int main(int argc, char** argv){ if(argc<2){ throw ArgumentError(); } const char* filename = argv[1]; list<Box> v = read_boxes(filename); list<Tower> tows = get_best_towers(v); Tower tallest = get_tallest(tows); show_tower(tallest); std::cout << "height = " << tower_height(tallest) << '\n'; return 0; }
int main(int argc, char **argv) { char* input = argv[1]; int channels = 3; list *plist = get_paths(input); //int N = plist->size; char **paths = (char **)list_to_array(plist); int m = plist->size; int count_label = 0; char labelpath[256]; sprintf(labelpath, "../labels/01_5_1.txt"); int count = 0; box_label *boxes = read_boxes(labelpath, &count); for (int i = 0; i < m; i++) { if (!paths[i]) { printf("load error!\n"); break; } image im = load_image(paths[i], 0, 0, channels); printf("load %s", paths[i]); float x, y, w, h; count_label++; x = boxes[i].x; y = boxes[i].y; w = boxes[i].w; h = boxes[i].h; box box = { x, y, w, h }; char *save_path1 = get_basename(paths[i]); char save_path[256]; sprintf(save_path, "./images/%s", save_path1); //show_image(im, save_path); image crop_im = crop_image(im, x,y,w,h); printf(" %f %f %f %f \n", x,y,w,h); show_image(crop_im, save_path); free_image(crop_im); free_image(im); } }
void validate_detector_recall(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths("data/voc.2007.test"); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int j, k; box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; float thresh = .001; float iou_thresh = .5; float nms = .4; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); network_predict(net, sized.data); get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0, .5); if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < l.w*l.h*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < l.w*l.h*l.n; ++k){ float iou = box_iou(boxes[k], t); if(probs[k][0] > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free(id); free_image(orig); free_image(sized); } }
void validate_yolo_classify(char *datacfg, char *cfgfile, char *weightfile) { list *options = read_data_cfg(datacfg); //char *train_list = option_find_str(options, "train", "data/train_list.txt"); //char *test_list = option_find_str(options, "test", "data/test_list.txt"); char *valid_list = option_find_str(options, "valid", "data/valid_list.txt"); //char *backup_directory = option_find_str(options, "backup", "/backup/"); //char *label_list = option_find_str(options, "labels", "data/labels_list.txt"); //int classes = option_find_int(options, "classes", 2); //char **labels = get_labels(label_list); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/comp4_det_test_"; //list *plist = get_paths("data/voc.2007.test"); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int square = l.sqrt; int side = l.side; int j, k; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(side*side*l.n, sizeof(box)); float **probs = calloc(side*side*l.n, sizeof(float *)); for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; //float thresh = .001; float thresh = .2; float iou_thresh = .5; //float nms = 0; float nms = 0.5; int total = 0; int correct = 0; int class_correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); float *predictions = network_predict(net, sized.data); convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 0); //if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms); if (nms) do_nms(boxes, probs, side*side*l.n, classes, nms); char *labelpath = find_replace(path, "images", "labels"); labelpath = find_replace(labelpath, "JPEGImages", "labels"); labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt"); labelpath = find_replace(labelpath, ".bmp", ".txt"); labelpath = find_replace(labelpath, ".dib", ".txt"); labelpath = find_replace(labelpath, ".jpe", ".txt"); labelpath = find_replace(labelpath, ".jp2", ".txt"); labelpath = find_replace(labelpath, ".png", ".txt"); labelpath = find_replace(labelpath, ".pbm", ".txt"); labelpath = find_replace(labelpath, ".pgm", ".txt"); labelpath = find_replace(labelpath, ".ppm", ".txt"); labelpath = find_replace(labelpath, ".sr", ".txt"); labelpath = find_replace(labelpath, ".ras", ".txt"); labelpath = find_replace(labelpath, ".tiff", ".txt"); labelpath = find_replace(labelpath, ".tif", ".txt"); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < side*side*l.n; ++k){ int class = max_index(probs[k], classes); float prob = probs[k][class]; //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class); if(prob > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; int pre_class = -1; for(k = 0; k < side*side*l.n; ++k){ float iou = box_iou(boxes[k], t); int class = max_index(probs[k], classes); float prob = probs[k][class]; //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class); if(prob > thresh && iou > best_iou){ best_iou = iou; pre_class = class; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } if(pre_class == truth[j].id){ ++class_correct; } //fprintf(stderr, "true_class=%d\tpre_class=%d\n", truth[j].id, pre_class); } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\t\tClassify:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total, 100.*class_correct/total); free(id); free_image(orig); free_image(sized); }
void validate_coco_recall(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "results/comp4_det_test_"; list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int square = l.sqrt; int side = l.side; int j, k; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; _snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(side*side*l.n, sizeof(box)); float **probs = calloc(side*side*l.n, sizeof(float *)); for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; float thresh = .001; int nms = 0; float iou_thresh = .5; float nms_thresh = .5; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); float *predictions = network_predict(net, sized.data); convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); char *labelpath = find_replace(path, "images", "labels"); labelpath = find_replace(labelpath, "JPEGImages", "labels"); labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt"); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < side*side*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < side*side*l.n; ++k){ float iou = box_iou(boxes[k], t); if(probs[k][0] > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free(id); free_image(orig); free_image(sized); } }
void validate_yolo_recall(char *cfg, char *weights) { network *net = load_network(cfg, weights, 0); set_batch_network(net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); srand(time(0)); char *base = "results/comp4_det_test_"; list *plist = get_paths("data/voc.2007.test"); char **paths = (char **)list_to_array(plist); layer l = net->layers[net->n-1]; int classes = l.classes; int side = l.side; int j, k; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); fps[j] = fopen(buff, "w"); } int m = plist->size; int i=0; float thresh = .001; float iou_thresh = .5; float nms = 0; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net->w, net->h); char *id = basecfg(path); network_predict(net, sized.data); int nboxes = 0; detection *dets = get_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, &nboxes); if (nms) do_nms_obj(dets, side*side*l.n, 1, nms); char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < side*side*l.n; ++k){ if(dets[k].objectness > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < side*side*l.n; ++k){ float iou = box_iou(dets[k].bbox, t); if(dets[k].objectness > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free_detections(dets, nboxes); free(id); free_image(orig); free_image(sized); } free_network( net ); }
int main(int argc, char *argv[]) { std::string train_path; std::string gt_path; std::string output_file; std::string output_patch_file; int numbers = 0; int start = 100; int c; std::vector<int> excludes(nexcludes); excludes.assign(exclude_nums, exclude_nums + nexcludes); while ((c = getopt(argc, argv, "i:g:n:s:e:o:p:h")) != -1) { switch (c) { case 'i': train_path = optarg; break; case 'g': gt_path = optarg; break; case 'n': { std::stringstream stream(optarg); stream >> numbers; } break; case 's': { std::stringstream stream(optarg); stream >> start; } break; case 'e': excludes = spliti(std::string(optarg),','); break; case 'o': output_file = optarg; break; case 'p': output_patch_file = optarg; break; case 'h': default: std::cout << c << std::endl; std::cerr << "Usage: extract_train_set OPTIONS" << std::endl << "\t -i <training directory>" << std::endl << "\t -g <gt box directory>" << std::endl << "\t -n <maximum id>" << std::endl << "\t -s <start id>" << std::endl << "\t -o <output path>" << std::endl << "\t -p <output patch file>" << std::endl << "\t -e <exclude list>" << std::endl; return 1; } } if (train_path == "" || gt_path == "") { std::cerr << "Training path and gt path are mandatory" << std::endl; return 1; } if (output_file == "") { std::cerr << "output file is mandatory" << std::endl; return 1; } srand(time(NULL)); std::ofstream ofs(output_file.c_str()); std::ofstream ofs_patch; if (output_patch_file != "") { ofs_patch.open(output_patch_file); } for (unsigned int i = start; i <= numbers; ++i) { if (std::find(excludes.begin(), excludes.end(), i) != excludes.end()) continue; std::cout << "Processing: " << i << std::endl; std::string train_img; std::string gt_box; { std::stringstream stream(train_path); stream << train_path << "/" << i << ".jpg"; train_img = (stream.str()); } { std::stringstream stream(gt_path); stream << gt_path << "/" << i << ".txt"; gt_box = (stream.str()); } std::vector<cv::Rect> rects(read_boxes(gt_box)); cv::Mat img = cv::imread(train_img); // first we extract the positive instances for (unsigned int j = 0; j < rects.size(); ++j) { extract_positive_samples(img, rects[j], ofs, ofs_patch); } std::cout << "Extracting random images" << std::endl; // then we gonna extract negative samples float size = img.rows; cv::Mat scaledImage = img; float scale = 1.0; for (unsigned int j = 0; j < nscales; ++j) { std::cout << "scale: " << size << std::endl; if (scaledImage.rows > (int) size) { float ratio = size / scaledImage.rows; int h = (int) size; int w = ratio * scaledImage.cols; std::cout << w << " " << h << " " << ratio << std::endl; cv::resize(img, scaledImage, cv::Size(w,h)); rects = scale_rects(rects, ratio); scale = scale * ratio; } if (scaledImage.rows < window_height || scaledImage.cols < window_width) { continue; } extract_negative_samples(scaledImage, rects, scale, ofs, ofs_patch); size = size * scale_ratio; } } return 0; }
void extract_boxes(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *val_images = "/home/pjreddie/data/voc/test/train.txt"; list *plist = get_paths(val_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n - 1]; int num_boxes = l.side; int num = l.n; int classes = l.classes; int j; box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box)); float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *)); for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *)); int N = plist->size; int i=0; int k; int count = 0; float iou_thresh = .3; for (i = 0; i < N; ++i) { fprintf(stderr, "%5d %5d\n", i, count); char *path = paths[i]; image orig = load_image_color(path, 0, 0); image resized = resize_image(orig, net.w, net.h); float *X = resized.data; float *predictions = network_predict(net, X); get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes); get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs); char *labelpath = find_replace(path, "images", "labels"); labelpath = find_replace(labelpath, "JPEGImages", "labels"); labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt"); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); FILE *label = stdin; for(k = 0; k < num_boxes*num_boxes*num; ++k){ int overlaps = 0; for (j = 0; j < num_labels; ++j) { box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float iou = box_iou(boxes[k], t); if (iou > iou_thresh){ if (!overlaps) { char buff[256]; sprintf(buff, "/data/extracted/labels/%d.txt", count); label = fopen(buff, "w"); overlaps = 1; } fprintf(label, "%d %f\n", truth[j].id, iou); } } if (overlaps) { char buff[256]; sprintf(buff, "/data/extracted/imgs/%d", count++); int dx = (boxes[k].x - boxes[k].w/2) * orig.w; int dy = (boxes[k].y - boxes[k].h/2) * orig.h; int w = boxes[k].w * orig.w; int h = boxes[k].h * orig.h; image cropped = crop_image(orig, dx, dy, w, h); image sized = resize_image(cropped, 224, 224); #ifdef OPENCV save_image_jpg(sized, buff); #endif free_image(sized); free_image(cropped); fclose(label); } } free(truth); free_image(orig); free_image(resized); } }
void validate_recall(char *cfgfile, char *weightfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt"; list *plist = get_paths(val_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n - 1]; int num_boxes = l.side; int num = l.n; int classes = l.classes; int j; box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box)); float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *)); for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *)); int N = plist->size; int i=0; int k; float iou_thresh = .5; float thresh = .1; int total = 0; int correct = 0; float avg_iou = 0; int nms = 1; int proposals = 0; int save = 1; for (i = 0; i < N; ++i) { char *path = paths[i]; image orig = load_image_color(path, 0, 0); image resized = resize_image(orig, net.w, net.h); float *X = resized.data; float *predictions = network_predict(net, X); get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes); get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs); if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh); char *labelpath = find_replace(path, "images", "labels"); labelpath = find_replace(labelpath, "JPEGImages", "labels"); labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt"); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for(k = 0; k < num_boxes*num_boxes*num; ++k){ if(probs[k][0] > thresh){ ++proposals; if(save){ char buff[256]; sprintf(buff, "/data/extracted/nms_preds/%d", proposals); int dx = (boxes[k].x - boxes[k].w/2) * orig.w; int dy = (boxes[k].y - boxes[k].h/2) * orig.h; int w = boxes[k].w * orig.w; int h = boxes[k].h * orig.h; image cropped = crop_image(orig, dx, dy, w, h); image sized = resize_image(cropped, 224, 224); #ifdef OPENCV save_image_jpg(sized, buff); #endif free_image(sized); free_image(cropped); sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals); char *im_id = basecfg(path); FILE *fp = fopen(buff, "w"); fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h); fclose(fp); free(im_id); } } } for (j = 0; j < num_labels; ++j) { ++total; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < num_boxes*num_boxes*num; ++k){ float iou = box_iou(boxes[k], t); if(probs[k][0] > thresh && iou > best_iou){ best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } free(truth); free_image(orig); free_image(resized); fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); } }
void validate_yolo_recall(char *cfgfile, char *weightfile, char *val_images, char *out_dir, float th, int log, int draw) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); //create output directory if it does not exist struct stat st= {0}; if(stat(out_dir,&st)==-1){ fprintf(stderr,"Creating output directory\n"); mkdir(out_dir,0700); } char *base = out_dir; list *plist = get_paths(val_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int square = l.sqrt; //int side = l.side; int rows = l.rows; int cols = l.cols; int j, k; FILE **fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ char buff[1024]; snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); fps[j] = fopen(buff, "w"); } box *boxes = calloc(rows*cols*l.n, sizeof(box)); float **probs = calloc(rows*cols*l.n, sizeof(float *)); for(j = 0; j < rows*cols*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; float thresh = th; float iou_thresh[11] = {0.0,0.05,0.1,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.5}; float nms = 0.1; int total = 0; int correct[11] = {0,0,0,0,0,0,0,0,0,0,0}; int proposals = 0; float avg_iou = 0; Vector id_found; Vector id_invalid; initArray(&id_found,5); initArray(&id_invalid,5); for(i = 0; i < m; ++i){ char * image_path = strtok(paths[i]," "); char * label_path = strtok(NULL," "); image orig = load_image(image_path, 0, 0,net.c); image color; if(draw) color = load_image(image_path, 0, 0, 3); image sized = resize_image(orig, net.w, net.h); //char *id = basecfg(path); float *predictions = network_predict(net, sized.data); convert_detections(predictions, classes, l.n, square, rows, cols, 1, 1, thresh, probs, boxes, 0); if (nms) do_nms(boxes, probs, rows*cols*l.n, 1, nms); int num_labels = 0; box_label *truth = read_boxes(label_path, &num_labels); int old_p = proposals; for(k = 0; k < rows*cols*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } if(old_p!=proposals){ if(log){ char filename[256]; sprintf(filename, "%s/%d.txt", base,i); printf("log in file %s\n",filename); FILE * out = fopen(filename, "w"); fprintf(out,"W\tH\tX\tY\n"); for(k=0; k<rows*cols*l.n; ++k){ if(probs[k][0] > thresh){ fprintf(out, "%f\t%f\t%f\t%f\n",boxes[k].w,boxes[k].h,boxes[k].x,boxes[k].y); } } fclose(out); } if(draw){ draw_detections(color, l.rows*l.cols*l.n, thresh, boxes, probs, voc_names, voc_labels, CLASSNUM); show_image(color, "predictions"); #ifdef OPENCV cvWaitKey(0); //cvDestroyAllWindows(); #endif } } for (j = 0; j < num_labels; ++j) { ++total; while(id_found.used <= truth[j].id){ insertArray(&id_invalid,0); insertArray(&id_found,0); } if(truth[j].classe > CLASSNUM-1) id_invalid.array[truth[j].id]=1; box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; float best_iou = 0; for(k = 0; k < rows*cols*l.n; ++k){ float iou = box_iou(boxes[k], t); //find overlapping prediction if(iou > best_iou){ //find the predicted class float best_score = thresh; int best_class_index = -1; for(int c=0; c<CLASSNUM; c++){ if(probs[k][c]>best_score){ best_score = probs[k][c]; best_class_index = c; } } //check if it's good or not if(best_class_index == truth[j].classe) best_iou = iou; } } avg_iou += best_iou; for(int k=0; k<11; k++){ if(best_iou > iou_thresh[k]){ id_found.array[truth[j].id]=1; ++correct[k]; } } } if(i%10==0){ printf("\033[2J"); printf("\033[1;1H"); printf("#img\tPred\tTP\ttot\tRPs/Img\tAvg-IOU\tRecall\tPrecision\n"); printf("%5d\t%5d\t%5d\t%5d\t%.2f\t%.2f%%\t%.2f%%\t%.2f%%\n", i, proposals, correct[10], total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct[10]/total, 100.*correct[10]/proposals); printf("IOU_th\tTP\tFP\tRecall\tPrecision\n"); for(int k=0; k<11; k++){ printf("%.2f%%\t%5d\t%5d\t%.2f%%\t%.2f%%\t\n", iou_thresh[k], correct[k], proposals-correct[k], 100.*correct[k]/total, 100.*correct[k]/proposals); } int found=0; int invalid = 0; for(int i=0; i<id_found.used; i++){ if(id_invalid.array[i]!=1) found+=id_found.array[i]; invalid+=id_invalid.array[i]; } printf("Founded: %d/%d\t%d\n", found, id_found.used-invalid,invalid); } //free(id); free_image(orig); free_image(sized); } for(j = 0; j < classes; ++j){ fprintf(fps[j],"IOU_th;TP;FP;Recall;Precision\n"); for(int k=0; k<11; k++){ fprintf(fps[j],"%.2f%%;%5d;%5d;%.2f%%;%.2f%%;\n", iou_thresh[k], correct[k], proposals-correct[k], 100.*correct[k]/total, 100.*correct[k]/proposals); } fprintf(fps[j], "\n\nFounded;Total;\n"); int found=0; int invalid = 0; for(int i=0; i<id_found.used; i++){ if(id_invalid.array[i]!=1) found+=id_found.array[i]; invalid+=id_invalid.array[i]; } fprintf(fps[j], "%d;%d;\n", found, id_found.used-invalid); fclose(fps[j]); } freeArray(&id_found); }