Exemple #1
0
int check_srf(char *srf_name, Settings *opts) {
  FILE *fp = fopen(srf_name, "rb");
  srf_t *srf;
  int res;
  
  if (NULL == fp) {
    printf("Couldn't open %s: %s\n", srf_name, strerror(errno));
    return -1;
  }

  srf = srf_create(fp);
  if (NULL == srf) {
    printf("srf_create failed for %s\n", srf_name);
    fclose(fp);
    return -1;
  }

  res = read_srf(srf, srf_name, opts);

  srf_destroy(srf, 0);
  if (0 != fclose(fp)) {
    printf("Error closing %s: %s\n", srf_name, strerror(errno));
    return -1;
  }

  return res;
}
Exemple #2
0
main(int ac,char **av)
{
char infile1[1024], infile2[1024], outfile[1024];
struct standrupformat srf1, srf2, srf3;

int inbin = 0;
int outbin = 0;

sprintf(outfile,"stdout");

setpar(ac,av);
mstpar("infile1","s",infile1);
mstpar("infile2","s",infile2);
getpar("outfile","s",outfile);
endpar();

read_srf(&srf1,infile1,inbin);
read_srf(&srf2,infile2,inbin);

join_segs(&srf1,&srf2,&srf3);

write_srf(&srf3,outfile,outbin);
}
Exemple #3
0
main(int ac,char **av)
{
char infile[256], outfile[256], new_version[256];

struct standrupformat srf1;
struct srf_prectsegments *prseg_ptr1;
struct srf_apointvalues *apval_ptr1;

int inbin = 0;
int outbin = 0;

int i, ioff;

sprintf(infile,"stdin");
sprintf(outfile,"stdout");
sprintf(new_version,"1.0");

setpar(ac,av);
getpar("infile","s",infile);
getpar("inbin","d",&inbin);
getpar("outfile","s",outfile);
getpar("outbin","d",&outbin);
getpar("new_version","s",new_version);
endpar();

read_srf(&srf1,infile,inbin);

strcpy(srf1.version,new_version);

/*
sprintf(srf1.srf_hcmnt.cbuf,"#\n");
sprintf((srf1.srf_hcmnt.cbuf)+MAXLINE,"# ");
sprintf((srf1.srf_hcmnt.cbuf)+2*MAXLINE,"#\n");

ioff = 2;
for(i=0;i<ac;i++)
   {
   sprintf((srf1.srf_hcmnt.cbuf)+ioff+MAXLINE,"%s ",av[i]);
   while(srf1.srf_hcmnt.cbuf[ioff+MAXLINE] != '\0' && ioff < MAXLINE-2)
      ioff++;
   }
sprintf((srf1.srf_hcmnt.cbuf)+ioff+MAXLINE,"\n");
*/

write_srf(&srf1,outfile,outbin);
}
Exemple #4
0
main(int ac,char **av)
{
int nseg;
char infile[256], type[64], outfile[256];

struct standrupformat srf;

int vmax2slip = 0;
int inbin = 0;
float maxslip = 0.0;
int kp = -1;

sprintf(infile,"stdin");
sprintf(outfile,"stdout");
sprintf(type,"slip");
nseg = 0;

setpar(ac,av);
getpar("infile","s",infile);
getpar("outfile","s",outfile);
getpar("type","s",type);
getpar("nseg","d",&nseg);
getpar("inbin","d",&inbin);
getpar("vmax2slip","d",&vmax2slip);
getpar("maxslip","f",&maxslip);
getpar("kp","d",&kp);
endpar();

read_srf(&srf,infile,inbin);
if(vmax2slip == 1)
   get_vmax2slip(outfile,&srf,type,nseg);
else
   {
   write_maxsvf(outfile,&srf,type,nseg,&maxslip,kp);
   fprintf(stderr,"maxslip= %f\n",maxslip);
   }
}
Exemple #5
0
main(int ac,char **av)
{
float *stf1, *stf2;
int it, i, ip, ig, ix, iy, ixp, iyp;
int ncoarsestk, ncoarsedip;
int ntot1, ntot2, *new_nstk, *new_ndip, *old_nstk, *old_ndip;
char infile[256], outfile[256];

struct standrupformat srf1, srf2;
struct srf_prectsegments *prseg_ptr1, *prseg_ptr2;
struct srf_apointvalues *apval_ptr1, *apval_ptr2;

int inbin = 0;
int outbin = 0;

sprintf(infile,"stdin");
sprintf(outfile,"stdout");

setpar(ac,av);
getpar("infile","s",infile);
getpar("inbin","d",&inbin);
getpar("outfile","s",outfile);
getpar("outbin","d",&outbin);
mstpar("ncoarsestk","d",&ncoarsestk);
mstpar("ncoarsedip","d",&ncoarsedip);
endpar();

read_srf(&srf1,infile,inbin);

strcpy(srf2.version,srf1.version);
copy_hcmnt(&srf2,&srf1);

if(strncmp(srf1.type,"PLANE",5) == 0)
   {
   strcpy(srf2.type,srf1.type);
   srf2.srf_prect.nseg = srf1.srf_prect.nseg;

   srf2.srf_prect.prectseg = (struct srf_prectsegments *)check_malloc(srf2.srf_prect.nseg*sizeof(struct srf_prectsegments));

   prseg_ptr1 = srf1.srf_prect.prectseg;
   prseg_ptr2 = srf2.srf_prect.prectseg;

   old_nstk = (int *)check_malloc((srf1.srf_prect.nseg)*sizeof(int));
   old_ndip = (int *)check_malloc((srf1.srf_prect.nseg)*sizeof(int));
   new_nstk = (int *)check_malloc((srf2.srf_prect.nseg)*sizeof(int));
   new_ndip = (int *)check_malloc((srf2.srf_prect.nseg)*sizeof(int));

   for(ig=0;ig<srf2.srf_prect.nseg;ig++)
      {
      prseg_ptr2[ig].elon = prseg_ptr1[ig].elon;
      prseg_ptr2[ig].elat = prseg_ptr1[ig].elat;
      prseg_ptr2[ig].nstk = (int)((1.0*prseg_ptr1[ig].nstk/ncoarsestk + 0.5));
      prseg_ptr2[ig].ndip = (int)((1.0*prseg_ptr1[ig].ndip/ncoarsedip + 0.5));
      prseg_ptr2[ig].flen = prseg_ptr2[ig].nstk*ncoarsestk*(prseg_ptr1[ig].flen/prseg_ptr1[ig].nstk);
      prseg_ptr2[ig].fwid = prseg_ptr2[ig].ndip*ncoarsedip*(prseg_ptr1[ig].fwid/prseg_ptr1[ig].ndip);
      prseg_ptr2[ig].stk  = prseg_ptr1[ig].stk;
      prseg_ptr2[ig].dip  = prseg_ptr1[ig].dip;
      prseg_ptr2[ig].dtop = prseg_ptr1[ig].dtop;
      prseg_ptr2[ig].shyp = prseg_ptr1[ig].shyp;
      prseg_ptr2[ig].dhyp = prseg_ptr1[ig].dhyp;

      old_nstk[ig] = prseg_ptr1[ig].nstk;
      old_ndip[ig] = prseg_ptr1[ig].ndip;
      new_nstk[ig] = prseg_ptr2[ig].nstk;
      new_ndip[ig] = prseg_ptr2[ig].ndip;
      }
   }

srf2.nseg = srf1.nseg;
srf2.np_seg = (int *)check_malloc((srf2.nseg)*sizeof(int));

if(atof(srf2.version) < 2.0)
   {
   for(ig=1;ig<srf2.nseg;ig++)
      {
      old_nstk[0] = old_nstk[0] + old_nstk[ig];
      new_nstk[0] = new_nstk[0] + new_nstk[ig];
      }

   srf2.np_seg[0] = new_nstk[0]*new_ndip[0];
   srf2.srf_apnts.np = new_nstk[0]*new_ndip[0];
   }

else if(atof(srf2.version) >= 2.0)
   {
   srf2.srf_apnts.np = 0;
   for(ig=0;ig<srf2.nseg;ig++)
      {
      srf2.np_seg[ig] = new_nstk[ig]*new_ndip[ig];
      srf2.srf_apnts.np = srf2.srf_apnts.np + srf2.np_seg[ig];
      }
   }

srf2.srf_apnts.apntvals = (struct srf_apointvalues *)check_malloc((srf2.srf_apnts.np)*sizeof(struct srf_apointvalues));

apval_ptr1 = srf1.srf_apnts.apntvals;
apval_ptr2 = srf2.srf_apnts.apntvals;

ntot1 = 0;
ntot2 = 0;
for(ig=0;ig<srf2.nseg;ig++)
   {
   for(iy=0;iy<new_ndip[ig];iy++)
      {
      iyp = (int)((float)(iy + 0.5)*ncoarsedip);
      for(ix=0;ix<new_nstk[ig];ix++)
         {
         ixp = (int)((float)(ix + 0.5)*ncoarsestk);

         i = ix + iy*new_nstk[ig] + ntot2;
         ip = ixp + iyp*old_nstk[ig] + ntot1;

         apval_ptr2[i].lon   = apval_ptr1[ip].lon;
         apval_ptr2[i].lat   = apval_ptr1[ip].lat;
         apval_ptr2[i].dep   = apval_ptr1[ip].dep;
         apval_ptr2[i].stk   = apval_ptr1[ip].stk;
         apval_ptr2[i].dip   = apval_ptr1[ip].dip;
         apval_ptr2[i].area  = apval_ptr1[ip].area*(ncoarsestk*ncoarsedip);
         apval_ptr2[i].tinit = apval_ptr1[ip].tinit;
         apval_ptr2[i].dt    = apval_ptr1[ip].dt;
         apval_ptr2[i].vs    = apval_ptr1[ip].vs;
         apval_ptr2[i].den    = apval_ptr1[ip].den;

         apval_ptr2[i].rake  = apval_ptr1[ip].rake;
         apval_ptr2[i].slip1 = apval_ptr1[ip].slip1;
         apval_ptr2[i].nt1   = apval_ptr1[ip].nt1;
         apval_ptr2[i].slip2 = apval_ptr1[ip].slip2;
         apval_ptr2[i].nt2   = apval_ptr1[ip].nt2;
         apval_ptr2[i].slip3 = apval_ptr1[ip].slip3;
         apval_ptr2[i].nt3   = apval_ptr1[ip].nt3;

         apval_ptr2[i].stf1 = (float *)check_malloc((apval_ptr2[i].nt1)*sizeof(float));
         apval_ptr2[i].stf2 = (float *)check_malloc((apval_ptr2[i].nt2)*sizeof(float));
         apval_ptr2[i].stf3 = (float *)check_malloc((apval_ptr2[i].nt3)*sizeof(float));

         stf1 = apval_ptr1[ip].stf1;
         stf2 = apval_ptr2[i].stf1;
         for(it=0;it<apval_ptr2[i].nt1;it++)
            stf2[it] = stf1[it];

         stf1 = apval_ptr1[ip].stf2;
         stf2 = apval_ptr2[i].stf2;
         for(it=0;it<apval_ptr2[i].nt2;it++)
            stf2[it] = stf1[it];

         stf1 = apval_ptr1[ip].stf3;
         stf2 = apval_ptr2[i].stf3;
         for(it=0;it<apval_ptr2[i].nt3;it++)
            stf2[it] = stf1[it];
         }
      }
   ntot1 = ntot1 + srf1.np_seg[ig];
   ntot2 = ntot2 + srf2.np_seg[ig];
   }

write_srf(&srf2,outfile,outbin);
}
Exemple #6
0
main(int ac,char **av)
{
FILE *fopfile(), *fpr, *fpwsv, *fpwrt, *fpwtr;
struct gfheader gfhead[4];
float maxgft;
struct gfparam gfpar;
float *gf, *gfmech;
int kg, ig;

float kperd_n, kperd_e;
float elat, elon, slat, slon, snorth, seast;
double e2, den, g2, lat0;

float len, wid, strike, dip, rake, dtop;
int i, j, k, l, ip, ip0;

int tshift_timedomain = 0;

struct beroza brm;
struct okumura orm;
struct gene grm;
struct rob rrm;
struct standrupformat srf;
struct srf_planerectangle *prect_ptr;
struct srf_prectsegments *prseg_ptr;
struct srf_allpoints *apnts_ptr;
struct srf_apointvalues *apval_ptr;

struct mechparam mechpar;
int maxmech;

int nstf;
float vslip;

int apv_off;
int nseg = 0;
int inbin = 0;

float tsfac = 0.0;
float tmom = 0.0;

float rupvel = -1.0;
float shal_vrup = 1.0;
float htol = 0.1;
double rayp, rupt_rad;
float rvfrac, rt, *randt;
struct velmodel vmod, rvmod;

int seed = 1;
int randtime = 0;
float perc_randtime = 0.0;
float delt = 0.0;
int smooth_randt = 2;
int gaus_randt = 0;
int randmech = 0;
float deg_randstk = 0.0;
float deg_randdip = 0.0;
float deg_randrak = 0.0;
float zap = 0.0;
int nn;

int kp;
float *rwt, sum;
float randslip = 0.0;

float len2, ds0, dd0, dsf, ddf, s2;
int ntsum, maxnt, it, ntp2;
float mindt;
float x0, y0, z0, dd;
float x0c, ddc, avgvrup;
float shypo, dhypo;
int nsubstk, nsubdip;
int nfinestk = 1;
int nfinedip = 1;
int ntout = -99;

float *stf, *seis, *subseis, *se, *sn, *sv;
float cosS, sinS, cosA, sinA;
float scale, arg, cosD, sinD;
float xstr, xdip, xrak;
float area, sfac;
float trise;

float azi, rng, deast, dnorth;
int ncomp = 3;

float *space;
float dtout = -1.0;

int fdw;
char gfpath[128], gfname[64];
char rtimesfile[128], modfile[128], outfile[128];
char slipfile[128], rupmodfile[128], outdir[128], stat[64], sname[8];
char rupmodtype[128], trisefile[128];
char string[256];

int write_ruptimes = 0;
int write_slipvals = 0;
int write_risetime = 0;

double rperd = 0.017453293;
float normf = 1.0e+10;  /* km^2 -> cm^2 */

float targetslip = 1.0;  /* slip in cm on each subfault */
float slip_conv = 1.0;  /* input slip in cm on each subfault */

float half = 0.5;
float two = 2.0;

int latloncoords = 0;

float tstart = 0.0;

rtimesfile[0] = '\0';
slipfile[0] = '\0';
trisefile[0] = '\0';
sname[0] = '\0';
sprintf(rupmodtype,"NULL");

sprintf(gfpar.gftype,"fk");

setpar(ac, av);
getpar("latloncoords","d",&latloncoords);

if(latloncoords == 1)
   {
   mstpar("elat","f",&elat);
   mstpar("elon","f",&elon);
   mstpar("slat","f",&slat);
   mstpar("slon","f",&slon);
   }
else
   {
   mstpar("snorth","f",&snorth);
   mstpar("seast","f",&seast);
   }

mstpar("dtop","f",&dtop);
mstpar("strike","f",&strike);
mstpar("dip","f",&dip);
mstpar("rake","f",&rake);

getpar("rupmodtype","s",rupmodtype);

if(strcmp(rupmodtype,"BEROZA") == 0)
   {
   brm.inc_stk = 1;
   brm.inc_dip = 1;
   brm.generic_risetime = -1.0;
   brm.robstf = 0;

   mstpar("rupmodfile","s",rupmodfile);
   mstpar("npstk","d",&brm.npstk);
   mstpar("npdip","d",&brm.npdip);
   mstpar("inc_stk","d",&brm.inc_stk);
   mstpar("inc_dip","d",&brm.inc_dip);

   mstpar("len","f",&len);
   mstpar("wid","f",&wid);

   getpar("robstf","d",&brm.robstf);
   getpar("generic_risetime","f",&brm.generic_risetime);
   if(brm.robstf == 0 && brm.generic_risetime > 0.0)
      {
      mstpar("generic_pulsedur","f",&brm.generic_pulsedur);
      mstpar("generic_t2","f",&brm.generic_t2);
      }

   getpar("slip_conv","f",&slip_conv);

   mstpar("outdir","s",outdir);
   mstpar("stat","s",stat);
   }
else if(strcmp(rupmodtype,"OKUMURA") == 0)
   {
   mstpar("rupmodfile","s",rupmodfile);

   getpar("slip_conv","f",&slip_conv);

   mstpar("outdir","s",outdir);
   mstpar("stat","s",stat);
   }
else if(strcmp(rupmodtype,"GENE") == 0)
   {
   mstpar("rupmodfile","s",rupmodfile);

   getpar("slip_conv","f",&slip_conv);

   mstpar("outdir","s",outdir);
   mstpar("stat","s",stat);
   }
else if(strcmp(rupmodtype,"ROB") == 0)
   {
   mstpar("rupmodfile","s",rupmodfile);

   getpar("slip_conv","f",&slip_conv);

   mstpar("outdir","s",outdir);
   mstpar("stat","s",stat);

   mstpar("shypo","f",&shypo);
   mstpar("dhypo","f",&dhypo);

   getpar("tsfac","f",&tsfac);

   getpar("rupvel","f",&rupvel);
   if(rupvel < 0.0)
      {
      mstpar("modfile","s",modfile);
      mstpar("rvfrac","f",&rvfrac);
      getpar("shal_vrup","f",&shal_vrup);
      }
   }
else if(strcmp(rupmodtype,"SRF") == 0)
   {
   mstpar("rupmodfile","s",rupmodfile);

   getpar("slip_conv","f",&slip_conv);
   getpar("nseg","d",&nseg);
   getpar("inbin","d",&inbin);

   mstpar("outdir","s",outdir);
   mstpar("stat","s",stat);
   }
else
   {
   mstpar("shypo","f",&shypo);
   mstpar("dhypo","f",&dhypo);

   mstpar("nsubstk","d",&nsubstk);
   mstpar("nsubdip","d",&nsubdip);

   mstpar("len","f",&len);
   mstpar("wid","f",&wid);

   getpar("rupvel","f",&rupvel);
   if(rupvel < 0.0)
      {
      mstpar("modfile","s",modfile);
      mstpar("rvfrac","f",&rvfrac);
      getpar("shal_vrup","f",&shal_vrup);
      }

   getpar("targetslip","f",&targetslip);

   mstpar("outfile","s",outfile);
   }

getpar("nfinestk","d",&nfinestk);
getpar("nfinedip","d",&nfinedip);

mstpar("gftype","s",gfpar.gftype);

if((strncmp(gfpar.gftype,"fk",2) == 0) || (strncmp(gfpar.gftype,"FK",2) == 0))
   {
   gfpar.flag3d = 0;
   gfpar.nc = 8;
   mstpar("gflocs","s",gfpar.gflocs);
   mstpar("gftimes","s",gfpar.gftimes);

   gfpar.swap_flag = 0;
   getpar("gf_swap_bytes","d",&gfpar.swap_flag);
   }
else if((strncmp(gfpar.gftype,"3d",2) == 0) || (strncmp(gfpar.gftype,"3D",2) == 0))
   {
   gfpar.flag3d = 1;
   gfpar.nc = 18;
   mstpar("gflocs","s",gfpar.gflocs);
   mstpar("gfrange_tolerance","f",&gfpar.rtol);
   }
else
   {
   fprintf(stderr,"gftype= %s invalid option, exiting...\n",gfpar.gftype);
   exit(-1);
   }

mstpar("gfpath","s",gfpath);
mstpar("gfname","s",gfname);

mstpar("maxnt","d",&maxnt);
mstpar("mindt","f",&mindt);
getpar("ntout","d",&ntout);
getpar("dtout","f",&dtout);

getpar("tstart","f",&tstart);
getpar("rtimesfile","s",rtimesfile);
getpar("slipfile","s",slipfile);
getpar("trisefile","s",trisefile);

getpar("seed","d",&seed);
getpar("randtime","d",&randtime);
if(randtime >= 1)
   mstpar("perc_randtime","f",&perc_randtime);
if(randtime >= 2)
   getpar("delt","f",&delt);
getpar("smooth_randt","d",&smooth_randt);
getpar("gaus_randt","d",&gaus_randt);

getpar("randslip","f",&randslip);

getpar("randmech","d",&randmech);
if(randmech)
   {
   mstpar("deg_randstk","f",&deg_randstk);
   mstpar("deg_randdip","f",&deg_randdip);
   mstpar("deg_randrak","f",&deg_randrak);
   }

getpar("tshift_timedomain","d",&tshift_timedomain);

getpar("sname","s",sname);

endpar();

fprintf(stderr,"type= %s\n",rupmodtype);

maxmech = 1;
mechpar.nmech = 1;
mechpar.flag[0] = U1FLAG;
mechpar.flag[1] = 0;
mechpar.flag[2] = 0;

if(strcmp(rupmodtype,"BEROZA") == 0)
   {
   len2 = 0.5*len;

   read_beroza(&brm,rupmodfile,&len2);

   nsubstk = (brm.npstk) - 1;
   nsubdip = (brm.npdip) - 1;

   targetslip = slip_conv;
   }
else if(strcmp(rupmodtype,"OKUMURA") == 0)
   {
   read_okumura(&orm,rupmodfile,&len2);

   nsubstk = orm.nstk;
   nsubdip = orm.ndip;

   len = orm.flen;
   wid = orm.fwid;

   targetslip = slip_conv;
   }
else if(strcmp(rupmodtype,"GENE") == 0)
   {
   read_gene(&grm,rupmodfile,&len2);

   nsubstk = grm.nstk;
   nsubdip = grm.ndip;

   len = grm.flen;
   wid = grm.fwid;

   targetslip = slip_conv;
   }
else if(strcmp(rupmodtype,"ROB") == 0)
   {
   read_rob(&rrm,rupmodfile,&tsfac);

/*   07/15/04
     For now, just use the getpar values, eventually we should modify
     in order to use the values read in from the slipmodel
*/

   rrm.elon = elon;
   rrm.elat = elat;
   rrm.stk = strike;
   rrm.dip = dip;
   rrm.dtop = dtop;
   rrm.shyp = shypo;
   rrm.dhyp = dhypo;

   nsubstk = rrm.nstk;
   nsubdip = rrm.ndip;

   len = rrm.flen;
   wid = rrm.fwid;

   len2 = 0.5*len;

   if(rupvel < 0.0)
      {
      read_velmodel(modfile,&vmod);
      conv2vrup(&vmod,&rvmod,&dip,&dtop,&wid,&rvfrac,&shal_vrup);
      }

   targetslip = slip_conv;
   }
else if(strcmp(rupmodtype,"SRF") == 0)
   {
   maxmech = 3;

   read_srf(&srf,rupmodfile,inbin);
   prect_ptr = &srf.srf_prect;
   prseg_ptr = prect_ptr->prectseg;
   apnts_ptr = &srf.srf_apnts;
   apval_ptr = apnts_ptr->apntvals;

/*   05/19/05
     For now, only use one segment from standard rupture model format;
     specified with 'nseg'.
*/

   elon = prseg_ptr[nseg].elon;
   elat = prseg_ptr[nseg].elat;
   strike = prseg_ptr[nseg].stk;
   dip = prseg_ptr[nseg].dip;
   dtop = prseg_ptr[nseg].dtop;
   shypo = prseg_ptr[nseg].shyp;
   dhypo = prseg_ptr[nseg].dhyp;

   nsubstk = prseg_ptr[nseg].nstk;
   nsubdip = prseg_ptr[nseg].ndip;

   len = prseg_ptr[nseg].flen;
   wid = prseg_ptr[nseg].fwid;

   /* reset POINTS pointer to appropriate segment */

   apv_off = 0;
   for(i=0;i<nseg;i++)
      apv_off = apv_off + prseg_ptr[i].nstk*prseg_ptr[i].ndip;

   apval_ptr = apval_ptr + apv_off;

   len2 = 0.5*len;
   targetslip = slip_conv;
   }
else
   {
   len2 = 0.5*len;

   if(rupvel < 0.0)
      {
      read_velmodel(modfile,&vmod);
      conv2vrup(&vmod,&rvmod,&dip,&dtop,&wid,&rvfrac,&shal_vrup);
      }
   }

if(randtime)
   {
   fprintf(stderr,"**** Initiation time randomized\n");
   fprintf(stderr,"          slow variation= +/-%.0f percent\n",100*perc_randtime);
   fprintf(stderr,"          fast variation= +/-%g sec\n",delt);
   }
else
   {
   perc_randtime = 0.0;
   delt = 0.0;
   }

if(randmech)
   {
   fprintf(stderr,"**** strike randomized by +/-%.0f degrees\n",deg_randstk);
   fprintf(stderr,"        dip randomized by +/-%.0f degrees\n",deg_randdip);
   fprintf(stderr,"       rake randomized by +/-%.0f degrees\n",deg_randrak);
   }
else
   {
   deg_randstk = 0.0;
   deg_randdip = 0.0;
   deg_randrak = 0.0;
   }

arg = strike*rperd;
cosS = cos(arg);
sinS = sin(arg);

arg = dip*rperd;
cosD = cos(arg);
sinD = sin(arg);

get_gfpars(&gfpar);

if(latloncoords) /* calculate lat,lon to km conversions */
   set_ne(&elon,&elat,&slon,&slat,&snorth,&seast);

if(dtout < 0.0)
   dtout = mindt;

if(dtout < mindt)
   maxnt = (maxnt*mindt/dtout);

ntsum = 2;
while(ntsum < 4*maxnt)
   ntsum = ntsum*2;

if(ntout < 0)
   ntout = ntsum;

gf = (float *) check_malloc (4*gfpar.nc*ntsum*sizeof(float));
gfmech = (float *) check_malloc (maxmech*12*ntsum*sizeof(float));
space = (float *) check_malloc (2*ntsum*sizeof(float));

seis = (float *) check_malloc (3*ntout*sizeof(float));
subseis = (float *) check_malloc (maxmech*3*ntout*sizeof(float));
stf = (float *) check_malloc (ntout*sizeof(float));

/* Calculate subfault responses */

ds0 = len/nsubstk;
dd0 = wid/nsubdip;

dsf = ds0/nfinestk;
ddf = dd0/nfinedip;

area = (len*wid)/(nsubstk*nsubdip);
sfac = targetslip*normf*area/(nfinestk*nfinedip);
if(gfpar.flag3d == 0)  /* add addtnl factor to convert mu for 1d GFs */
   sfac = sfac*normf;

rwt = (float *) check_malloc (nfinestk*nfinedip*sizeof(float));

if(randtime)
   {
   nn = nsubstk*nsubdip*nfinestk*nfinedip;
   randt = (float *) check_malloc (nn*sizeof(float));

   rand_init(randt,&perc_randtime,&seed,nsubstk,nsubdip,nfinestk,nfinedip,smooth_randt,gaus_randt);
   }

/* open output file */
if(strcmp(rupmodtype,"NULL") == 0)
   fdw = croptrfile(outfile);

if(rtimesfile[0] != '\0')
   {
   write_ruptimes = 1;
   fpwrt = fopfile(rtimesfile,"w");
   }

if(slipfile[0] != '\0')
   {
   write_slipvals = 1;
   fpwsv = fopfile(slipfile,"w");
   }

if(trisefile[0] != '\0')
   {
   write_risetime = 1;
   fpwtr = fopfile(trisefile,"w");
   }

zapit(seis,3*ntout);

for(i=0;i<4;i++)
   {
   gfhead[i].id = -1;  /* initialize: -1 means none read yet */
   gfhead[i].ir = -1;  /* initialize: -1 means none read yet */
   }

tmom = 0.0;
for(i=0;i<nsubstk;i++)
   {
   for(j=0;j<nsubdip;j++)
      {
      sum = 0.0;
      for(l=0;l<nfinedip*nfinestk;l++)
	 {
	 rwt[l] = randslip*sfrand(&seed);
	 sum = sum + rwt[l];
         }

      sum = sum/(float)(nfinedip*nfinestk);
      for(l=0;l<nfinedip*nfinestk;l++)
	 rwt[l] = rwt[l] - sum;

      zapit(subseis,maxmech*3*ntout);

      ip0 = i + j*nsubstk;

      for(k=0;k<nfinestk;k++)
	 {
	 x0 = i*ds0 + (k+0.5)*dsf - len2;

	 for(l=0;l<nfinedip;l++)
	    {
	    dd = j*dd0 + (l+0.5)*ddf;
	    y0 = dd*cosD;
	    z0 = dtop + dd*sinD;

	    kp = l + k*nfinedip;
	    ip = kp + (j + i*nsubdip)*nfinestk*nfinedip;

            if(strcmp(rupmodtype,"BEROZA") == 0)
	       {
               get_brmpars(&brm,i,j,&x0,&dd,&rt,&vslip);
	       trise = brm.tdur[ip0];
	       }
            else if(strcmp(rupmodtype,"OKUMURA") == 0)
	       {
               get_ormpars(&orm,i,j,&x0,&dd,&rt,&vslip);
	       trise = orm.rist[ip0];
	       }
            else if(strcmp(rupmodtype,"GENE") == 0)
	       {
               get_grmpars(&grm,i,j,&x0,&dd,&rt,&vslip,&rake);
	       trise = (grm.nt[ip0]-1)*grm.tdel + grm.trise;
	       }
            else if(strcmp(rupmodtype,"ROB") == 0)
	       {
               get_rrmpars(&rrm,i,j,&x0,&dd,&rt,&vslip,&rake,&tsfac);
	       trise = rrm.trise[ip0];

	       if(rt < 0.0)
		  {
	          if(rupvel < 0.0)
	             get_rupt(&rvmod,&htol,&dhypo,&dd,&shypo,&x0,&rayp,&rupt_rad,&rt);
	          else
	             rt = sqrt((shypo-x0)*(shypo-x0)+(dhypo-dd)*(dhypo-dd))/rupvel;
		  rt = rt + tsfac;
		  }

               if(rt < 0.0)
                  rt = 0.0;
	       }
            else if(strcmp(rupmodtype,"SRF") == 0)
	       {
               get_srfpars(&srf,apv_off,ip0,&rt,&vslip,&strike,&dip,&rake,&mechpar);
	       trise = apval_ptr[ip0].dt*apval_ptr[ip0].nt1;

/*
   For case when nfinestk,nfinedip > 1 =>
   calculate avg. Vr based on subfault center, then re-estimate Tinit 
   when nfinestk = nfinedip = 1, x0c=x0, ddc=dd.
*/
	       x0c = (i+0.5)*ds0 - len2;
	       ddc = (j+0.5)*dd0;
	       avgvrup = sqrt((shypo-x0c)*(shypo-x0c)+(dhypo-ddc)*(dhypo-ddc))/rt;
	       rt = sqrt((shypo-x0)*(shypo-x0)+(dhypo-dd)*(dhypo-dd))/avgvrup;
	       }
            else
               {
               vslip = 1.0;

	       if(rupvel < 0.0)
	          get_rupt(&rvmod,&htol,&dhypo,&dd,&shypo,&x0,&rayp,&rupt_rad,&rt);
	       else
	          rt = sqrt((shypo-x0)*(shypo-x0)+(dhypo-dd)*(dhypo-dd))/rupvel;
               }

	    if(randtime)
	       rt = rt*(1.0 + randt[ip]);
	    if(randtime == 2)
	       {
	       rt = rt + delt*sfrand(&seed);
	       if(rt < 0.0)
		  rt = 0.0;
               }

	    if(write_ruptimes == 1)
	       fprintf(fpwrt,"%13.5e %13.5e %13.5e\n",x0+len2,dd,rt);

            vslip = (1.0 + rwt[kp])*vslip;

            if(write_slipvals == 1)
               fprintf(fpwsv,"%13.5e %13.5e %13.5e\n",x0+len2,dd,slip_conv*vslip);

	    if(write_risetime == 1)
	       fprintf(fpwtr,"%13.5e %13.5e %13.5e\n",x0+len2,dd,trise);

	    get_radazi(&azi,&rng,&deast,&dnorth,&x0,&y0,&cosS,&sinS,&seast,&snorth);
	    find_4gf(gfpar,gfhead,&rng,&z0,&deast,&dnorth);

	    fprintf(stderr,"i=%3d j=%3d k=%3d l=%3d ",i,j,k,l);
	    fprintf(stderr," s=%7.2f d=%7.2f",x0,dd);
	    fprintf(stderr," dn=%10.5f de=%10.5f",dnorth,deast);
	    fprintf(stderr," a=%7.2f r=%7.2f\n",azi,rng);

            read_4gf(gfpath,gfname,gf,ntsum,gfhead,gfpar,&maxgft,&maxnt,&dtout,space);

	    if(randmech)
	       {
	       mechpar.stk = strike + deg_randstk*sfrand(&seed);
	       mechpar.dip = dip + deg_randdip*sfrand(&seed);
	       mechpar.rak = rake + deg_randrak*sfrand(&seed);
	       }
	    else
	       {
	       mechpar.stk = strike;
	       mechpar.dip = dip;
	       mechpar.rak = rake;
	       }

	    scale = sfac;
	    mech_4gf(gfmech,gf,gfhead,gfpar,ntsum,mechpar,&azi,&scale);

/* scale now contains the moment released by this point source */
	    tmom = tmom + vslip*scale;

	    sum_4gf(subseis,ntout,gfmech,gfhead,ntsum,maxnt,&rt,&maxgft,&tstart,tshift_timedomain,mechpar);
	    }
         }

      z0 = dtop + (j+0.5)*dd0*sinD;

      if(strcmp(rupmodtype,"BEROZA") == 0)
	 beroza_stf(&brm,i,j,seis,subseis,stf,ntout,&dtout,&z0);
      else if(strcmp(rupmodtype,"OKUMURA") == 0)
	 okumura_stf(&orm,i,j,seis,subseis,stf,ntout,&dtout);
      else if(strcmp(rupmodtype,"GENE") == 0)
	 gene_stf(&grm,i,j,seis,subseis,stf,ntout,&dtout);
      else if(strcmp(rupmodtype,"ROB") == 0)
	 rob_stf(&rrm,i,j,seis,subseis,stf,ntout,&dtout,&z0);
      else if(strcmp(rupmodtype,"SRF") == 0)
	 srf_stf(&srf,apv_off,ip0,seis,subseis,stf,ntout,&dtout,mechpar);
      else
         {
         sv = subseis;
         sn = subseis + ntout;
         se = subseis + 2*ntout;

         fortran_rite(fdw,1,&ncomp,sizeof(int));

         fortran_rite(fdw,2,&rng,sizeof(float),&tstart,sizeof(float));
         fortran_rite(fdw,2,&ntout,sizeof(int),&dtout,sizeof(float));
         fortran_rite(fdw,1,sn,ntout*sizeof(float));

         fortran_rite(fdw,2,&rng,sizeof(float),&tstart,sizeof(float));
         fortran_rite(fdw,2,&ntout,sizeof(int),&dtout,sizeof(float));
         fortran_rite(fdw,1,se,ntout*sizeof(float));

         fortran_rite(fdw,2,&rng,sizeof(float),&tstart,sizeof(float));
         fortran_rite(fdw,2,&ntout,sizeof(int),&dtout,sizeof(float));
         fortran_rite(fdw,1,sv,ntout*sizeof(float));
         }
      }
   }

if(strcmp(rupmodtype,"NULL") == 0)
   close(fdw);
else
   {
   sv = seis;
   sn = seis + ntout;
   se = seis + 2*ntout;

   if(sname[0] == '\0')
      {
      strncpy(sname,stat,7);
      sname[7] = '\0';
      }

   write_seis(outdir,stat,sname,"000",sn,&dtout,ntout,&tstart);
   write_seis(outdir,stat,sname,"090",se,&dtout,ntout,&tstart);
   write_seis(outdir,stat,sname,"ver",sv,&dtout,ntout,&tstart);

   fprintf(stderr,"Total moment= %13.5e\n",tmom);
   }

if(write_ruptimes == 1)
   {
   fflush(fpwrt);
   fclose(fpwrt);
   }

if(write_slipvals == 1)
   {
   fflush(fpwsv);
   fclose(fpwsv);
   }

if(write_risetime == 1)
   {
   fflush(fpwtr);
   fclose(fpwtr);
   }
}
void baseline_catalog(char *sensor, char *beam_mode, char *input_dir, 
		      char *output_dir)
{
  struct dirent *dp;
  DIR *dir;
  FILE *fpTxt, *fpKml, *fpShape, *fpDB;
  int track, nOrbits, nFrames, nPairs, nTracks, orbit=0;
  report_level_t report = REPORT_LEVEL_STATUS;
  struct base_pair *base_pairs=NULL;
  struct srf_orbit *srf_orbit=NULL;
  char cmd[255], tmp_dir[1024], track_list[1024];

  // Some more error checking on beam modes
  if (strcmp_case(sensor, "R1") == 0) {
    if (strcmp_case(beam_mode, "FN1") != 0 &&
	strcmp_case(beam_mode, "FN2") != 0 &&
	strcmp_case(beam_mode, "FN3") != 0 &&
	strcmp_case(beam_mode, "FN4") != 0 &&
	strcmp_case(beam_mode, "FN5") != 0 &&
	strcmp_case(beam_mode, "ST1") != 0 &&
	strcmp_case(beam_mode, "ST2") != 0 &&
	strcmp_case(beam_mode, "ST3") != 0 &&
	strcmp_case(beam_mode, "ST4") != 0 &&
	strcmp_case(beam_mode, "ST5") != 0 &&
	strcmp_case(beam_mode, "ST6") != 0 &&
	strcmp_case(beam_mode, "ST7") != 0)
      asfPrintError("Unknown beam mode '%s' for sensor '%s'.\n",
		    beam_mode, sensor);
  }
  else if ((strcmp_case(sensor, "E1") == 0 || 
	    strcmp_case(sensor, "E2") == 0) &&
	   strcmp_case(beam_mode, "STD") != 0)
    asfPrintError("Unknown beam mode '%s' for sensor '%s'.\n",
		  beam_mode, sensor);
  else if (strcmp_case(sensor, "J1") == 0 && 
	   strcmp_case(beam_mode, "STD") != 0)
    asfPrintError("Unknown beam mode '%s' for sensor '%s'.\n",
		  beam_mode, sensor);
  else if (strcmp_case(sensor, "PALSAR") == 0 &&
	   strcmp_case(beam_mode, "PLR") != 0)
    asfPrintError("Unknown beam mode '%s' for sensor '%s'.\n",
		  beam_mode, sensor);

  // Report what is going on
  asfReport(report, "Calculating baseline catalog for satellite '%s' in "
	    "beam mode '%s'\n\n", sensor, beam_mode);

  // Create temporary directory for list files
  sprintf(tmp_dir, "%s/%s", output_dir, time_stamp_dir());
  create_clean_dir(tmp_dir);

  // Setup the baseline calculation
  setup_files(sensor, beam_mode, input_dir, tmp_dir, &nTracks, &nFrames);
     
  // Step through the archive track by track - save plenty of memory
  for (track=0; track<nTracks; track++) {
    asfPrintStatus("\nTrack: %d (out of %d)\n", track+1, nTracks);
    nOrbits = 0;
    nPairs = 0;
    
    // Get a list of recent SRFs
    if (strcmp(sensor, "PSR") == 0)
      asfPrintStatus("Reading metadata file ...\n");
    else
      asfPrintStatus("Reading SRFs ...\n");
    sprintf(track_list, "%s/%s_track%d.lst", tmp_dir, sensor, track);
    if (fileExists(track_list)) {
      if (strcmp(sensor, "PSR") == 0)
	read_palsar(track_list, &srf_orbit, &nOrbits);
      else
	read_srf(input_dir, track_list, &srf_orbit, &nOrbits);
    }
    else
      continue;
    
    // Determine baselines
    if (nOrbits) {
      asfPrintStatus("Determining baselines ...\n");
      determine_baseline(sensor, sensor, beam_mode, track, orbit, 
			 srf_orbit, nOrbits, &base_pairs, &nPairs);
    }
    
    // Generate products
    if (nPairs) {
      asfPrintStatus("Generate products ...\n");
      generate_products(output_dir, base_pairs, nPairs);
    }
    
    // Clean up before last track
    if (srf_orbit)
      FREE(srf_orbit);
    if (base_pairs)
      FREE(base_pairs);
    srf_orbit = NULL;
    base_pairs = NULL;
    //exit(0);
  }

  // Pack text, KML and shape files for entire mode
  chdir(output_dir);
  fpTxt = FOPEN("txt.lst", "w");
  fpKml = FOPEN("kml.lst", "w");
  fpShape = FOPEN("shape.lst", "w");
  fpDB = FOPEN("db.lst", "w");
  dir = opendir(output_dir);
  while ((dp = readdir(dir)) != NULL) {
    if (strstr(dp->d_name, ".txt"))
      fprintf(fpTxt, "%s\n", dp->d_name);
    if (strstr(dp->d_name, ".kml"))
      fprintf(fpKml, "%s\n", dp->d_name);
    if (strstr(dp->d_name, ".tgz"))
      fprintf(fpShape, "%s\n", dp->d_name);
    if (strstr(dp->d_name, ".db") && !strstr(dp->d_name, ".dbf"))
      fprintf(fpDB, "%s\n", dp->d_name);
  }
  closedir(dir);
  FCLOSE(fpTxt);
  FCLOSE(fpKml);
  FCLOSE(fpShape);
  FCLOSE(fpDB);
  printf("\nZipping text files ...\n");
  sprintf(cmd, "tar czf %s_%s_txt.tgz -T txt.lst", sensor, beam_mode);
  asfSystem(cmd);
  printf("\nZipping KML files ...\n");
  sprintf(cmd, "tar czf %s_%s_kml.tgz -T kml.lst", sensor, beam_mode);
  asfSystem(cmd);
  printf("\nZipping shape files ...\n");
  sprintf(cmd, "tar czf %s_%s_shape.tgz -T shape.lst", sensor, beam_mode);
  asfSystem(cmd);
  printf("\nZipping database files ...\n");
  sprintf(cmd, "tar czf %s_%s_db.tgz -T db.lst", sensor, beam_mode);
  asfSystem(cmd);
  sprintf(cmd, "rm txt.lst kml.lst shape.lst db.lst");
  asfSystem(cmd);

  printf("\n\n");
}