleDistance_ < 0.9f ? 0.0f : cellSize_ * detailSampleDistance_; cfg.detailSampleMaxError = cellHeight_ * detailSampleMaxError_; rcVcopy(cfg.bmin, &tileBoundingBox.min_.x_); rcVcopy(cfg.bmax, &tileBoundingBox.max_.x_); cfg.bmin[0] -= cfg.borderSize * cfg.cs; cfg.bmin[2] -= cfg.borderSize * cfg.cs; cfg.bmax[0] += cfg.borderSize * cfg.cs; cfg.bmax[2] += cfg.borderSize * cfg.cs; BoundingBox expandedBox(*reinterpret_cast<Vector3*>(cfg.bmin), *reinterpret_cast<Vector3*>(cfg.bmax)); GetTileGeometry(build, geometryList, expandedBox); if (build.vertices_.Empty() || build.indices_.Empty()) return true; // Nothing to do build.heightField_ = rcAllocHeightfield(); if (!build.heightField_) { LOGERROR("Could not allocate heightfield"); return false; } if (!rcCreateHeightfield(build.ctx_, *build.heightField_, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch)) { LOGERROR("Could not create heightfield"); return false; } unsigned numTriangles = build.indices_.Size() / 3; SharedArrayPtr<unsigned char> triAreas(new unsigned char[numTriangles]); memset(triAreas.Get(), 0, numTriangles); rcMarkWalkableTriangles(build.ctx_, cfg.walkableSlopeAngle, &build.vertices_[0].x_, build.vertices_.Size(), &build.indices_[0], numTriangles, triAreas.Get()); rcRasterizeTriangles(build.ctx_, &build.vertices_[0].x_, build.vertices_.Size(), &build.indices_[0], triAreas.Get(), numTriangles, *build.heightField_, cfg.walkableClimb); rcFilterLowHangingWalkableObstacles(build.ctx_, cfg.walkableClimb, *build.heightField_); rcFilterLedgeSpans(build.ctx_, cfg.walkableHeight, cfg.walkableClimb, *build.heightField_); rcFilterWalkableLowHeightSpans(build.ctx_, cfg.walkableHeight, *build.heightField_); build.compactHeightField_ = rcAllocCompactHeightfield(); if (!build.compactHeightField_) { LOGERROR("Could not allocate create compact heightfield"); return false; } if (!rcBuildCompactHeightfield(build.ctx_, cfg.walkableHeight, cfg.walkableClimb, *build.heightField_, *build.compactHeightField_)) { LOGERROR("Could not build compact heightfield"); return false; } if (!rcErodeWalkableArea(build.ctx_, cfg.walkableRadius, *build.compactHeightField_)) { LOGERROR("Could not erode compact heightfield"); return false; } if (!rcBuildDistanceField(build.ctx_, *build.compactHeightField_)) { LOGERROR("Could not build distance field"); return false; } if (!rcBuildRegions(build.ctx_, *build.compactHeightField_, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea)) { LOGERROR("Could not build regions"); return false; } build.contourSet_ = rcAllocContourSet(); if (!build.contourSet_) { LOGERROR("Could not allocate contour set"); return false; } if (!rcBuildContours(build.ctx_, *build.compactHeightField_, cfg.maxSimplificationError, cfg.maxEdgeLen, *build.contourSet_)) { LOGERROR("Could not create contours"); return false; } build.polyMesh_ = rcAllocPolyMesh(); if (!build.polyMesh_) { LOGERROR("Could not allocate poly mesh"); return false; } if (!rcBuildPolyMesh(build.ctx_, *build.contourSet_, cfg.maxVertsPerPoly, *build.polyMesh_)) { LOGERROR("Could not triangulate contours"); return false; } build.polyMeshDetail_ = rcAllocPolyMeshDetail(); if (!build.polyMeshDetail_) { LOGERROR("Could not allocate detail mesh"); return false; } if (!rcBuildPolyMeshDetail(build.ctx_, *build.polyMesh_, *build.compactHeightField_, cfg.detailSampleDist, cfg.detailSampleMaxError, *build.polyMeshDetail_)) { LOGERROR("Could not build detail mesh"); return false; } // Set polygon flags /// \todo Allow to define custom flags for (int i = 0; i < build.polyMesh_->npolys; ++i) { if (build.polyMesh_->areas[i] == RC_WALKABLE_AREA) build.polyMesh_->flags[i] = 0x1; } unsigned char* navData = 0; int navDataSize = 0; dtNavMeshCreateParams params; memset(¶ms, 0, sizeof params); params.verts = build.polyMesh_->verts; params.vertCount = build.polyMesh_->nverts; params.polys = build.polyMesh_->polys; params.polyAreas = build.polyMesh_->areas; params.polyFlags = build.polyMesh_->flags; params.polyCount = build.polyMesh_->npolys; params.nvp = build.polyMesh_->nvp; params.detailMeshes = build.polyMeshDetail_->meshes; params.detailVerts = build.polyMeshDetail_->verts; params.detailVertsCount = build.polyMeshDetail_->nverts; params.detailTris = build.polyMeshDetail_->tris; params.detailTriCount = build.polyMeshDetail_->ntris; params.walkableHeight = agentHeight_; params.walkableRadius = agentRadius_; params.walkableClimb = agentMaxClimb_; params.tileX = x; params.tileY = z; rcVcopy(params.bmin, build.polyMesh_->bmin); rcVcopy(params.bmax, build.polyMesh_->bmax); params.cs = cfg.cs; params.ch = cfg.ch; params.buildBvTree = true; // Add off-mesh connections if have them if (build.offMeshRadii_.Size()) { params.offMeshConCount = build.offMeshRadii_.Size(); params.offMeshConVerts = &build.offMeshVertices_[0].x_; params.offMeshConRad = &build.offMeshRadii_[0]; params.offMeshConFlags = &build.offMeshFlags_[0]; params.offMeshConAreas = &build.offMeshAreas_[0]; params.offMeshConDir = &build.offMeshDir_[0]; } if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { LOGERROR("Could not build navigation mesh tile data"); return false; } if (dtStatusFailed(navMesh_->addTile(navData, navDataSize, DT_TILE_FREE_DATA, 0, 0))) { LOGERROR("Failed to add navigation mesh tile"); dtFree(navData); return false; } return true; }
uint8* TileBuilder::BuildTiled(dtNavMeshParams& navMeshParams) { _Geometry = new Geometry(); _Geometry->Transform = true; ADT* adt = new ADT(Utils::GetAdtPath(World, X, Y), X, Y); adt->Read(); _Geometry->AddAdt(adt); delete adt; if (_Geometry->Vertices.empty() && _Geometry->Triangles.empty()) return NULL; float* bmin = NULL, *bmax = NULL; CalculateTileBounds(bmin, bmax, navMeshParams); _Geometry->CalculateMinMaxHeight(bmin[1], bmax[1]); // again, we load everything - wasteful but who cares for (int ty = Y - 1; ty <= Y + 1; ty++) { for (int tx = X - 1; tx <= X + 1; tx++) { // don't load main tile again if (tx == X && ty == Y) continue; ADT* _adt = new ADT(Utils::GetAdtPath(World, tx, ty), tx, ty); // If this condition is met, it means that this WDT does not contain the ADT if (!_adt->Data->Stream) { delete _adt; continue; } _adt->Read(); _Geometry->AddAdt(_adt); delete _adt; } } OutputDebugVertices(); uint32 numVerts = _Geometry->Vertices.size(); uint32 numTris = _Geometry->Triangles.size(); float* vertices; int* triangles; uint8* areas; _Geometry->GetRawData(vertices, triangles, areas); _Geometry->Vertices.clear(); _Geometry->Triangles.clear(); // add border bmin[0] -= Config.borderSize * Config.cs; bmin[2] -= Config.borderSize * Config.cs; bmax[0] += Config.borderSize * Config.cs; bmax[2] += Config.borderSize * Config.cs; rcHeightfield* hf = rcAllocHeightfield(); int width = Config.tileSize + (Config.borderSize * 2); rcCreateHeightfield(Context, *hf, width, width, bmin, bmax, Config.cs, Config.ch); rcClearUnwalkableTriangles(Context, Config.walkableSlopeAngle, vertices, numVerts, triangles, numTris, areas); rcRasterizeTriangles(Context, vertices, numVerts, triangles, areas, numTris, *hf, Config.walkableClimb); rcFilterLowHangingWalkableObstacles(Context, Config.walkableClimb, *hf); rcFilterLedgeSpans(Context, Config.walkableHeight, Config.walkableClimb, *hf); rcFilterWalkableLowHeightSpans(Context, Config.walkableHeight, *hf); rcCompactHeightfield* chf = rcAllocCompactHeightfield(); rcBuildCompactHeightfield(Context, Config.walkableHeight, Config.walkableClimb, *hf, *chf); rcErodeWalkableArea(Context, Config.walkableRadius, *chf); rcBuildDistanceField(Context, *chf); rcBuildRegions(Context, *chf, Config.borderSize, Config.minRegionArea, Config.mergeRegionArea); rcContourSet* contours = rcAllocContourSet(); rcBuildContours(Context, *chf, Config.maxSimplificationError, Config.maxEdgeLen, *contours); rcPolyMesh* pmesh = rcAllocPolyMesh(); rcBuildPolyMesh(Context, *contours, Config.maxVertsPerPoly, *pmesh); rcPolyMeshDetail* dmesh = rcAllocPolyMeshDetail(); rcBuildPolyMeshDetail(Context, *pmesh, *chf, Config.detailSampleDist, Config.detailSampleMaxError, *dmesh); // Set flags according to area types (e.g. Swim for Water) for (int i = 0; i < pmesh->npolys; i++) { if (pmesh->areas[i] == Constants::POLY_AREA_ROAD || pmesh->areas[i] == Constants::POLY_AREA_TERRAIN) pmesh->flags[i] = Constants::POLY_FLAG_WALK; else if (pmesh->areas[i] == Constants::POLY_AREA_WATER) pmesh->flags[i] = Constants::POLY_FLAG_SWIM; } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); // PolyMesh data params.verts = pmesh->verts; params.vertCount = pmesh->nverts; params.polys = pmesh->polys; params.polyAreas = pmesh->areas; params.polyFlags = pmesh->flags; params.polyCount = pmesh->npolys; params.nvp = pmesh->nvp; // PolyMeshDetail data params.detailMeshes = dmesh->meshes; params.detailVerts = dmesh->verts; params.detailVertsCount = dmesh->nverts; params.detailTris = dmesh->tris; params.detailTriCount = dmesh->ntris; // General settings params.ch = Config.ch; params.cs = Config.cs; params.walkableClimb = Config.walkableClimb * Config.ch; params.walkableHeight = Config.walkableHeight * Config.ch; params.walkableRadius = Config.walkableRadius * Config.cs; params.tileX = X; params.tileY = Y; params.tileLayer = 0; params.buildBvTree = true; // Recalculate the bounds with the added geometry float* bmin2 = NULL, *bmax2 = NULL; CalculateTileBounds(bmin2, bmax2, navMeshParams); bmin2[1] = bmin[1]; bmax2[1] = bmax[1]; rcVcopy(params.bmax, bmax2); rcVcopy(params.bmin, bmin2); // Offmesh-connection settings params.offMeshConCount = 0; // none for now rcFreeHeightField(hf); rcFreeCompactHeightfield(chf); rcFreeContourSet(contours); delete vertices; delete triangles; delete areas; delete bmin; delete bmax; if (!params.polyCount || !params.polys || Constants::TilesPerMap * Constants::TilesPerMap == params.polyCount) { // we have flat tiles with no actual geometry - don't build those, its useless // keep in mind that we do output those into debug info // drop tiles with only exact count - some tiles may have geometry while having less tiles printf("[%02i, %02i] No polygons to build on tile, skipping.\n", X, Y); rcFreePolyMesh(pmesh); rcFreePolyMeshDetail(dmesh); return NULL; } int navDataSize; uint8* navData; printf("[%02i, %02i] Creating the navmesh with %i vertices, %i polys, %i triangles!\n", X, Y, params.vertCount, params.polyCount, params.detailTriCount); bool result = dtCreateNavMeshData(¶ms, &navData, &navDataSize); rcFreePolyMesh(pmesh); rcFreePolyMeshDetail(dmesh); if (result) { printf("[%02i, %02i] NavMesh created, size %i!\n", X, Y, navDataSize); DataSize = navDataSize; return navData; } return NULL; }
bool RecastInterface::buildNavMesh(InputGeometry* inputGeom) { //Step 1 : Initialize build configuration //Start the timers. #ifdef _DEBUG std::cout << "NavMesh build started." << std::endl; unsigned long start = Ogre::Root::getSingleton().getTimer()->getMilliseconds(); unsigned long end = 0; #endif //Step 2 : Rasterize input polygon soup //InputGeometry* input = inputGeom; WTF? Is this necessary? rcVcopy(_config.bmin, inputGeom->getMeshBoundsMin()); rcVcopy(_config.bmax, inputGeom->getMeshBoundsMax()); rcCalcGridSize(_config.bmin,_config.bmax,_config.cs,&_config.width,&_config.height); int numVerts = inputGeom->getVertexCount(); int numTris = inputGeom->getTriangleCount(); #ifdef _DEBUG Ogre::Vector3 min,max; Utility::floatPtr_toVector3(inputGeom->getMeshBoundsMin(),min); Utility::floatPtr_toVector3(inputGeom->getMeshBoundsMax(),max); std::cout << "Bounds: min=" << min << " max=" << max << std::endl; std::cout << "Building navmesh" << std::endl; std::cout << " - " << _config.width << " x " << _config.height << std::endl; std::cout << " - " << numVerts / 1000.0f << "K vertices, "; std::cout << numTris / 1000.0f << "K triangles" << std::endl; //_printConfig(); #endif _solid = rcAllocHeightfield(); if(!_solid) { std::cout << "Error! Out of memory needed for '_solid'." << std::endl; return false; } if(!rcCreateHeightfield(_context,*_solid, _config.width,_config.height, _config.bmin,_config.bmax, _config.cs,_config.ch)) { std::cout << "Error! Couldn't create heightfield, try higher cellSize and cellHeight values." << std::endl; return false; } //holds triangle area types _triangleAreas = new unsigned char[numTris]; if(!_triangleAreas) { std::cout << "Error! Out of memory '_triangleAreas'([" << numTris << "])" << std::endl; return false; } //find triangles that are walkable in slope and rasterize them memset(_triangleAreas,0,numTris * sizeof(unsigned char)); rcMarkWalkableTriangles(_context,_config.walkableSlopeAngle, inputGeom->getVertices(),inputGeom->getVertexCount(), inputGeom->getTriangles(),inputGeom->getTriangleCount(), _triangleAreas); rcRasterizeTriangles(_context,inputGeom->getVertices(),inputGeom->getVertexCount(), inputGeom->getTriangles(),_triangleAreas, inputGeom->getTriangleCount(),*_solid,_config.walkableClimb); //I know I put this option in the params, but... if(!_recastParams.getKeepIntermediateResults()) { delete[] _triangleAreas; _triangleAreas = nullptr; } //Step 3 : Filter walkables surfaces //Initial pass of filtering to remove unwanted overhangs caused //by the conservative rasterization. //Also filters spans where the character can't stand. rcFilterLowHangingWalkableObstacles(_context,_config.walkableClimb,*_solid); rcFilterLedgeSpans(_context,_config.walkableHeight,_config.walkableClimb,*_solid); rcFilterWalkableLowHeightSpans(_context,_config.walkableHeight,*_solid); //Step 4 : Partition walkable surface to simple regions //Compact the heightfield so that it is faster to handle from now on. _compactHeightfield = rcAllocCompactHeightfield(); if(!_compactHeightfield) { std::cout << "Error! Out of memory '_compactHeightfield'" << std::endl; return false; } if(!rcBuildCompactHeightfield(_context, _config.walkableHeight,_config.walkableClimb, *_solid,*_compactHeightfield)) { std::cout << "Error! BuildNav - Could not build compact data." << std::endl; return false; } if(!_recastParams.getKeepIntermediateResults()) { rcFreeHeightField(_solid); _solid = nullptr; } //Erode walkable area by agent radius if(!rcErodeWalkableArea(_context,_config.walkableRadius,*_compactHeightfield)) { std::cout << "Error! BuildNav - Could not erode walkable areas." << std::endl; return false; } //Prepare for region partitioning, generate distance field if(!rcBuildDistanceField(_context,*_compactHeightfield)) { std::cout << "Error! BuildNav - Could not build distance field." << std::endl; return false; } //Partition the walkable surface into simple regions w/o holes if(!rcBuildRegions(_context,*_compactHeightfield, _config.borderSize, _config.minRegionArea,_config.mergeRegionArea)) { std::cout << "Error! BuildNav - Could not build regions." << std::endl; return false; } //Step 5 : Trace and simplify region contours. //create contours _contourSet = rcAllocContourSet(); if(!_contourSet) { std::cout << "Error! BuildNav - Out of memory '_contourSet'" << std::endl; return false; } if(!rcBuildContours(_context,*_compactHeightfield,_config.maxSimplificationError,_config.maxEdgeLen,*_contourSet)) { std::cout << "Error! BuildNav - Could not create contours." << std::endl; return false; } if(_contourSet->nconts == 0) { //Check this thread for details on solving these: //http://groups.google.com/group/recastnavigation/browse_thread/thread/a6fbd509859a12c8 std::cout << "Error! BuildNav - RecastNav created no contours!" << std::endl; std::cout << _compactHeightfield->spanCount << std::endl; } //Step 6 : Build polygons mesh from contours //Build polygon navmesh from the contours _polyMesh = rcAllocPolyMesh(); if(!_polyMesh) { std::cout << "Error! Out of memory '_polyMesh'." << std::endl; return false; } if(!rcBuildPolyMesh(_context,*_contourSet,_config.maxVertsPerPoly,*_polyMesh)) { std::cout << "Error! BuildNav - Could not triangulate contours." << std::endl; } //Step 7 : Create detail mesh which allows access to approximate height on each polygon. _detailMesh = rcAllocPolyMeshDetail(); if(!_detailMesh) { std::cout << "Error! Out of memory '_detailMesh'." << std::endl; return false; } if(!rcBuildPolyMeshDetail(_context, *_polyMesh,*_compactHeightfield, _config.detailSampleDist,_config.detailSampleMaxError, *_detailMesh)) { std::cout << "Error! BuildNav - Could not build detail mesh." << std::endl; return false; } if(!_recastParams.getKeepIntermediateResults()) { rcFreeCompactHeightfield(_compactHeightfield); _compactHeightfield = nullptr; rcFreeContourSet(_contourSet); _contourSet = nullptr; } //Recast navmesh is finished! #ifdef _DEBUG end = Ogre::Root::getSingletonPtr()->getTimer()->getMilliseconds(); std::cout << "Navmesh build finished." << std::endl; std::cout << " - Time elapsed:" << end - start << "ms" << std::endl; #endif return true; }
bool NavMesher::Build() { // ******* Only for OBJ Loading **** cleanup(); const char * filepath = "../../media/models/"; if (!m_geom || !m_geom->loadMesh(filepath)) { delete m_geom; m_geom = 0; m_ctx->log(RC_LOG_ERROR, "Geom load log %s:"); } assert(m_geom); if (!m_geom || !m_geom->getMesh()) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified."); return false; } if(m_geom->getMesh()->getTriCount() <= 0 || m_geom->getMesh()->getVertCount()<=0) Ogre::Exception(0,Ogre::String("Bad verts or Triangle count. Verts: "+ StringConverter::toString( m_geom->getMesh()->getVertCount()) + "/n" + "Triangles :" +StringConverter::toString(m_geom->getMesh()->getTriCount())),"NavMesher::Build"); //reset timer Ogre::Timer tm; tm.reset(); unsigned long stime = tm.getMicroseconds(); //clear existing Clear(); // ******* Only for OBJ Loading **** const float* bmin = m_geom->getMeshBoundsMin(); const float* bmax = m_geom->getMeshBoundsMax(); const float* verts = m_geom->getMesh()->getVerts(); const int nverts = m_geom->getMesh()->getVertCount(); const int *tris = m_geom->getMesh()->getTris(); const int ntris = m_geom->getMesh()->getTriCount(); if(sizeof(tris) <= 0 || ntris <= 0) { return false; } // // Step 1. Initialize build config. // // Init build configuration from GUI memset(&m_cfg, 0, sizeof(m_cfg)); m_cfg.cs = m_cellSize; m_cfg.ch = m_cellHeight; m_cfg.walkableSlopeAngle = m_agentMaxSlope; m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize); m_cfg.maxSimplificationError = m_edgeMaxError; m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly; m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist; m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError; // Set the area where the navigation will be build. // Here the bounds of the input mesh are used, but the // area could be specified by an user defined box, etc. rcVcopy(m_cfg.bmin, bmin); rcVcopy(m_cfg.bmax, bmax); rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height); // Reset build times gathering. m_ctx->resetTimers(); // Start the build process. m_ctx->startTimer(RC_TIMER_TOTAL); m_ctx->log(RC_LOG_PROGRESS, "Building navigation:"); m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height); m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f); // // Step 2. Rasterize input polygon soup. // // Allocate voxel heightfield where we rasterize our input data to. m_solid = rcAllocHeightfield(); if (!m_solid) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return false; } if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return false; } // Allocate array that can hold triangle area types. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new unsigned char[ntris]; if (!m_triareas) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris); return false; } // Find triangles which are walkable based on their slope and rasterize them. // If your input data is multiple meshes, you can transform them here, calculate // the are type for each of the meshes and rasterize them. memset(m_triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas); rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb); if (!m_keepInterResults) { delete [] m_triareas; m_triareas = 0; } // // Step 3. Filter walkables surfaces. // // Once all geoemtry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid); rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid); rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid); // // Step 4. Partition walkable surface to simple regions. // // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return false; } if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return false; } if (!m_keepInterResults) { rcFreeHeightField(m_solid); m_solid = 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return false; } // (Optional) Mark areas. const ConvexVolume* vols = m_geom->getConvexVolumes(); for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); if (m_monotonePartitioning) { // Partition the walkable surface into simple regions without holes. // Monotone partitioning does not need distancefield. if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); return false; } } else { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return false; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); return false; } } // // Step 5. Trace and simplify region contours. // // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return false; } if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours."); return false; } // // Step 6. Build polygons mesh from contours. // // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return false; } if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return false; } // // Step 7. Create detail mesh which allows to access approximate height on each polygon. // m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'."); return false; } if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh."); return false; } if (!m_keepInterResults) { rcFreeCompactHeightfield(m_chf); m_chf = 0; rcFreeContourSet(m_cset); m_cset = 0; } // At this point the navigation mesh data is ready, you can access it from m_pmesh. // See rcDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data. // // (Optional) Step 8. Create Detour data from Recast poly mesh. // // The GUI may allow more max points per polygon than Detour can handle. // Only build the detour navmesh if we do not exceed the limit. unsigned char* navData = 0; int navDataSize = 0; // Update poly flags from areas. for (int i = 0; i < m_pmesh->npolys; ++i) { if (m_pmesh->areas[i] == RC_WALKABLE_AREA) m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND || m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS || m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; } } memset(&m_params, 0, sizeof(m_params)); m_params.verts = m_pmesh->verts; m_params.vertCount = m_pmesh->nverts; m_params.polys = m_pmesh->polys; m_params.polyAreas = m_pmesh->areas; m_params.polyFlags = m_pmesh->flags; m_params.polyCount = m_pmesh->npolys; m_params.nvp = m_pmesh->nvp; m_params.detailMeshes = m_dmesh->meshes; m_params.detailVerts = m_dmesh->verts; m_params.detailVertsCount = m_dmesh->nverts; m_params.detailTris = m_dmesh->tris; m_params.detailTriCount = m_dmesh->ntris; m_params.walkableHeight = m_agentHeight; m_params.walkableRadius = m_agentRadius; m_params.walkableClimb = m_agentMaxClimb; rcVcopy(m_params.bmin, m_pmesh->bmin); rcVcopy(m_params.bmax, m_pmesh->bmax); m_params.cs = m_cfg.cs; m_params.ch = m_cfg.ch; m_params.buildBvTree = true; if (!dtCreateNavMeshData(&m_params, &navData, &navDataSize)) { m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return false; } m_navMesh = dtAllocNavMesh(); if (!m_navMesh) { delete [] navData; m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh"); return false; } m_navQuery = dtAllocNavMeshQuery(); dtStatus status = m_navQuery->init(m_navMesh, 2048); if (dtStatusFailed(status)) { m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query"); return false; } if (!m_navMesh->init(navData, navDataSize, true)) { delete [] navData; m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh"); return false; } //take time stime = tm.getMicroseconds() - stime; DrawDebug(); return true; }
/*! Build a NAVIGATION mesh from an OBJ mesh index. Usually this OBJMESH is either a collision map or a mesh that have been built especially for navigation. \param[in,out] navigation A valid NAVIGATION structure pointer. \param[in] obj A valid OBJ structure pointer. \param[in] mesh_index The mesh index of the OBJMESH to use to create the NAVIGATION mesh. \return Return 1 if the NAVIGATION mesh have been generated successfully, else this function will return 0. */ unsigned char NAVIGATION_build( NAVIGATION *navigation, OBJ *obj, unsigned int mesh_index ) { unsigned int i = 0, j = 0, k = 0, triangle_count = 0; int *indices = NULL; OBJMESH *objmesh = &obj->objmesh[ mesh_index ]; vec3 *vertex_array = ( vec3 * ) malloc( objmesh->n_objvertexdata * sizeof( vec3 ) ), *vertex_start = vertex_array; rcHeightfield *rcheightfield; rcCompactHeightfield *rccompactheightfield; rcContourSet *rccontourset; rcPolyMesh *rcpolymesh; rcPolyMeshDetail *rcpolymeshdetail; while( i != objmesh->n_objvertexdata ) { memcpy( vertex_array, &obj->indexed_vertex[ objmesh->objvertexdata[ i ].vertex_index ], sizeof( vec3 ) ); vec3_to_recast( vertex_array ); ++vertex_array; ++i; } i = 0; while( i != objmesh->n_objtrianglelist ) { triangle_count += objmesh->objtrianglelist[ i ].n_indice_array; indices = ( int * ) realloc( indices, triangle_count * sizeof( int ) ); j = 0; while( j != objmesh->objtrianglelist[ i ].n_indice_array ) { indices[ k ] = objmesh->objtrianglelist[ i ].indice_array[ j ]; ++k; ++j; } ++i; } triangle_count /= 3; rcConfig rcconfig; memset( &rcconfig, 0, sizeof( rcConfig ) ); rcconfig.cs = navigation->navigationconfiguration.cell_size; rcconfig.ch = navigation->navigationconfiguration.cell_height; rcconfig.walkableHeight = ( int )ceilf ( navigation->navigationconfiguration.agent_height / rcconfig.ch ); rcconfig.walkableRadius = ( int )ceilf ( navigation->navigationconfiguration.agent_radius / rcconfig.cs ); rcconfig.walkableClimb = ( int )floorf( navigation->navigationconfiguration.agent_max_climb / rcconfig.ch ); rcconfig.walkableSlopeAngle = navigation->navigationconfiguration.agent_max_slope; rcconfig.minRegionSize = ( int )rcSqr( navigation->navigationconfiguration.region_min_size ); rcconfig.mergeRegionSize = ( int )rcSqr( navigation->navigationconfiguration.region_merge_size ); rcconfig.maxEdgeLen = ( int )( navigation->navigationconfiguration.edge_max_len / rcconfig.cs ); rcconfig.maxSimplificationError = navigation->navigationconfiguration.edge_max_error; rcconfig.maxVertsPerPoly = ( int )navigation->navigationconfiguration.vert_per_poly; rcconfig.detailSampleDist = rcconfig.cs * navigation->navigationconfiguration.detail_sample_dst; rcconfig.detailSampleMaxError = rcconfig.ch * navigation->navigationconfiguration.detail_sample_max_error; rcCalcBounds( ( float * )vertex_start, objmesh->n_objvertexdata, rcconfig.bmin, rcconfig.bmax ); rcCalcGridSize( rcconfig.bmin, rcconfig.bmax, rcconfig.cs, &rcconfig.width, &rcconfig.height ); rcheightfield = rcAllocHeightfield(); rcCreateHeightfield( *rcheightfield, rcconfig.width, rcconfig.height, rcconfig.bmin, rcconfig.bmax, rcconfig.cs, rcconfig.ch ); navigation->triangle_flags = new unsigned char[ triangle_count ]; memset( navigation->triangle_flags, 0, triangle_count * sizeof( unsigned char ) ); rcMarkWalkableTriangles( rcconfig.walkableSlopeAngle, ( float * )vertex_start, objmesh->n_objvertexdata, indices, triangle_count, navigation->triangle_flags ); rcRasterizeTriangles( ( float * )vertex_start, objmesh->n_objvertexdata, indices, navigation->triangle_flags, triangle_count, *rcheightfield, rcconfig.walkableClimb ); delete []navigation->triangle_flags; navigation->triangle_flags = NULL; free( vertex_start ); free( indices ); rcFilterLowHangingWalkableObstacles( rcconfig.walkableClimb, *rcheightfield ); rcFilterLedgeSpans( rcconfig.walkableHeight, rcconfig.walkableClimb, *rcheightfield ); rcFilterWalkableLowHeightSpans( rcconfig.walkableHeight, *rcheightfield ); rccompactheightfield = rcAllocCompactHeightfield(); rcBuildCompactHeightfield( rcconfig.walkableHeight, rcconfig.walkableClimb, RC_WALKABLE, *rcheightfield, *rccompactheightfield ); rcFreeHeightField( rcheightfield ); rcheightfield = NULL; rcErodeArea( RC_WALKABLE_AREA, rcconfig.walkableRadius, *rccompactheightfield ); rcBuildDistanceField( *rccompactheightfield ); rcBuildRegions( *rccompactheightfield, rcconfig.borderSize, rcconfig.minRegionSize, rcconfig.mergeRegionSize ); rccontourset = rcAllocContourSet(); rcBuildContours( *rccompactheightfield, rcconfig.maxSimplificationError, rcconfig.maxEdgeLen, *rccontourset ); rcpolymesh = rcAllocPolyMesh(); rcBuildPolyMesh( *rccontourset, rcconfig.maxVertsPerPoly, *rcpolymesh ); rcpolymeshdetail = rcAllocPolyMeshDetail(); rcBuildPolyMeshDetail( *rcpolymesh, *rccompactheightfield, rcconfig.detailSampleDist, rcconfig.detailSampleMaxError, *rcpolymeshdetail ); rcFreeCompactHeightfield( rccompactheightfield ); rccompactheightfield = NULL; rcFreeContourSet( rccontourset ); rccontourset = NULL; if( rcconfig.maxVertsPerPoly <= DT_VERTS_PER_POLYGON ) { dtNavMeshCreateParams dtnavmeshcreateparams; unsigned char *nav_data = NULL; int nav_data_size = 0; i = 0; while( i != rcpolymesh->npolys ) { if( rcpolymesh->areas[ i ] == RC_WALKABLE_AREA ) { rcpolymesh->areas[ i ] = 0; rcpolymesh->flags[ i ] = 0x01; } ++i; } memset( &dtnavmeshcreateparams, 0, sizeof( dtNavMeshCreateParams ) ); dtnavmeshcreateparams.verts = rcpolymesh->verts; dtnavmeshcreateparams.vertCount = rcpolymesh->nverts; dtnavmeshcreateparams.polys = rcpolymesh->polys; dtnavmeshcreateparams.polyAreas = rcpolymesh->areas; dtnavmeshcreateparams.polyFlags = rcpolymesh->flags; dtnavmeshcreateparams.polyCount = rcpolymesh->npolys; dtnavmeshcreateparams.nvp = rcpolymesh->nvp; dtnavmeshcreateparams.detailMeshes = rcpolymeshdetail->meshes; dtnavmeshcreateparams.detailVerts = rcpolymeshdetail->verts; dtnavmeshcreateparams.detailVertsCount = rcpolymeshdetail->nverts; dtnavmeshcreateparams.detailTris = rcpolymeshdetail->tris; dtnavmeshcreateparams.detailTriCount = rcpolymeshdetail->ntris; dtnavmeshcreateparams.walkableHeight = navigation->navigationconfiguration.agent_height; dtnavmeshcreateparams.walkableRadius = navigation->navigationconfiguration.agent_radius; dtnavmeshcreateparams.walkableClimb = navigation->navigationconfiguration.agent_max_climb; rcVcopy( dtnavmeshcreateparams.bmin, rcpolymesh->bmin ); rcVcopy( dtnavmeshcreateparams.bmax, rcpolymesh->bmax ); dtnavmeshcreateparams.cs = rcconfig.cs; dtnavmeshcreateparams.ch = rcconfig.ch; dtCreateNavMeshData( &dtnavmeshcreateparams, &nav_data, &nav_data_size ); if( !nav_data ) return 0; navigation->dtnavmesh = dtAllocNavMesh(); navigation->dtnavmesh->init( nav_data, nav_data_size, DT_TILE_FREE_DATA, NAVIGATION_MAX_NODE ); rcFreePolyMesh( rcpolymesh ); rcpolymesh = NULL; rcFreePolyMeshDetail( rcpolymeshdetail ); rcpolymeshdetail = NULL; return 1; } return 0; }
bool NavMeshGenerator::handleBuild(const Array2D<int>& tab) { cleanup(); // // Step 1. Initialize build config. // // Init build configuration from GUI memset(&m_cfg, 0, sizeof(m_cfg)); const int voxels_per_tile = 3; //3 m_cfg.width = tab.size().x*3*voxels_per_tile; m_cfg.height = tab.size().x*3*voxels_per_tile; m_cfg.cs = pixels_per_tile/float(voxels_per_tile); m_cfg.walkableRadius = voxels_per_tile == 1 ? 0 : 1; m_cfg.maxEdgeLen = 0;//20; // m_cfg.maxSimplificationError = 0.f; // 0 or 1, no need because we are working on tiles m_cfg.minRegionArea = 64;//(int)rcSqr(m_regionMinSize); // Note: area = size*size m_cfg.mergeRegionArea = 10000;//(int)rcSqr(m_regionMergeSize); // Note: area = size*size m_cfg.maxVertsPerPoly = 4;//(int)m_vertsPerPoly; m_cfg.ch = 0.2f; // < height info, not used m_cfg.detailSampleDist = 20.f; // < height info, not used m_cfg.detailSampleMaxError = 0.2f; // < height info, not used m_cfg.walkableSlopeAngle = 0; // < height info, not used m_cfg.walkableHeight = 0; // < height info, not used m_cfg.walkableClimb = 0; // < height info, not used // Set the area where the navigation will be build. m_cfg.bmin[0] = 0; m_cfg.bmin[1] = 0; m_cfg.bmin[2] = 0; m_cfg.bmax[0] = tab.size().x*3*pixels_per_tile; m_cfg.bmax[1] = 3; m_cfg.bmax[2] = tab.size().y*3*pixels_per_tile; // Reset build times gathering. m_ctx->resetTimers(); // Start the build process. m_ctx->startTimer(RC_TIMER_TOTAL); m_ctx->log(RC_LOG_PROGRESS, "Building navigation:"); m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height); // // Step 2. Create Heightfield // // Allocate voxel heightfield m_solid = rcAllocHeightfield(); if (!m_solid) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return false; } if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return false; } for(int i = 0; i < m_solid->width; ++i) { for(int j = 0; j < m_solid->height; ++j) { bool colide = tab(int(i*tab.size().x/m_solid->width) , int(j*tab.size().y/m_solid->height)) != 0 ; rcAddSpan(NULL, *m_solid, i, j, 0, colide ? 10: 0, colide ? RC_NULL_AREA : RC_WALKABLE_AREA, 1); } } // // Step 3. Filter walkables surfaces. //----> Not done for 2D // // Step 4. Partition walkable surface to simple regions. // // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return false; } if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return false; } if (!m_keepInterResults) { rcFreeHeightField(m_solid); m_solid = 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return false; } // (Optional) Mark areas. /*const ConvexVolume* vols = m_geom->getConvexVolumes(); for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); */ // Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas. // There are 3 martitioning methods, each with some pros and cons: // 1) Watershed partitioning // - the classic Recast partitioning // - creates the nicest tessellation // - usually slowest // - partitions the heightfield into nice regions without holes or overlaps // - the are some corner cases where this method creates produces holes and overlaps // - holes may appear when a small obstacles is close to large open area (triangulation can handle this) // - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail // * generally the best choice if you precompute the nacmesh, use this if you have large open areas // 2) Monotone partioning // - fastest // - partitions the heightfield into regions without holes and overlaps (guaranteed) // - creates long thin polygons, which sometimes causes paths with detours // * use this if you want fast navmesh generation // 3) Layer partitoining // - quite fast // - partitions the heighfield into non-overlapping regions // - relies on the triangulation code to cope with holes (thus slower than monotone partitioning) // - produces better triangles than monotone partitioning // - does not have the corner cases of watershed partitioning // - can be slow and create a bit ugly tessellation (still better than monotone) // if you have large open areas with small obstacles (not a problem if you use tiles) // * good choice to use for tiled navmesh with medium and small sized tiles if (true) //m_partitionType == SAMPLE_PARTITION_WATERSHED) { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return false; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions."); return false; } } else if (false)//m_partitionType == SAMPLE_PARTITION_MONOTONE) { // Partition the walkable surface into simple regions without holes. // Monotone partitioning does not need distancefield. if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions."); return false; } } else // SAMPLE_PARTITION_LAYERS { // Partition the walkable surface into simple regions without holes. if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions."); return false; } } // // Step 5. Trace and simplify region contours. // // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return false; } if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours."); return false; } // // Step 6. Build polygons mesh from contours. // // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return false; } if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return false; } // // Step 7. Create detail mesh which allows to access approximate height on each polygon. // m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'."); return false; } if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh."); return false; } if (!m_keepInterResults) { rcFreeCompactHeightfield(m_chf); m_chf = 0; rcFreeContourSet(m_cset); m_cset = 0; } // At this point the navigation mesh data is ready, you can access it from m_pmesh. // See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data. // // (Optional) Step 8. Create Detour data from Recast poly mesh. // // The GUI may allow more max points per polygon than Detour can handle. // Only build the detour navmesh if we do not exceed the limit. if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { unsigned char* navData = 0; int navDataSize = 0; // Update poly flags from areas. for (int i = 0; i < m_pmesh->npolys; ++i) { //if (m_pmesh->areas[i] == RC_WALKABLE_AREA) // m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh->areas[i] == RC_WALKABLE_AREA) { m_pmesh->flags[i] = 1; } else { m_pmesh->flags[i] = 0; } } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = m_pmesh->verts; params.vertCount = m_pmesh->nverts; params.polys = m_pmesh->polys; params.polyAreas = m_pmesh->areas; params.polyFlags = m_pmesh->flags; params.polyCount = m_pmesh->npolys; params.nvp = m_pmesh->nvp; params.detailMeshes = m_dmesh->meshes; params.detailVerts = m_dmesh->verts; params.detailVertsCount = m_dmesh->nverts; params.detailTris = m_dmesh->tris; params.detailTriCount = m_dmesh->ntris; params.offMeshConCount = 0; /* unused since offMeshConCount is null params.offMeshConVerts = m_geom->getOffMeshConnectionVerts(); params.offMeshConRad = m_geom->getOffMeshConnectionRads(); params.offMeshConDir = m_geom->getOffMeshConnectionDirs(); params.offMeshConAreas = m_geom->getOffMeshConnectionAreas(); params.offMeshConFlags = m_geom->getOffMeshConnectionFlags(); params.offMeshConUserID = m_geom->getOffMeshConnectionId(); */ params.walkableHeight = m_agentHeight; params.walkableRadius = m_agentRadius; params.walkableClimb = m_agentMaxClimb; rcVcopy(params.bmin, m_pmesh->bmin); rcVcopy(params.bmax, m_pmesh->bmax); params.cs = m_cfg.cs; params.ch = m_cfg.ch; params.buildBvTree = true; if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return false; } m_navMesh = dtAllocNavMesh(); if (!m_navMesh) { dtFree(navData); m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh"); return false; } dtStatus status; status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA); if (dtStatusFailed(status)) { dtFree(navData); m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh"); return false; } status = m_navQuery->init(m_navMesh, 2048); if (dtStatusFailed(status)) { m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query"); return false; } } m_ctx->stopTimer(RC_TIMER_TOTAL); // Show performance stats. m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys); return true; }
bool OgreRecast::NavMeshBuild(InputGeom* input) { // TODO: clean up unused variables m_pLog->logMessage("NavMeshBuild Start"); // // Step 1. Initialize build config. // // Reset build times gathering. m_ctx->resetTimers(); // Start the build process. m_ctx->startTimer(RC_TIMER_TOTAL); // // Step 2. Rasterize input polygon soup. // InputGeom *inputGeom = input; rcVcopy(m_cfg.bmin, inputGeom->getMeshBoundsMin()); rcVcopy(m_cfg.bmax, inputGeom->getMeshBoundsMax()); rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height); int nverts = inputGeom->getVertCount(); int ntris = inputGeom->getTriCount(); Ogre::Vector3 min; FloatAToOgreVect3(inputGeom->getMeshBoundsMin(), min); Ogre::Vector3 max; FloatAToOgreVect3(inputGeom->getMeshBoundsMax(), max); //Ogre::LogManager::getSingletonPtr()->logMessage("Bounds: "+Ogre::StringConverter::toString(min) + " "+ Ogre::StringConverter::toString(max)); m_pLog->logMessage("Building navigation:"); m_pLog->logMessage(" - " + Ogre::StringConverter::toString(m_cfg.width) + " x " + Ogre::StringConverter::toString(m_cfg.height) + " cells"); m_pLog->logMessage(" - " + Ogre::StringConverter::toString(nverts/1000.0f) + " K verts, " + Ogre::StringConverter::toString(ntris/1000.0f) + " K tris"); // Allocate voxel heightfield where we rasterize our input data to. m_solid = rcAllocHeightfield(); if (!m_solid) { m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'solid'."); return false; } if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) { m_pLog->logMessage("ERROR: buildNavigation: Could not create solid heightfield. Possibly it requires too much memory, try setting a higher cellSize and cellHeight value."); return false; } // Allocate array that can hold triangle area types. // If you have multiple meshes you need to process, allocate // an array which can hold the max number of triangles you need to process. m_triareas = new unsigned char[ntris]; if (!m_triareas) { m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'm_triareas' ("+Ogre::StringConverter::toString(ntris)+")."); return false; } // Find triangles which are walkable based on their slope and rasterize them. // If your input data is multiple meshes, you can transform them here, calculate // the are type for each of the meshes and rasterize them. memset(m_triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, inputGeom->getVerts(), inputGeom->getVertCount(), inputGeom->getTris(), inputGeom->getTriCount(), m_triareas); rcRasterizeTriangles(m_ctx, inputGeom->getVerts(), inputGeom->getVertCount(), inputGeom->getTris(), m_triareas, inputGeom->getTriCount(), *m_solid, m_cfg.walkableClimb); if (!m_keepInterResults) { delete [] m_triareas; m_triareas = 0; } // // Step 3. Filter walkables surfaces. // // Once all geoemtry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid); rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid); rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid); // // Step 4. Partition walkable surface to simple regions. // // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'chf'."); return false; } if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) { m_pLog->logMessage("ERROR: buildNavigation: Could not build compact data."); return false; } if (!m_keepInterResults) { rcFreeHeightField(m_solid); m_solid = 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf)) { m_pLog->logMessage("ERROR: buildNavigation: Could not erode walkable areas."); return false; } // TODO implement // (Optional) Mark areas. //const ConvexVolume* vols = m_geom->getConvexVolumes(); //for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) // rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_pLog->logMessage("ERROR: buildNavigation: Could not build distance field."); return false; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { m_pLog->logMessage("ERROR: buildNavigation: Could not build regions."); return false; } // // Step 5. Trace and simplify region contours. // // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'cset'."); return false; } if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) { m_pLog->logMessage("ERROR: buildNavigation: Could not create contours."); return false; } if (m_cset->nconts == 0) { // In case of errors see: http://groups.google.com/group/recastnavigation/browse_thread/thread/a6fbd509859a12c8 // You should probably tweak the parameters m_pLog->logMessage("ERROR: No contours created (Recast)!"); } // // Step 6. Build polygons mesh from contours. // // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'pmesh'."); return false; } if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) { // Try modifying the parameters. I experienced this error when setting agentMaxClimb too high. m_pLog->logMessage("ERROR: buildNavigation: Could not triangulate contours."); return false; } // // Step 7. Create detail mesh which allows to access approximate height on each polygon. // m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'pmdtl'."); return false; } if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) { m_pLog->logMessage("ERROR: buildNavigation: Could not build detail mesh."); return false; } if (!m_keepInterResults) { rcFreeCompactHeightfield(m_chf); m_chf = 0; rcFreeContourSet(m_cset); m_cset = 0; } // At this point the navigation mesh data is ready, you can access it from m_pmesh. // See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data. // // (Optional) Step 8. Create Detour data from Recast poly mesh. // // The GUI may allow more max points per polygon than Detour can handle. // Only build the detour navmesh if we do not exceed the limit. if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { m_pLog->logMessage("Detour 1000"); unsigned char* navData = 0; int navDataSize = 0; // Update poly flags from areas. for (int i = 0; i < m_pmesh->npolys; ++i) { if (m_pmesh->areas[i] == RC_WALKABLE_AREA) { m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK; } } // Set navmesh params dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = m_pmesh->verts; params.vertCount = m_pmesh->nverts; params.polys = m_pmesh->polys; params.polyAreas = m_pmesh->areas; params.polyFlags = m_pmesh->flags; params.polyCount = m_pmesh->npolys; params.nvp = m_pmesh->nvp; params.detailMeshes = m_dmesh->meshes; params.detailVerts = m_dmesh->verts; params.detailVertsCount = m_dmesh->nverts; params.detailTris = m_dmesh->tris; params.detailTriCount = m_dmesh->ntris; // no off mesh connections yet m_offMeshConCount=0 ; params.offMeshConVerts = m_offMeshConVerts ; params.offMeshConRad = m_offMeshConRads ; params.offMeshConDir = m_offMeshConDirs ; params.offMeshConAreas = m_offMeshConAreas ; params.offMeshConFlags = m_offMeshConFlags ; params.offMeshConUserID = m_offMeshConId ; params.offMeshConCount = m_offMeshConCount ; params.walkableHeight = m_agentHeight; params.walkableRadius = m_agentRadius; params.walkableClimb = m_agentMaxClimb; rcVcopy(params.bmin, m_pmesh->bmin); rcVcopy(params.bmax, m_pmesh->bmax); params.cs = m_cfg.cs; params.ch = m_cfg.ch; m_pLog->logMessage("Detour 2000"); if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { m_pLog->logMessage("ERROR: Could not build Detour navmesh."); return false; } m_pLog->logMessage("Detour 3000"); m_navMesh = dtAllocNavMesh(); if (!m_navMesh) { dtFree(navData); m_pLog->logMessage("ERROR: Could not create Detour navmesh"); return false; } m_pLog->logMessage("Detour 4000"); dtStatus status; status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA); if (dtStatusFailed(status)) { dtFree(navData); m_pLog->logMessage("ERROR: Could not init Detour navmesh"); return false; } m_pLog->logMessage("Detour 5000"); m_navQuery = dtAllocNavMeshQuery(); status = m_navQuery->init(m_navMesh, 2048); m_pLog->logMessage("Detour 5500"); if (dtStatusFailed(status)) { m_pLog->logMessage("ERROR: Could not init Detour navmesh query"); return false; } m_pLog->logMessage("Detour 6000"); } m_ctx->stopTimer(RC_TIMER_TOTAL); /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cleanup stuff we don't need // delete [] rc_verts ; // delete [] rc_tris ; // delete [] rc_trinorms ; //CreateRecastPolyMesh(*m_pmesh) ; // Debug render it m_pLog->logMessage("NavMeshBuild End"); return true; }
unsigned char* buildTileMesh(const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize, InputGeom* geom, rcConfig cfg, rcContext* ctx) { const float* verts = geom->getMesh()->getVerts(); const int nverts = geom->getMesh()->getVertCount(); const int ntris = geom->getMesh()->getTriCount(); const rcChunkyTriMesh* chunkyMesh = geom->getChunkyMesh(); rcVcopy(cfg.bmin, bmin); rcVcopy(cfg.bmax, bmax); cfg.bmin[0] -= cfg.borderSize*cfg.cs; cfg.bmin[2] -= cfg.borderSize*cfg.cs; cfg.bmax[0] += cfg.borderSize*cfg.cs; cfg.bmax[2] += cfg.borderSize*cfg.cs; // Reset build times gathering. ctx->resetTimers(); // Start the build process. ctx->startTimer(RC_TIMER_TOTAL); ctx->log(RC_LOG_PROGRESS, "Building navigation:"); ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", cfg.width, cfg.height); ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f); // all involved objects rcHeightfield* m_solid = 0; unsigned char* m_triareas = 0; rcCompactHeightfield* m_chf = 0; rcContourSet* m_cset = 0; rcPolyMesh* m_pmesh = 0; rcPolyMeshDetail* m_dmesh = 0; // Allocate voxel heightfield where we rasterize our input data to. m_solid = rcAllocHeightfield(); if (!m_solid) { ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'."); return 0; } if (!rcCreateHeightfield(ctx, *m_solid, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield."); return 0; } // Allocate array that can hold triangle flags. // If you have multiple meshes you need to process, allocate // and array which can hold the max number of triangles you need to process. m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk]; if (!m_triareas) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk); return 0; } float tbmin[2], tbmax[2]; tbmin[0] = cfg.bmin[0]; tbmin[1] = cfg.bmin[2]; tbmax[0] = cfg.bmax[0]; tbmax[1] = cfg.bmax[2]; int cid[512];// TODO: Make grow when returning too many items. const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512); if (!ncid) { CleanupAfterTileBuild(); return 0; } int m_tileTriCount = 0; for (int i = 0; i < ncid; ++i) { const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]]; const int* tris = &chunkyMesh->tris[node.i*3]; const int ntris = node.n; m_tileTriCount += ntris; memset(m_triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas); rcRasterizeTriangles(ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, cfg.walkableClimb); } // Once all geometry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. // Domi edit: Do not filter any triangles #ifndef DOMI_EDIT rcFilterLowHangingWalkableObstacles(ctx, cfg.walkableClimb, *m_solid); rcFilterLedgeSpans(ctx, cfg.walkableHeight, cfg.walkableClimb, *m_solid); rcFilterWalkableLowHeightSpans(ctx, cfg.walkableHeight, *m_solid); #endif // Compact the heightfield so that it is faster to handle from now on. // This will result more cache coherent data as well as the neighbours // between walkable cells will be calculated. m_chf = rcAllocCompactHeightfield(); if (!m_chf) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'."); return 0; } if (!rcBuildCompactHeightfield(ctx, cfg.walkableHeight, cfg.walkableClimb, *m_solid, *m_chf)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data."); return 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(ctx, cfg.walkableRadius, *m_chf)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode."); return 0; } // (Optional) Mark areas. const ConvexVolume* vols = geom->getConvexVolumes(); for (int i = 0; i < geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); if (0) // m_monotonePartitioning { // Partition the walkable surface into simple regions without holes. if (!rcBuildRegionsMonotone(ctx, *m_chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); return 0; } } else { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(ctx, *m_chf)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return 0; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(ctx, *m_chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); return 0; } } // Create contours. m_cset = rcAllocContourSet(); if (!m_cset) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'."); return 0; } if (!rcBuildContours(ctx, *m_chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *m_cset)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours."); return 0; } if (m_cset->nconts == 0) { CleanupAfterTileBuild(); return 0; } // Build polygon navmesh from the contours. m_pmesh = rcAllocPolyMesh(); if (!m_pmesh) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return 0; } if (!rcBuildPolyMesh(ctx, *m_cset, cfg.maxVertsPerPoly, *m_pmesh)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours."); return 0; } // Build detail mesh. m_dmesh = rcAllocPolyMeshDetail(); if (!m_dmesh) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'."); return 0; } if (!rcBuildPolyMeshDetail(ctx, *m_pmesh, *m_chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *m_dmesh)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail."); return 0; } unsigned char* navData = 0; int navDataSize = 0; if (cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { if (m_pmesh->nverts >= 0xffff) { CleanupAfterTileBuild(); // The vertex indices are ushorts, and cannot point to more than 0xffff vertices. ctx->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff); return 0; } // Update poly flags from areas. /*for (int i = 0; i < m_pmesh->npolys; ++i) { if (m_pmesh->areas[i] == RC_WALKABLE_AREA) m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND; if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND || m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS || m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM; } else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR) { m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR; } }*/ dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = m_pmesh->verts; params.vertCount = m_pmesh->nverts; params.polys = m_pmesh->polys; params.polyAreas = m_pmesh->areas; params.polyFlags = m_pmesh->flags; params.polyCount = m_pmesh->npolys; params.nvp = m_pmesh->nvp; params.detailMeshes = m_dmesh->meshes; params.detailVerts = m_dmesh->verts; params.detailVertsCount = m_dmesh->nverts; params.detailTris = m_dmesh->tris; params.detailTriCount = m_dmesh->ntris; params.offMeshConVerts = geom->getOffMeshConnectionVerts(); params.offMeshConRad = geom->getOffMeshConnectionRads(); params.offMeshConDir = geom->getOffMeshConnectionDirs(); params.offMeshConAreas = geom->getOffMeshConnectionAreas(); params.offMeshConFlags = geom->getOffMeshConnectionFlags(); params.offMeshConUserID = geom->getOffMeshConnectionId(); params.offMeshConCount = geom->getOffMeshConnectionCount(); params.walkableHeight = (float)cfg.walkableHeight; params.walkableRadius = (float)cfg.walkableRadius; params.walkableClimb = (float)cfg.walkableClimb; params.tileX = tx; params.tileY = ty; params.tileLayer = 0; rcVcopy(params.bmin, m_pmesh->bmin); rcVcopy(params.bmax, m_pmesh->bmax); params.cs = cfg.cs; params.ch = cfg.ch; params.buildBvTree = true; if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { CleanupAfterTileBuild(); ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return 0; } } ctx->stopTimer(RC_TIMER_TOTAL); // Show performance stats. ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys); dataSize = navDataSize; CleanupAfterTileBuild(); return navData; }
void MapBuilder::buildMoveMapTile(uint32 mapID, uint32 tileX, uint32 tileY, MeshData &meshData, float bmin[3], float bmax[3], dtNavMesh* navMesh) { // console output std::string tileString = Trinity::StringFormat("[Map %04u] [%02i,%02i]: ", mapID, tileX, tileY); printf("%s Building movemap tiles...\n", tileString.c_str()); IntermediateValues iv; float* tVerts = meshData.solidVerts.getCArray(); int tVertCount = meshData.solidVerts.size() / 3; int* tTris = meshData.solidTris.getCArray(); int tTriCount = meshData.solidTris.size() / 3; float* lVerts = meshData.liquidVerts.getCArray(); int lVertCount = meshData.liquidVerts.size() / 3; int* lTris = meshData.liquidTris.getCArray(); int lTriCount = meshData.liquidTris.size() / 3; uint8* lTriFlags = meshData.liquidType.getCArray(); // these are WORLD UNIT based metrics // this are basic unit dimentions // value have to divide GRID_SIZE(533.3333f) ( aka: 0.5333, 0.2666, 0.3333, 0.1333, etc ) const static float BASE_UNIT_DIM = m_bigBaseUnit ? 0.5333333f : 0.2666666f; // All are in UNIT metrics! const static int VERTEX_PER_MAP = int(GRID_SIZE/BASE_UNIT_DIM + 0.5f); const static int VERTEX_PER_TILE = m_bigBaseUnit ? 40 : 80; // must divide VERTEX_PER_MAP const static int TILES_PER_MAP = VERTEX_PER_MAP/VERTEX_PER_TILE; rcConfig config; memset(&config, 0, sizeof(rcConfig)); rcVcopy(config.bmin, bmin); rcVcopy(config.bmax, bmax); config.maxVertsPerPoly = DT_VERTS_PER_POLYGON; config.cs = BASE_UNIT_DIM; config.ch = BASE_UNIT_DIM; config.walkableSlopeAngle = m_maxWalkableAngle; config.tileSize = VERTEX_PER_TILE; config.walkableRadius = m_bigBaseUnit ? 1 : 2; config.borderSize = config.walkableRadius + 3; config.maxEdgeLen = VERTEX_PER_TILE + 1; // anything bigger than tileSize config.walkableHeight = m_bigBaseUnit ? 3 : 6; // a value >= 3|6 allows npcs to walk over some fences // a value >= 4|8 allows npcs to walk over all fences config.walkableClimb = m_bigBaseUnit ? 4 : 8; config.minRegionArea = rcSqr(60); config.mergeRegionArea = rcSqr(50); config.maxSimplificationError = 1.8f; // eliminates most jagged edges (tiny polygons) config.detailSampleDist = config.cs * 64; config.detailSampleMaxError = config.ch * 2; // this sets the dimensions of the heightfield - should maybe happen before border padding rcCalcGridSize(config.bmin, config.bmax, config.cs, &config.width, &config.height); // allocate subregions : tiles Tile* tiles = new Tile[TILES_PER_MAP * TILES_PER_MAP]; // Initialize per tile config. rcConfig tileCfg = config; tileCfg.width = config.tileSize + config.borderSize*2; tileCfg.height = config.tileSize + config.borderSize*2; // merge per tile poly and detail meshes rcPolyMesh** pmmerge = new rcPolyMesh*[TILES_PER_MAP * TILES_PER_MAP]; rcPolyMeshDetail** dmmerge = new rcPolyMeshDetail*[TILES_PER_MAP * TILES_PER_MAP]; int nmerge = 0; // build all tiles for (int y = 0; y < TILES_PER_MAP; ++y) { for (int x = 0; x < TILES_PER_MAP; ++x) { Tile& tile = tiles[x + y * TILES_PER_MAP]; // Calculate the per tile bounding box. tileCfg.bmin[0] = config.bmin[0] + float(x*config.tileSize - config.borderSize)*config.cs; tileCfg.bmin[2] = config.bmin[2] + float(y*config.tileSize - config.borderSize)*config.cs; tileCfg.bmax[0] = config.bmin[0] + float((x+1)*config.tileSize + config.borderSize)*config.cs; tileCfg.bmax[2] = config.bmin[2] + float((y+1)*config.tileSize + config.borderSize)*config.cs; // build heightfield tile.solid = rcAllocHeightfield(); if (!tile.solid || !rcCreateHeightfield(m_rcContext, *tile.solid, tileCfg.width, tileCfg.height, tileCfg.bmin, tileCfg.bmax, tileCfg.cs, tileCfg.ch)) { printf("%s Failed building heightfield! \n", tileString.c_str()); continue; } // mark all walkable tiles, both liquids and solids unsigned char* triFlags = new unsigned char[tTriCount]; memset(triFlags, NAV_GROUND, tTriCount*sizeof(unsigned char)); rcClearUnwalkableTriangles(m_rcContext, tileCfg.walkableSlopeAngle, tVerts, tVertCount, tTris, tTriCount, triFlags); rcRasterizeTriangles(m_rcContext, tVerts, tVertCount, tTris, triFlags, tTriCount, *tile.solid, config.walkableClimb); delete[] triFlags; rcFilterLowHangingWalkableObstacles(m_rcContext, config.walkableClimb, *tile.solid); rcFilterLedgeSpans(m_rcContext, tileCfg.walkableHeight, tileCfg.walkableClimb, *tile.solid); rcFilterWalkableLowHeightSpans(m_rcContext, tileCfg.walkableHeight, *tile.solid); rcRasterizeTriangles(m_rcContext, lVerts, lVertCount, lTris, lTriFlags, lTriCount, *tile.solid, config.walkableClimb); // compact heightfield spans tile.chf = rcAllocCompactHeightfield(); if (!tile.chf || !rcBuildCompactHeightfield(m_rcContext, tileCfg.walkableHeight, tileCfg.walkableClimb, *tile.solid, *tile.chf)) { printf("%s Failed compacting heightfield! \n", tileString.c_str()); continue; } // build polymesh intermediates if (!rcErodeWalkableArea(m_rcContext, config.walkableRadius, *tile.chf)) { printf("%s Failed eroding area! \n", tileString.c_str()); continue; } if (!rcBuildDistanceField(m_rcContext, *tile.chf)) { printf("%s Failed building distance field! \n", tileString.c_str()); continue; } if (!rcBuildRegions(m_rcContext, *tile.chf, tileCfg.borderSize, tileCfg.minRegionArea, tileCfg.mergeRegionArea)) { printf("%s Failed building regions! \n", tileString.c_str()); continue; } tile.cset = rcAllocContourSet(); if (!tile.cset || !rcBuildContours(m_rcContext, *tile.chf, tileCfg.maxSimplificationError, tileCfg.maxEdgeLen, *tile.cset)) { printf("%s Failed building contours! \n", tileString.c_str()); continue; } // build polymesh tile.pmesh = rcAllocPolyMesh(); if (!tile.pmesh || !rcBuildPolyMesh(m_rcContext, *tile.cset, tileCfg.maxVertsPerPoly, *tile.pmesh)) { printf("%s Failed building polymesh! \n", tileString.c_str()); continue; } tile.dmesh = rcAllocPolyMeshDetail(); if (!tile.dmesh || !rcBuildPolyMeshDetail(m_rcContext, *tile.pmesh, *tile.chf, tileCfg.detailSampleDist, tileCfg.detailSampleMaxError, *tile.dmesh)) { printf("%s Failed building polymesh detail! \n", tileString.c_str()); continue; } // free those up // we may want to keep them in the future for debug // but right now, we don't have the code to merge them rcFreeHeightField(tile.solid); tile.solid = NULL; rcFreeCompactHeightfield(tile.chf); tile.chf = NULL; rcFreeContourSet(tile.cset); tile.cset = NULL; pmmerge[nmerge] = tile.pmesh; dmmerge[nmerge] = tile.dmesh; nmerge++; } } iv.polyMesh = rcAllocPolyMesh(); if (!iv.polyMesh) { printf("%s alloc iv.polyMesh FAILED!\n", tileString.c_str()); delete[] pmmerge; delete[] dmmerge; delete[] tiles; return; } rcMergePolyMeshes(m_rcContext, pmmerge, nmerge, *iv.polyMesh); iv.polyMeshDetail = rcAllocPolyMeshDetail(); if (!iv.polyMeshDetail) { printf("%s alloc m_dmesh FAILED!\n", tileString.c_str()); delete[] pmmerge; delete[] dmmerge; delete[] tiles; return; } rcMergePolyMeshDetails(m_rcContext, dmmerge, nmerge, *iv.polyMeshDetail); // free things up delete[] pmmerge; delete[] dmmerge; delete[] tiles; // set polygons as walkable // TODO: special flags for DYNAMIC polygons, ie surfaces that can be turned on and off for (int i = 0; i < iv.polyMesh->npolys; ++i) if (iv.polyMesh->areas[i] & RC_WALKABLE_AREA) iv.polyMesh->flags[i] = iv.polyMesh->areas[i]; // setup mesh parameters dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); params.verts = iv.polyMesh->verts; params.vertCount = iv.polyMesh->nverts; params.polys = iv.polyMesh->polys; params.polyAreas = iv.polyMesh->areas; params.polyFlags = iv.polyMesh->flags; params.polyCount = iv.polyMesh->npolys; params.nvp = iv.polyMesh->nvp; params.detailMeshes = iv.polyMeshDetail->meshes; params.detailVerts = iv.polyMeshDetail->verts; params.detailVertsCount = iv.polyMeshDetail->nverts; params.detailTris = iv.polyMeshDetail->tris; params.detailTriCount = iv.polyMeshDetail->ntris; params.offMeshConVerts = meshData.offMeshConnections.getCArray(); params.offMeshConCount = meshData.offMeshConnections.size()/6; params.offMeshConRad = meshData.offMeshConnectionRads.getCArray(); params.offMeshConDir = meshData.offMeshConnectionDirs.getCArray(); params.offMeshConAreas = meshData.offMeshConnectionsAreas.getCArray(); params.offMeshConFlags = meshData.offMeshConnectionsFlags.getCArray(); params.walkableHeight = BASE_UNIT_DIM*config.walkableHeight; // agent height params.walkableRadius = BASE_UNIT_DIM*config.walkableRadius; // agent radius params.walkableClimb = BASE_UNIT_DIM*config.walkableClimb; // keep less that walkableHeight (aka agent height)! params.tileX = (((bmin[0] + bmax[0]) / 2) - navMesh->getParams()->orig[0]) / GRID_SIZE; params.tileY = (((bmin[2] + bmax[2]) / 2) - navMesh->getParams()->orig[2]) / GRID_SIZE; rcVcopy(params.bmin, bmin); rcVcopy(params.bmax, bmax); params.cs = config.cs; params.ch = config.ch; params.tileLayer = 0; params.buildBvTree = true; // will hold final navmesh unsigned char* navData = NULL; int navDataSize = 0; do { // these values are checked within dtCreateNavMeshData - handle them here // so we have a clear error message if (params.nvp > DT_VERTS_PER_POLYGON) { printf("%s Invalid verts-per-polygon value! \n", tileString.c_str()); break; } if (params.vertCount >= 0xffff) { printf("%s Too many vertices! \n", tileString.c_str()); break; } if (!params.vertCount || !params.verts) { // occurs mostly when adjacent tiles have models // loaded but those models don't span into this tile // message is an annoyance //printf("%sNo vertices to build tile! \n", tileString.c_str()); break; } if (!params.polyCount || !params.polys || TILES_PER_MAP*TILES_PER_MAP == params.polyCount) { // we have flat tiles with no actual geometry - don't build those, its useless // keep in mind that we do output those into debug info // drop tiles with only exact count - some tiles may have geometry while having less tiles printf("%s No polygons to build on tile! \n", tileString.c_str()); break; } if (!params.detailMeshes || !params.detailVerts || !params.detailTris) { printf("%s No detail mesh to build tile! \n", tileString.c_str()); break; } printf("%s Building navmesh tile...\n", tileString.c_str()); if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize)) { printf("%s Failed building navmesh tile! \n", tileString.c_str()); break; } dtTileRef tileRef = 0; printf("%s Adding tile to navmesh...\n", tileString.c_str()); // DT_TILE_FREE_DATA tells detour to unallocate memory when the tile // is removed via removeTile() dtStatus dtResult = navMesh->addTile(navData, navDataSize, DT_TILE_FREE_DATA, 0, &tileRef); if (!tileRef || dtResult != DT_SUCCESS) { printf("%s Failed adding tile to navmesh! \n", tileString.c_str()); break; } // file output char fileName[255]; sprintf(fileName, "mmaps/%04u%02i%02i.mmtile", mapID, tileY, tileX); FILE* file = fopen(fileName, "wb"); if (!file) { char message[1024]; sprintf(message, "[Map %04u] Failed to open %s for writing!\n", mapID, fileName); perror(message); navMesh->removeTile(tileRef, NULL, NULL); break; } printf("%s Writing to file...\n", tileString.c_str()); // write header MmapTileHeader header; header.usesLiquids = m_terrainBuilder->usesLiquids(); header.size = uint32(navDataSize); fwrite(&header, sizeof(MmapTileHeader), 1, file); // write data fwrite(navData, sizeof(unsigned char), navDataSize, file); fclose(file); // now that tile is written to disk, we can unload it navMesh->removeTile(tileRef, NULL, NULL); } while (0); if (m_debugOutput) { // restore padding so that the debug visualization is correct for (int i = 0; i < iv.polyMesh->nverts; ++i) { unsigned short* v = &iv.polyMesh->verts[i*3]; v[0] += (unsigned short)config.borderSize; v[2] += (unsigned short)config.borderSize; } iv.generateObjFile(mapID, tileX, tileY, meshData); iv.writeIV(mapID, tileX, tileY); } }
int OgreDetourTileCache::rasterizeTileLayers(InputGeom* geom, const int tx, const int ty, const rcConfig& cfg, TileCacheData* tiles, const int maxTiles) { if (!geom || geom->isEmpty()) { m_recast->m_pLog->logMessage("ERROR: buildTile: Input mesh is not specified."); return 0; } if (!geom->getChunkyMesh()) { m_recast->m_pLog->logMessage("ERROR: buildTile: Input mesh has no chunkyTriMesh built."); return 0; } //TODO make these member variables? FastLZCompressor comp; RasterizationContext rc; const float* verts = geom->getVerts(); const int nverts = geom->getVertCount(); // The chunky tri mesh in the inputgeom is a simple spatial subdivision structure that allows to // process the vertices in the geometry relevant to this part of the tile. // The chunky tri mesh is a grid of axis aligned boxes that store indices to the vertices in verts // that are positioned in that box. const rcChunkyTriMesh* chunkyMesh = geom->getChunkyMesh(); // Tile bounds. const float tcs = m_tileSize * m_cellSize; rcConfig tcfg; memcpy(&tcfg, &m_cfg, sizeof(tcfg)); tcfg.bmin[0] = m_cfg.bmin[0] + tx*tcs; tcfg.bmin[1] = m_cfg.bmin[1]; tcfg.bmin[2] = m_cfg.bmin[2] + ty*tcs; tcfg.bmax[0] = m_cfg.bmin[0] + (tx+1)*tcs; tcfg.bmax[1] = m_cfg.bmax[1]; tcfg.bmax[2] = m_cfg.bmin[2] + (ty+1)*tcs; tcfg.bmin[0] -= tcfg.borderSize*tcfg.cs; tcfg.bmin[2] -= tcfg.borderSize*tcfg.cs; tcfg.bmax[0] += tcfg.borderSize*tcfg.cs; tcfg.bmax[2] += tcfg.borderSize*tcfg.cs; // This is part of the regular recast navmesh generation pipeline as in OgreRecast::NavMeshBuild() // but only up till step 4 and slightly modified. // Allocate voxel heightfield where we rasterize our input data to. rc.solid = rcAllocHeightfield(); if (!rc.solid) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'solid'."); return 0; } if (!rcCreateHeightfield(m_ctx, *rc.solid, tcfg.width, tcfg.height, tcfg.bmin, tcfg.bmax, tcfg.cs, tcfg.ch)) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Could not create solid heightfield."); return 0; } // Allocate array that can hold triangle flags. // If you have multiple meshes you need to process, allocate // an array which can hold the max number of triangles you need to process. rc.triareas = new unsigned char[chunkyMesh->maxTrisPerChunk]; if (!rc.triareas) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'm_triareas' ("+Ogre::StringConverter::toString(chunkyMesh->maxTrisPerChunk)+")."); return 0; } float tbmin[2], tbmax[2]; tbmin[0] = tcfg.bmin[0]; tbmin[1] = tcfg.bmin[2]; tbmax[0] = tcfg.bmax[0]; tbmax[1] = tcfg.bmax[2]; int cid[512];// TODO: Make grow when returning too many items. const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512); if (!ncid) { return 0; // empty } for (int i = 0; i < ncid; ++i) { const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]]; const int* tris = &chunkyMesh->tris[node.i*3]; const int ntris = node.n; memset(rc.triareas, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(m_ctx, tcfg.walkableSlopeAngle, verts, nverts, tris, ntris, rc.triareas); rcRasterizeTriangles(m_ctx, verts, nverts, tris, rc.triareas, ntris, *rc.solid, tcfg.walkableClimb); } // Once all geometry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(m_ctx, tcfg.walkableClimb, *rc.solid); rcFilterLedgeSpans(m_ctx, tcfg.walkableHeight, tcfg.walkableClimb, *rc.solid); rcFilterWalkableLowHeightSpans(m_ctx, tcfg.walkableHeight, *rc.solid); rc.chf = rcAllocCompactHeightfield(); if (!rc.chf) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'chf'."); return 0; } if (!rcBuildCompactHeightfield(m_ctx, tcfg.walkableHeight, tcfg.walkableClimb, *rc.solid, *rc.chf)) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Could not build compact data."); return 0; } // Erode the walkable area by agent radius. if (!rcErodeWalkableArea(m_ctx, tcfg.walkableRadius, *rc.chf)) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Could not erode."); return 0; } // Mark areas of dynamically added convex polygons const ConvexVolume* const* vols = geom->getConvexVolumes(); for (int i = 0; i < geom->getConvexVolumeCount(); ++i) { rcMarkConvexPolyArea(m_ctx, vols[i]->verts, vols[i]->nverts, vols[i]->hmin, vols[i]->hmax, (unsigned char)vols[i]->area, *rc.chf); } // Up till this part was more or less the same as OgreRecast::NavMeshBuild() // The following part is specific for creating a 2D intermediary navmesh tile. rc.lset = rcAllocHeightfieldLayerSet(); if (!rc.lset) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Out of memory 'lset'."); return 0; } if (!rcBuildHeightfieldLayers(m_ctx, *rc.chf, tcfg.borderSize, tcfg.walkableHeight, *rc.lset)) { m_recast->m_pLog->logMessage("ERROR: buildNavigation: Could not build heightfield layers."); return 0; } rc.ntiles = 0; for (int i = 0; i < rcMin(rc.lset->nlayers, MAX_LAYERS); ++i) { TileCacheData* tile = &rc.tiles[rc.ntiles++]; const rcHeightfieldLayer* layer = &rc.lset->layers[i]; // Store header dtTileCacheLayerHeader header; header.magic = DT_TILECACHE_MAGIC; header.version = DT_TILECACHE_VERSION; // Tile layer location in the navmesh. header.tx = tx; header.ty = ty; header.tlayer = i; dtVcopy(header.bmin, layer->bmin); dtVcopy(header.bmax, layer->bmax); // Tile info. header.width = (unsigned char)layer->width; header.height = (unsigned char)layer->height; header.minx = (unsigned char)layer->minx; header.maxx = (unsigned char)layer->maxx; header.miny = (unsigned char)layer->miny; header.maxy = (unsigned char)layer->maxy; header.hmin = (unsigned short)layer->hmin; header.hmax = (unsigned short)layer->hmax; dtStatus status = dtBuildTileCacheLayer(&comp, &header, layer->heights, layer->areas, layer->cons, &tile->data, &tile->dataSize); if (dtStatusFailed(status)) { return 0; } } // Transfer ownsership of tile data from build context to the caller. int n = 0; for (int i = 0; i < rcMin(rc.ntiles, maxTiles); ++i) { tiles[n++] = rc.tiles[i]; rc.tiles[i].data = 0; rc.tiles[i].dataSize = 0; } return n; }
uint8* TileBuilder::Build(bool dbg, dtNavMeshParams& navMeshParams) { _Geometry = new Geometry(); _Geometry->Transform = true; ADT* adt = new ADT(Utils::GetAdtPath(World, X, Y)); adt->Read(); _Geometry->AddAdt(adt); delete adt; if (_Geometry->Vertices.empty() && _Geometry->Triangles.empty()) return NULL; // again, we load everything - wasteful but who cares for (int ty = Y - 2; ty <= Y + 2; ty++) { for (int tx = X - 2; tx <= X + 2; tx++) { // don't load main tile again if (tx == X && ty == Y) continue; ADT* _adt = new ADT(Utils::GetAdtPath(World, tx, ty)); // If this condition is met, it means that this wdt does not contain the ADT if (!_adt->Data->Stream) { delete _adt; continue; } _adt->Read(); _Geometry->AddAdt(_adt); delete _adt; } } if (dbg) { char buff[100]; sprintf(buff, "mmaps/%s_%02u%02u.obj", World.c_str(), Y, X); FILE* debug = fopen(buff, "wb"); for (uint32 i = 0; i < _Geometry->Vertices.size(); ++i) fprintf(debug, "v %f %f %f\n", _Geometry->Vertices[i].x, _Geometry->Vertices[i].y, _Geometry->Vertices[i].z); for (uint32 i = 0; i < _Geometry->Triangles.size(); ++i) fprintf(debug, "f %i %i %i\n", _Geometry->Triangles[i].V0 + 1, _Geometry->Triangles[i].V1 + 1, _Geometry->Triangles[i].V2 + 1); fclose(debug); } uint32 numVerts = _Geometry->Vertices.size(); uint32 numTris = _Geometry->Triangles.size(); float* vertices; int* triangles; uint8* areas; _Geometry->GetRawData(vertices, triangles, areas); _Geometry->Vertices.clear(); _Geometry->Triangles.clear(); rcVcopy(Config.bmin, cBuilder->bmin); rcVcopy(Config.bmax, cBuilder->bmax); // this sets the dimensions of the heightfield - should maybe happen before border padding rcCalcGridSize(Config.bmin, Config.bmax, Config.cs, &Config.width, &Config.height); // Initialize per tile config. rcConfig tileCfg = Config; tileCfg.width = Config.tileSize + Config.borderSize * 2; tileCfg.height = Config.tileSize + Config.borderSize * 2; // merge per tile poly and detail meshes rcPolyMesh** pmmerge = new rcPolyMesh*[Constants::TilesPerMap * Constants::TilesPerMap]; rcPolyMeshDetail** dmmerge = new rcPolyMeshDetail*[Constants::TilesPerMap * Constants::TilesPerMap]; int nmerge = 0; for (int y = 0; y < Constants::TilesPerMap; ++y) { for (int x = 0; x < Constants::TilesPerMap; ++x) { // Calculate the per tile bounding box. tileCfg.bmin[0] = Config.bmin[0] + float(x * Config.tileSize - Config.borderSize) * Config.cs; tileCfg.bmin[2] = Config.bmin[2] + float(y * Config.tileSize - Config.borderSize) * Config.cs; tileCfg.bmax[0] = Config.bmin[0] + float((x + 1) * Config.tileSize + Config.borderSize) * Config.cs; tileCfg.bmax[2] = Config.bmin[2] + float((y + 1) * Config.tileSize + Config.borderSize) * Config.cs; rcHeightfield* hf = rcAllocHeightfield(); rcCreateHeightfield(Context, *hf, tileCfg.width, tileCfg.height, tileCfg.bmin, tileCfg.bmax, tileCfg.cs, tileCfg.ch); rcClearUnwalkableTriangles(Context, tileCfg.walkableSlopeAngle, vertices, numVerts, triangles, numTris, areas); rcRasterizeTriangles(Context, vertices, numVerts, triangles, areas, numTris, *hf, Config.walkableClimb); // Once all geometry is rasterized, we do initial pass of filtering to // remove unwanted overhangs caused by the conservative rasterization // as well as filter spans where the character cannot possibly stand. rcFilterLowHangingWalkableObstacles(Context, Config.walkableClimb, *hf); rcFilterLedgeSpans(Context, tileCfg.walkableHeight, tileCfg.walkableClimb, *hf); rcFilterWalkableLowHeightSpans(Context, tileCfg.walkableHeight, *hf); // Compact the heightfield so that it is faster to handle from now on. // This will result in more cache coherent data as well as the neighbours // between walkable cells will be calculated. rcCompactHeightfield* chf = rcAllocCompactHeightfield(); rcBuildCompactHeightfield(Context, tileCfg.walkableHeight, tileCfg.walkableClimb, *hf, *chf); rcFreeHeightField(hf); // Erode the walkable area by agent radius. rcErodeWalkableArea(Context, Config.walkableRadius, *chf); // Prepare for region partitioning, by calculating distance field along the walkable surface. rcBuildDistanceField(Context, *chf); // Partition the walkable surface into simple regions without holes. rcBuildRegions(Context, *chf, tileCfg.borderSize, tileCfg.minRegionArea, tileCfg.mergeRegionArea); // Create contours. rcContourSet* cset = rcAllocContourSet(); rcBuildContours(Context, *chf, tileCfg.maxSimplificationError, tileCfg.maxEdgeLen, *cset); // Build polygon navmesh from the contours. rcPolyMesh* pmesh = rcAllocPolyMesh(); rcBuildPolyMesh(Context, *cset, tileCfg.maxVertsPerPoly, *pmesh); // Build detail mesh. rcPolyMeshDetail* dmesh = rcAllocPolyMeshDetail(); rcBuildPolyMeshDetail(Context, *pmesh, *chf, tileCfg.detailSampleDist, tileCfg.detailSampleMaxError, *dmesh); // Free memory rcFreeCompactHeightfield(chf); rcFreeContourSet(cset); pmmerge[nmerge] = pmesh; dmmerge[nmerge] = dmesh; ++nmerge; } } rcPolyMesh* pmesh = rcAllocPolyMesh(); rcMergePolyMeshes(Context, pmmerge, nmerge, *pmesh); rcPolyMeshDetail* dmesh = rcAllocPolyMeshDetail(); rcMergePolyMeshDetails(Context, dmmerge, nmerge, *dmesh); delete[] pmmerge; delete[] dmmerge; printf("[%02i,%02i] Meshes merged!\n", X, Y); // Remove padding from the polymesh data. (Remove this odditity) for (int i = 0; i < pmesh->nverts; ++i) { unsigned short* v = &pmesh->verts[i * 3]; v[0] -= (unsigned short)Config.borderSize; v[2] -= (unsigned short)Config.borderSize; } // Set flags according to area types (e.g. Swim for Water) for (int i = 0; i < pmesh->npolys; i++) { if (pmesh->areas[i] == Constants::POLY_AREA_ROAD || pmesh->areas[i] == Constants::POLY_AREA_TERRAIN) pmesh->flags[i] = Constants::POLY_FLAG_WALK; else if (pmesh->areas[i] == Constants::POLY_AREA_WATER) pmesh->flags[i] = Constants::POLY_FLAG_SWIM; } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); // PolyMesh data params.verts = pmesh->verts; params.vertCount = pmesh->nverts; params.polys = pmesh->polys; params.polyAreas = pmesh->areas; params.polyFlags = pmesh->flags; params.polyCount = pmesh->npolys; params.nvp = pmesh->nvp; // PolyMeshDetail data params.detailMeshes = dmesh->meshes; params.detailVerts = dmesh->verts; params.detailVertsCount = dmesh->nverts; params.detailTris = dmesh->tris; params.detailTriCount = dmesh->ntris; rcVcopy(params.bmin, pmesh->bmin); rcVcopy(params.bmax, pmesh->bmax); // General settings params.ch = Config.ch; params.cs = Config.cs; params.walkableClimb = Constants::BaseUnitDim * Config.walkableClimb; params.walkableHeight = Constants::BaseUnitDim * Config.walkableHeight; params.walkableRadius = Constants::BaseUnitDim * Config.walkableRadius; params.tileX = (((cBuilder->bmin[0] + cBuilder->bmax[0]) / 2) - navMeshParams.orig[0]) / Constants::TileSize; params.tileY = (((cBuilder->bmin[2] + cBuilder->bmax[2]) / 2) - navMeshParams.orig[2]) / Constants::TileSize; rcVcopy(params.bmin, cBuilder->bmin); rcVcopy(params.bmax, cBuilder->bmax); // Offmesh-connection settings params.offMeshConCount = 0; // none for now params.tileSize = Constants::VertexPerMap; if (!params.polyCount || !params.polys || Constants::TilesPerMap * Constants::TilesPerMap == params.polyCount) { // we have flat tiles with no actual geometry - don't build those, its useless // keep in mind that we do output those into debug info // drop tiles with only exact count - some tiles may have geometry while having less tiles printf("[%02i,%02i] No polygons to build on tile, skipping.\n", X, Y); rcFreePolyMesh(pmesh); rcFreePolyMeshDetail(dmesh); delete areas; delete triangles; delete vertices; return NULL; } int navDataSize; uint8* navData; printf("[%02i,%02i] Creating the navmesh with %i vertices, %i polys, %i triangles!\n", X, Y, pmesh->nverts, pmesh->npolys, dmesh->ntris); bool result = dtCreateNavMeshData(¶ms, &navData, &navDataSize); // Free some memory rcFreePolyMesh(pmesh); rcFreePolyMeshDetail(dmesh); delete areas; delete triangles; delete vertices; if (result) { printf("[%02i,%02i] NavMesh created, size %i!\n", X, Y, navDataSize); DataSize = navDataSize; return navData; } return NULL; }
uint8* TileBuilder::BuildInstance( dtNavMeshParams& navMeshParams ) { float* bmin = NULL, *bmax = NULL; _Geometry->CalculateBoundingBox(bmin, bmax); rcVcopy(InstanceConfig.bmax, bmax); rcVcopy(InstanceConfig.bmin, bmin); uint32 numVerts = _Geometry->Vertices.size(); uint32 numTris = _Geometry->Triangles.size(); float* vertices; int* triangles; uint8* areas; _Geometry->GetRawData(vertices, triangles, areas); // this sets the dimensions of the heightfield rcCalcGridSize(InstanceConfig.bmin, InstanceConfig.bmax, InstanceConfig.cs, &InstanceConfig.width, &InstanceConfig.height); rcHeightfield* hf = rcAllocHeightfield(); rcCreateHeightfield(Context, *hf, InstanceConfig.width, InstanceConfig.height, InstanceConfig.bmin, InstanceConfig.bmax, InstanceConfig.cs, InstanceConfig.ch); rcClearUnwalkableTriangles(Context, InstanceConfig.walkableSlopeAngle, vertices, numVerts, triangles, numTris, areas); rcRasterizeTriangles(Context, vertices, numVerts, triangles, areas, numTris, *hf, InstanceConfig.walkableClimb); rcFilterLowHangingWalkableObstacles(Context, InstanceConfig.walkableClimb, *hf); rcFilterLedgeSpans(Context, InstanceConfig.walkableHeight, InstanceConfig.walkableClimb, *hf); rcFilterWalkableLowHeightSpans(Context, InstanceConfig.walkableHeight, *hf); rcCompactHeightfield* chf = rcAllocCompactHeightfield(); rcBuildCompactHeightfield(Context, InstanceConfig.walkableHeight, InstanceConfig.walkableClimb, *hf, *chf); rcErodeWalkableArea(Context, InstanceConfig.walkableRadius, *chf); rcBuildDistanceField(Context, *chf); rcBuildRegions(Context, *chf, InstanceConfig.borderSize, InstanceConfig.minRegionArea, InstanceConfig.minRegionArea); rcContourSet* contours = rcAllocContourSet(); rcBuildContours(Context, *chf, InstanceConfig.maxSimplificationError, InstanceConfig.maxEdgeLen, *contours); rcPolyMesh* pmesh = rcAllocPolyMesh(); rcBuildPolyMesh(Context, *contours, InstanceConfig.maxVertsPerPoly, *pmesh); rcPolyMeshDetail* dmesh = rcAllocPolyMeshDetail(); rcBuildPolyMeshDetail(Context, *pmesh, *chf, InstanceConfig.detailSampleDist, InstanceConfig.detailSampleMaxError, *dmesh); // Set flags according to area types (e.g. Swim for Water) for (int i = 0; i < pmesh->npolys; i++) { if (pmesh->areas[i] == Constants::POLY_AREA_ROAD || pmesh->areas[i] == Constants::POLY_AREA_TERRAIN) pmesh->flags[i] = Constants::POLY_FLAG_WALK; else if (pmesh->areas[i] == Constants::POLY_AREA_WATER) pmesh->flags[i] = Constants::POLY_FLAG_SWIM; } dtNavMeshCreateParams params; memset(¶ms, 0, sizeof(params)); // PolyMesh data params.verts = pmesh->verts; params.vertCount = pmesh->nverts; params.polys = pmesh->polys; params.polyAreas = pmesh->areas; params.polyFlags = pmesh->flags; params.polyCount = pmesh->npolys; params.nvp = pmesh->nvp; // PolyMeshDetail data params.detailMeshes = dmesh->meshes; params.detailVerts = dmesh->verts; params.detailVertsCount = dmesh->nverts; params.detailTris = dmesh->tris; params.detailTriCount = dmesh->ntris; rcVcopy(params.bmin, pmesh->bmin); rcVcopy(params.bmax, pmesh->bmax); // General settings params.ch = InstanceConfig.ch; params.cs = InstanceConfig.cs; params.walkableClimb = InstanceConfig.walkableClimb * InstanceConfig.ch; params.walkableHeight = InstanceConfig.walkableHeight * InstanceConfig.ch; params.walkableRadius = InstanceConfig.walkableRadius * InstanceConfig.cs; params.tileX = X; params.tileY = Y; params.tileLayer = 0; params.buildBvTree = true; rcVcopy(params.bmax, bmax); rcVcopy(params.bmin, bmin); // Offmesh-connection settings params.offMeshConCount = 0; // none for now rcFreeHeightField(hf); rcFreeCompactHeightfield(chf); rcFreeContourSet(contours); delete vertices; delete triangles; delete areas; delete bmin; delete bmax; if (!params.polyCount || !params.polys || Constants::TilesPerMap * Constants::TilesPerMap == params.polyCount) { // we have flat tiles with no actual geometry - don't build those, its useless // keep in mind that we do output those into debug info // drop tiles with only exact count - some tiles may have geometry while having less tiles printf("No polygons to build on tile, skipping.\n"); rcFreePolyMesh(pmesh); rcFreePolyMeshDetail(dmesh); return NULL; } int navDataSize; uint8* navData; printf("Creating the navmesh with %i vertices, %i polys, %i triangles!\n", params.vertCount, params.polyCount, params.detailTriCount); bool result = dtCreateNavMeshData(¶ms, &navData, &navDataSize); rcFreePolyMesh(pmesh); rcFreePolyMeshDetail(dmesh); if (result) { printf("NavMesh created, size %i!\n", navDataSize); DataSize = navDataSize; return navData; } return NULL; }
bool NavMesh::createPolyMesh(rcConfig &cfg, NavModelData &data, rcContext *ctx) { // Create a heightfield to voxelise our input geometry hf = rcAllocHeightfield(); if(!hf || !rcCreateHeightfield(ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch)) { Con::errorf("Could not generate rcHeightField for NavMesh %s", getIdString()); return false; } unsigned char *areas = new unsigned char[data.getTriCount()]; if (!areas) { Con::errorf("Out of memory (area flags) for NavMesh %s", getIdString()); return false; } memset(areas, 0, data.getTriCount()*sizeof(unsigned char)); // Subtract 1 from all indices! for(U32 i = 0; i < data.getTriCount(); i++) { data.tris[i*3]--; data.tris[i*3+1]--; data.tris[i*3+2]--; } // Filter triangles by angle and rasterize rcMarkWalkableTriangles(ctx, cfg.walkableSlopeAngle, data.getVerts(), data.getVertCount(), data.getTris(), data.getTriCount(), areas); rcRasterizeTriangles(ctx, data.getVerts(), data.getVertCount(), data.getTris(), areas, data.getTriCount(), *hf, cfg.walkableClimb); delete [] areas; // Filter out areas with low ceilings and other stuff rcFilterLowHangingWalkableObstacles(ctx, cfg.walkableClimb, *hf); rcFilterLedgeSpans(ctx, cfg.walkableHeight, cfg.walkableClimb, *hf); rcFilterWalkableLowHeightSpans(ctx, cfg.walkableHeight, *hf); chf = rcAllocCompactHeightfield(); if(!chf || !rcBuildCompactHeightfield(ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf)) { Con::errorf("Could not generate rcCompactHeightField for NavMesh %s", getIdString()); return false; } if(!rcErodeWalkableArea(ctx, cfg.walkableRadius, *chf)) { Con::errorf("Could not erode walkable area for NavMesh %s", getIdString()); return false; } if(false) { if(!rcBuildRegionsMonotone(ctx, *chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea)) { Con::errorf("Could not build regions for NavMesh %s", getIdString()); return false; } } else { if(!rcBuildDistanceField(ctx, *chf)) return false; if(!rcBuildRegions(ctx, *chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea)) return false; } cs = rcAllocContourSet(); if(!cs || !rcBuildContours(ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cs)) { Con::errorf("Could not construct rcContourSet for NavMesh %s", getIdString()); return false; } pm = rcAllocPolyMesh(); if(!pm || !rcBuildPolyMesh(ctx, *cs, cfg.maxVertsPerPoly, *pm)) { Con::errorf("Could not construct rcPolyMesh for NavMesh %s", getIdString()); return false; } pmd = rcAllocPolyMeshDetail(); if(!pmd || !rcBuildPolyMeshDetail(ctx, *pm, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *pmd)) { Con::errorf("Could not construct rcPolyMeshDetail for NavMesh %s", getIdString()); return false; } return true; }