Exemple #1
0
int
main(int argc, char **argv)
{
	register float *rt;	/* real trace				*/
	register complex *ct;	/* complex transformed trace		*/
	int nt;			/* number of points on input trace	*/
	int nfft;		/* transform length			*/
	int nf;			/* number of frequencies		*/
	int sign;		/* sign in exponent of transform	*/
	int verbose;		/* flag to get advisory messages	*/
	float dt;		/* sampling interval in secs		*/
	float d1;		/* output sample interval in Hz		*/
	cwp_Bool seismic;	/* is this seismic data? */
	float c;		/* multiplier				*/
	float w0, w1, w2;	/* weights				*/

	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);
	if (!getparint("verbose", &verbose))	verbose=1;

	/* Get info from first trace */ 
	if (!gettr(&tr))  err("can't get first trace");
	nt = tr.ns;

	/* check for seismic or well log data */
	seismic = ISSEISMIC(tr.trid);		
	if (seismic) {
		if (verbose)	warn("input is seismic data, trid=%d",tr.trid);
		dt = ((double) tr.dt)/1000000.0;
	}
	else {
		if (verbose)	warn("input is not seismic data, trid=%d",tr.trid);
		dt = tr.d1;
        }
	if (!dt) {
		dt = .004;
		if (verbose) warn("dt or d1 not set, assumed to be .004");
	}

	/* Set up pfa fft */
	nfft = npfaro(nt, LOOKFAC * nt);
	if (nfft >= SU_NFLTS || nfft >= PFA_MAX)  err("Padded nt=%d--too big", nfft);
	nf = nfft/2 + 1;
	d1 = 1.0/(nfft*dt);

	if (!getparint("sign", &sign)) sign = 1;
	if (sign != 1 && sign != -1)   err("sign = %d must be 1 or -1", sign);

	/* get weights */
	if (!getparfloat("w0",&w0)) w0 = 0.75;
	if (!getparfloat("w1",&w1)) w1 = 1.00;
	if (!getparfloat("w2",&w2)) w2 = 0.75;

	rt = ealloc1float(nfft);
	ct = ealloc1complex(nf);

	/* If dt not set, issue advisory on frequency step d1 */
	if (dt && verbose)  warn("d1=%f", 1.0/(nfft*dt));

	/* Main loop over traces */
	do {
		register int i;

		/* Load trace into rt (zero-padded) */
		memcpy((void *) rt, (const void *) tr.data, nt*FSIZE);
		memset((void *) (rt + nt), (int) '\0', (nfft-nt)*FSIZE);

		/* FFT */
		pfarc(sign, nfft, rt, ct);

		/* Store values */
		for (i = 0; i < nf; ++i) {
			c =w0*rcabs(ct[i-1])+w1*rcabs(ct[i])+w2*rcabs(ct[i+1]);
			if (i==0 || i==nf) {
				tr.data[2*i]   = ct[i].r / rcabs(ct[i]);
				tr.data[2*i+1] = ct[i].i / rcabs(ct[i]);
			} else {
				tr.data[2*i]   = ct[i].r / c;
				tr.data[2*i+1] = ct[i].i / c;
			}
		}

		/* Set header values--npfaro makes nfft even */
		tr.ns = 2 * nf;
		tr.trid = FUNPACKNYQ;
		tr.d1 = d1;
		tr.f1 = 0.0;

		puttr(&tr);

	} while (gettr(&tr));


	return(CWP_Exit());
}
Exemple #2
0
int
main(int argc, char **argv)
{
	FILE *headerfp=NULL;	/* temporary file for trace header	*/
				/*  ... (1st trace of ensemble);	*/
	char *key=NULL;		/* header key word from segy.h		*/
	char *type=NULL;	/* ... its type				*/
	int index;		/* ... its index			*/
	Value val;		/* ... its value			*/
	float fval = 0;		/* ... its value cast to float		*/
	float prevfval;		/* ... its value of the previous trace	*/

	complex *ct=NULL;	/* complex trace			*/
	complex *psct=NULL;	/* phase-stack data array		*/

	float *data=NULL;	/* input data array			*/
	float *hdata=NULL;	/* array of Hilbert transformed input data */
	float *stdata=NULL;	/* stacked data ("ordinary" stack)	*/
	float *psdata;	/* phase-stack data array (real weights for PWS)*/
	float a;	/* inst. amplitude				*/
	float dt;	/* time sample spacing in seconds		*/
	float pwr;	/* raise  phase stack to power pwr		*/
	float sl;	/* smoothing window length in seconds		*/

	int gottrace;	/* flag: set to 1, if trace is read from stdin	*/

	int i;		/* loop index					*/
	int isl;	/* smoothing window length in samples		*/
	int nt;		/* number of points on input trace		*/
	int ntr;	/* trace counter				*/
	int ps;		/* flag: output is PWS (0) or phase stack (1)	*/
	int verbose;	/* verbose flag					*/

	cwp_Bool pws_and_cdp=cwp_false;	/* are PWS and CDP set?		*/

	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);

	/* Get info from first trace */
	if(!gettr(&intr)) err("can't get first trace");
	nt = intr.ns;

	/* Get parameters */
	if (!getparstring("key", &key))			key="cdp";
	if (!getparfloat("pwr", &pwr))			pwr = 1.0;
	if (!getparfloat("dt", &dt)) dt = ((double) intr.dt)/1000000.0;
	if (!getparfloat("sl", &sl))			sl = 0.0;
	if (!getparint("ps", &ps))			ps = 0;
	if (!getparint("verbose", &verbose))		verbose = 0;

	if (STREQ(key, "cdp") &&  !(ps))
		pws_and_cdp = cwp_true;

	/* convert seconds to samples (necessary only for smoothing) */
	if (!dt) {
		dt = 0.004;
		warn("dt not set, assuming dt=0.004");
	}

	/* integerized smoothing window length */
	isl = NINT(fabs(sl)/dt);
	if (isl>nt)
		err("sl=%g too long for trace", fabs(sl));

	/* diagnostic print */
	if (verbose && isl)
		warn("smoothing window = %d samples", isl);

	/* initialize flag */
	gottrace = 1;

	/* get key type and index */
	type = hdtype(key);
	index = getindex(key);

	/* Get value of key and convert to float */
	prevfval = fval;
	gethval(&intr, index, &val);
	fval = vtof(type,val);

	/* remember previous value of key */
	prevfval = fval;

	/* allocate space for data, hilbert transformed data, */
	/* phase-stacked data and complex trace */
	data = ealloc1float(nt);
	hdata = ealloc1float(nt);
	stdata = ealloc1float(nt);
	psdata = ealloc1float(nt);
	psct = ealloc1complex(nt);
	ct = ealloc1complex(nt);


	/* zero out accumulators */
	memset( (void *) stdata, 0, nt*FSIZE);
	memset( (void *) psct, 0, nt*(sizeof(complex)));


	/* open temporary file for trace header   */
	headerfp = etmpfile();

	/* store trace header in temporary file and read data */
	efwrite(&intr, HDRBYTES, 1, headerfp);

	/* loop over input traces */
	ntr=0;
	while (gottrace|(~gottrace) ) { /* middle exit loop */

		/* if got a trace */
		if (gottrace) {
			/* get value of key */
			gethval(&intr, index, &val);
			fval = vtof(type,val);

			/* get data */
			memcpy((void *) data, (const void *) intr.data,
					nt*FSIZE);
		}

		/* construct quadrature trace with hilbert transform */
		hilbert(nt, data, hdata);

		/* build the complex trace and get rid of amplitude */
		for (i=0; i<nt; i++) {
			ct[i] = cmplx(data[i],hdata[i]);
			a = (rcabs(ct[i])) ? 1.0 / rcabs(ct[i]) : 0.0;
			ct[i] = crmul(ct[i], a);
		}

		/* stacking */
		if (fval==prevfval && gottrace) {
			++ntr;
			for (i=0; i<nt; ++i) {
				stdata[i] += data[i];
				psct[i] = cadd(psct[i],ct[i]);
			}
		}

		/* if key-value has changed or no more input traces */
		if (fval!=prevfval || !gottrace) {

			/* diagnostic print */
			if (verbose)
				warn("%s=%g, fold=%d\n", key, prevfval, ntr);

			/* convert complex phase stack to real weights */
			for (i=0; i<nt; ++i) {
				psdata[i] = rcabs(psct[i]) / (float) ntr;
				psdata[i] = pow(psdata[i], pwr);
			}

			/* smooth phase-stack (weights) */
			if (isl) do_smooth(psdata,nt,isl);

			/* apply weights to "ordinary" stack (do PWS) */
			if (!ps) {
				for (i=0; i<nt; ++i) {
					stdata[i] *= psdata[i] / (float) ntr;
				}
			}

			/* set header and write PS trace or */
			/* PWS trace to stdout */
			erewind(headerfp);
			efread(&outtr, 1, HDRBYTES, headerfp);
			outtr.nhs=ntr;
			if (ps) {
				memcpy((void *) outtr.data,
					(const void *) psdata, nt*FSIZE);
			} else {
				memcpy((void *) outtr.data,
					(const void *) stdata, nt*FSIZE);
			}

			/* zero offset field if a pws and cdp stack */
			if (pws_and_cdp) outtr.offset = 0;

			puttr(&outtr);

			/* if no more input traces, break input trace loop* */
			if (!gottrace) break;


			/* remember previous value of key */
			prevfval = fval;

			/* zero out accumulators */
			ntr=0;
			memset( (void *) stdata, 0, nt*FSIZE);
			memset( (void *) psct, 0, nt*(sizeof(complex)));

			/* stacking */
			if (gottrace) {
				++ntr;
				for (i=0; i<nt; ++i) {
					stdata[i] += data[i];
					psct[i] = cadd(psct[i],ct[i]);
				}
			}

			/* save trace header for output trace */
			erewind(headerfp);
			efwrite(&intr, HDRBYTES, 1, headerfp);
		}

		/* get next trace (if there is one) */
		if (!gettr(&intr)) gottrace = 0;

	} /* end loop over traces */

	return(CWP_Exit());
}
Exemple #3
0
int
main(int argc, char **argv)
{
	int nt,nx;		/* numbers of samples			*/
	float dt;		/* sampling intervals			*/
	int it,ix;		/* sample indices			*/
	int ntfft;		/* dimensions after padding for FFT	*/
	int nF;			/* transform (output) dimensions	*/
	int iF;			/* transform sample indices		*/

	register complex **ct=NULL;	/* complex FFT workspace	*/
	register float **rt=NULL;	/* float FFT workspace		*/

	int verbose;		/* flag for echoing information		*/

	char *tmpdir=NULL;	/* directory path for tmp files		*/
	cwp_Bool istmpdir=cwp_false;/* true for user-given path		*/

	float v,fv,dv;		/* phase velocity, first, step	 	*/
	float amp,oamp;		/* temp vars for amplitude spectrum	*/
	int nv,iv;		/* number of phase vels, counter	*/
	float x;		/* offset  				*/
	float omega;		/* circular frequency			*/
	float domega;		/* circular frequency spacing (from dt)	*/
	float onfft;		/* 1 / nfft				*/
	float phi;		/* omega/phase_velocity			*/
	complex *cDisp=NULL;	/* temp array for complex dispersion	*/
	float arg;		/* temp var for phase calculation	*/
	complex cExp;		/* temp vars for phase calculation	*/
	float *offs=NULL;	/* input data offsets			*/
	float fmax;		/* max freq to proc (Hz)    		*/

	int out;		/* output real or abs v(f) spectrum	*/
	int norm;		/* normalization flag			*/

	float xmax;		/* maximum abs(offset) of input		*/
	float twopi, f;		/* constant and frequency (Hz)		*/



	/* Hook up getpar to handle the parameters */
	initargs(argc,argv);
	requestdoc(1);


	/* Get info from first trace */ 
	if (!gettr(&intrace))  err("can't get first trace");
	nt = intrace.ns;

	/* dt is used only to set output header value d1 */
	if (!getparfloat("dt", &dt)) {
		if (intrace.dt) { /* is dt field set? */
			dt = ((double) intrace.dt)/ 1000000.0;
		} else { /* dt not set, exit */
			err("tr.dt not set, stop.");
		}
	}
	warn("dt=%f",dt);
	if (!getparfloat("fv",&fv))	fv   = 330;
	if (!getparfloat("dv",&dv))     dv   = 25;
	if (!getparint("nv",&nv))       nv   = 100;
	if (!getparint("out",&out))     out  = 0;
	if (!getparint("norm",&norm))   norm = 0;
	if (!getparfloat("fmax",&fmax)) fmax = 50;

	if (!getparint("verbose", &verbose))	verbose = 0;

	/* Look for user-supplied tmpdir */
	if (!getparstring("tmpdir",&tmpdir) &&
	    !(tmpdir = getenv("CWP_TMPDIR"))) tmpdir="";
	if (!STREQ(tmpdir, "") && access(tmpdir, WRITE_OK))
		err("you can't write in %s (or it doesn't exist)", tmpdir);


        checkpars();

	/* Set up tmpfile */
	if (STREQ(tmpdir,"")) {
		tracefp = etmpfile();
		if (verbose) warn("using tmpfile() call");
	} else { /* user-supplied tmpdir */
		char directory[BUFSIZ];
		strcpy(directory, tmpdir);
		strcpy(tracefile, temporary_filename(directory));
		/* Trap signals so can remove temp files */
		signal(SIGINT,  (void (*) (int)) closefiles);
		signal(SIGQUIT, (void (*) (int)) closefiles);
		signal(SIGHUP,  (void (*) (int)) closefiles);
		signal(SIGTERM, (void (*) (int)) closefiles);
		tracefp = efopen(tracefile, "w+");
      		istmpdir=cwp_true;		
		if (verbose) warn("putting temporary files in %s", directory);
	}
	
	/* we have to allocate offs(nx) before we know nx */
	offs = alloc1float(MAX_OFFS);	

	ix = 0;
	nx = 0;
	xmax = 0.0;
	
	/* get nx and max abs(offset) */
	do { 
		++nx;
		efwrite(intrace.data, FSIZE, nt, tracefp);
		offs[ix] = intrace.offset;
		if ( abs(intrace.offset) > xmax ) xmax = abs(intrace.offset);
		++ix;
	} while (gettr(&intrace));
	
	/* confirm that offsets are set */
	if ( xmax == 0.0 ) err("tr.offset not set, stop.");


	/* Determine lengths for prime-factor FFTs */
	ntfft = npfar(nt);
	if (ntfft >= SU_NFLTS || ntfft >= PFA_MAX)
			err("Padded nt=%d--too big",ntfft);

	/* Determine complex transform sizes */
	nF = ntfft/2+1;  /* must be this nF for fft */
        onfft = 1.0 / ntfft;
	twopi = 2.0 * PI;
	domega = twopi * onfft / dt;

	/* Allocate space */
	ct = alloc2complex(nF,nx);
	rt = alloc2float(ntfft,nx);

	/* Load traces into fft arrays and close tmpfile */
	erewind(tracefp);
	for (ix=0; ix<nx; ++ix) {

		efread(rt[ix], FSIZE, nt, tracefp);

		/* pad dimension 1 with zeros */
		for (it=nt; it<ntfft; ++it)  rt[ix][it] = 0.0;
	}
	efclose(tracefp);
	
	/* Fourier transform dimension 1 */
	pfa2rc(1,1,ntfft,nx,rt[0],ct[0]);

	/* set nF for processing */
	if (fmax == 0) { 	
		/* process to nyquist */
		nF = ntfft/2+1;
	} else {
		/* process to given fmax */
		nF = (int) (twopi * fmax / domega);
	}
	
	/* data now in (w,x) domain 
	   allocate arrays  */
	cDisp = alloc1complex(nF);	
	
	/* if requested, normalize by amplitude spectrum 
	    (normalizing by amplitude blows up aliasing and other artifacts) */			
	if (norm == 1) {
		for (iF=0; iF<nF; ++iF)  {
			/* calc this frequency */
			omega = iF * domega;
			f = omega / twopi;
			/* loop over traces */
			for (ix=0; ix<nx; ++ix) {
				/* calc amplitude at this (f,x) location */
				amp = rcabs(ct[ix][iF]);
				oamp = 1.0/amp;
				/* scale field by amp spectrum */
				ct[ix][iF] = crmul(ct[ix][iF],oamp);
			}
		}
	}
	
	/* set global output trace headers */
	outtrace.ns = 2 * nF;
	outtrace.dt = dt*1000000.;  
	outtrace.trid = FUNPACKNYQ;
	outtrace.d1 = 1.0 / (ntfft * dt); /* Hz */
	outtrace.f1 = 0;
	outtrace.d2 = dv;
	outtrace.f2 = fv;

	/* loop over phase velocities */
	for (iv=0; iv<nv; ++iv) {

		/* this velocity */
		v = fv + iv*dv;
	
		/* loop over frequencies */
		for (iF=0; iF<nF; ++iF)  {

			/* this frequency and phase */
			omega = iF * domega;
			f = omega / twopi;
			phi = omega / v;

			/* initialize */
			cDisp[iF] = cmplx(0.0,0.0);		

			/* sum over abs offset (this is ok for 3D, too) */
			for (ix=0; ix<nx; ++ix) {

				/* get this x */
				x = abs(offs[ix]);

				/* target phase */
				arg = - phi * x;
				cExp = cwp_cexp(crmul(cmplx(0.0,1.0), arg));
				
				/* phase vel profile for this frequency */				 
				cDisp[iF] = cadd(cDisp[iF],cmul(ct[ix][iF],cExp));
			}
			
		}
		
		/* set trace counter */
		outtrace.tracl = iv + 1;
			
		/* copy results to output trace 
		   interleaved format like sufft.c */
		for (iF = 0; iF < nF; ++iF) {
			outtrace.data[2*iF]   = cDisp[iF].r;
			outtrace.data[2*iF+1] = cDisp[iF].i;
		}
		
		/* output freqs at this vel */
		puttr(&outtrace);

	}  /* next frequency */
	
	
	/* Clean up */
	if (istmpdir) eremove(tracefile);
	return(CWP_Exit());
}
Exemple #4
0
int
main(int argc, char **argv)
{
	register float *rt;	/* real trace				*/
	register complex *ct;	/* complex transformed trace		*/
	int nt;			/* number of points on input trace	*/
	int nfft;		/* number of points on output trace	*/
	int nfby2p1;		/* nfft/2 + 1				*/
	float dt;		/* sample interval in secs		*/
	float d1;		/* output sample interval in Hz		*/
	int ntr=0;		/* number of traces			*/
	register int i;		/* counter				*/


	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);


	/* Get info from first trace */ 
	if (!gettr(&tr))  err("can't get first trace");
	nt = tr.ns;

	/* dt is used only to set output header value d1 */
	if (!getparfloat("dt", &dt)) dt = ((double) tr.dt)/1000000.0;
	if (!dt) {
		dt = .004;
		warn("dt not set, assumed to be .004");
	}


        checkpars();


	/* Set up pfa fft */
	nfft = npfaro(nt, LOOKFAC * nt);
	if (nfft >= SU_NFLTS || nfft >= PFA_MAX)
		 err("Padded nt=%d--too big", nfft);
	nfby2p1 = nfft/2 + 1;
	d1 = 1.0/(nfft*dt);

	rt = ealloc1float(nfft);
	ct = ealloc1complex(nfby2p1);


	/* Main loop over traces */
	do {
		++ntr;

		/* Load trace into rt (zero-padded) */
		memcpy( (void *) rt, (const void *) tr.data, nt*FSIZE);
		memset( (void *) (rt + nt), 0, (nfft - nt)*FSIZE);

		/* FFT */
		pfarc(1, nfft, rt, ct);

		/* Compute amplitude spectrum */
		tr.data[0] = rcabs(ct[0])/2.0;
		for (i = 1; i < nfby2p1; ++i)  tr.data[i] = rcabs(ct[i]);

		/* Set header values */
		tr.ns = nfby2p1;
		tr.dt = 0;	  /* d1=df is now the relevant step size */
		tr.trid = AMPLITUDE;
		tr.d1 = d1;
		tr.f1 = 0.0;

		puttr(&tr);

	} while (gettr(&tr));


	return(CWP_Exit());
}