Exemple #1
0
void jogging() 
// Tests jog port pins and moves steppers
{
  uint8_t jog_bits, jog_bits_old, out_bits0, jog_exit, last_sys_state;
  uint8_t i, limit_state, spindle_bits;
  
  uint32_t dest_step_rate, step_rate, step_delay; // Step delay after pulse 
  float work_position, mm_per_step, mm_per_step_z;

  switch (sys.state) {
    case STATE_CYCLE: case STATE_HOMING: case STATE_INIT:
      LED_PORT |= (1<<LED_ERROR_BIT);     
      return;
    case STATE_ALARM: case STATE_QUEUED: 
      LED_PORT &= ~(1<<LED_ERROR_BIT);  break;
    default: 
      LED_PORT |= (1<<LED_ERROR_BIT);                 
  }
  last_sys_state = sys.state;


  spindle_bits = (~PINOUT_PIN) & (1<<PIN_SPIN_TOGGLE); // active low          
  if (spindle_bits) {
    if (spindle_status) {
//      gc.spindle_direction = 0; 
      spindle_run(0);
    }
    else {
//      gc.spindle_direction = 1;   // also update gcode spindle status
      spindle_run(1);
    } 
    spindle_btn_release();  
    delay_ms(20);
  }

  jog_bits = (~JOGSW_PIN) & JOGSW_MASK; // active low
  if (!jog_bits) { return; }  // nothing pressed
  
  // At least one jog/joystick switch is active 
  if (jog_bits & (1<<JOG_ZERO)) {     // Zero-Button gedrückt
    jog_btn_release();
    sys.state = last_sys_state;
    if (bit_isfalse(PINOUT_PIN,bit(PIN_RESET))) { // RESET und zusätzlich ZERO gedrückt: Homing  
      if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { 
        // Only perform homing if Grbl is idle or lost.
        if ( sys.state==STATE_IDLE || sys.state==STATE_ALARM ) { 
          mc_go_home(); 
          if (!sys.abort) { protocol_execute_startup(); } // Execute startup scripts after successful homing.
        }
      }
    } else { // Zero current work position

      sys_sync_current_position();

//      gc.coord_system[i]    Current work coordinate system (G54+). Stores offset from absolute machine
//                            position in mm. Loaded from EEPROM when called.
//      gc.coord_offset[i]    Retains the G92 coordinate offset (work coordinates) relative to
//                            machine zero in mm. Non-persistent. Cleared upon reset and boot.  

      for (i=0; i<=2; i++) { // Axes indices are consistent, so loop may be used.
        gc.coord_offset[i] = gc.position[i] - gc.coord_system[i];
      } 

// Z-Achse um bestimmten Betrag zurückziehen                  
      mc_line(gc.position[X_AXIS], gc.position[Y_AXIS], gc.position[Z_AXIS] 
        + (settings.z_zero_pulloff * settings.z_scale), settings.default_seek_rate, false);
        
      plan_synchronize(); // Make sure the motion completes
      
      gc.position[Z_AXIS] = gc.position[Z_AXIS] - (settings.z_zero_gauge * settings.z_scale);
      gc.coord_offset[Z_AXIS] = gc.position[Z_AXIS] - gc.coord_system[Z_AXIS];
      
// The gcode parser position circumvented by the pull-off maneuver, so sync position vectors.
// Sets the planner position vector to current steps. Called by the system abort routine.
// Sets g-code parser position in mm. Input in steps. Called by the system abort and hard
      sys_sync_current_position(); // Syncs all internal position vectors to the current system position.

    }
    return;
  } 
  
  ADCSRA = ADCSRA_init | (1<<ADIF); //0x93, clear ADIF

  uint8_t reverse_flag = 0;
  uint8_t out_bits = 0; 
  uint8_t jog_select = 0; 
  out_bits0 = (0) ^ (settings.invert_mask); 
  
  ADCSRA = ADCSRA_init | (1<<ADIF); //0x93, clear ADIF
  ADCSRA = ADCSRA_init | (1<<ADSC); //0xC3; start conversion  
  
  sys.state = STATE_JOG;
  
  // check for reverse switches 
  if (jog_bits & (1<<JOGREV_X_BIT)) { // X reverse switch on
    out_bits0 ^= (1<<X_DIRECTION_BIT);
    out_bits = out_bits0 ^ (1<<X_STEP_BIT); 
    reverse_flag = 1;
  }                                                            
  if (jog_bits & (1<<JOGREV_Y_BIT)) { // Y reverse switch on
    out_bits0 ^= (1<<Y_DIRECTION_BIT);
    out_bits = out_bits0 ^ (1<<Y_STEP_BIT);
    reverse_flag = 1;
    jog_select = 1;
  }                                                            
  if (jog_bits & (1<<JOGREV_Z_BIT)) { // Z reverse switch on
    out_bits0 ^= (1<<Z_DIRECTION_BIT);
    out_bits = out_bits0 ^ (1<<Z_STEP_BIT);
    // reverse_flag = 1; // positive Z dir!
    jog_select = 2;
  } 
  
  // check for forward switches 
  if (jog_bits & (1<<JOGFWD_X_BIT)) { // X forward switch on
    out_bits = out_bits0 ^ (1<<X_STEP_BIT);
  }                                                            
  if (jog_bits & (1<<JOGFWD_Y_BIT)) { // Y forward switch on
    out_bits = out_bits0 ^ (1<<Y_STEP_BIT);
    jog_select = 1;
  }                                                            
  if (jog_bits & (1<<JOGFWD_Z_BIT)) { // Z forward switch on
    out_bits = out_bits0 ^ (1<<Z_STEP_BIT);
    reverse_flag = 1; // positive Z dir!
    jog_select = 2;
  } 

  dest_step_rate = ADCH;    // set initial dest_step_rate according to analog input
  dest_step_rate = (dest_step_rate * JOG_SPEED_FAC) + JOG_MIN_SPEED;  
  step_rate = JOG_MIN_SPEED;   // set initial step rate
  jog_exit = 0; 
  while (!(ADCSRA && (1<<ADIF))) {} // warte bis ADIF-Bit gesetzt 
  ADCSRA = ADCSRA_init; // exit conversion
  
  st_wake_up();
  
 
  // prepare direction with small delay, direction settle time
  STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | (out_bits0 & STEPPING_MASK);
  delay_us(10);
  jog_bits_old = jog_bits;
  i = 0;  // now index for sending position data 
  
  // Report machine position; note Z scaling
  if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) {
    mm_per_step = 1/(settings.steps_per_mm[jog_select] * INCH_PER_MM);
    mm_per_step_z = 1/(settings.steps_per_mm[jog_select] * INCH_PER_MM * settings.z_scale);
  } else {
    mm_per_step = 1/settings.steps_per_mm[jog_select];
    mm_per_step_z = 1/(settings.steps_per_mm[jog_select] * settings.z_scale);
  }  
  
  work_position = print_position[jog_select];
  
  for(;;) { // repeat until button/joystick released  
//    report_realtime_status(); // benötigt viel Zeit!
    
    ADCSRA = ADCSRA_init | (1<<ADIF); //0x93, clear ADIF

    // Get limit pin state
    #ifdef LIMIT_SWITCHES_ACTIVE_HIGH
      // When in an active-high switch configuration
      limit_state = LIMIT_PIN;
    #else
      limit_state = LIMIT_PIN ^ LIMIT_MASK;
    #endif
    if ((limit_state & LIMIT_MASK) && reverse_flag) { jog_exit = 1; } // immediate stop
 
    jog_bits = (~JOGSW_PIN) & JOGSW_MASK; // active low
    if (jog_bits == jog_bits_old) { // nothing changed
      if (step_rate < (dest_step_rate - 5)) { // Hysterese für A/D-Wandlung
        step_rate += JOG_RAMP; // accellerate
      }                                    
      if (step_rate > (dest_step_rate + 5)) { // Hysterese für A/D-Wandlung
        step_rate -= JOG_RAMP; // brake
      }                                    
    }
    else {
      if (step_rate > (JOG_MIN_SPEED*2)) {  // switch change happened, fast brake to complete stop
        step_rate = ((step_rate * 99) / 100) - 10;
      }
      else { jog_exit = 1; } // finished to stop and exit
    }
    
   
    // stop and exit if done
    if (jog_exit || (sys.execute & EXEC_RESET)) { 
      st_go_idle(); 
      sys.state = last_sys_state;
      sys_sync_current_position();
      if (jog_exit) {
        report_realtime_status();
      }
      return; 
    }
    

    ADCSRA = ADCSRA_init | (1<<ADSC); //0xC3; start ADC conversion
    // Both direction and step pins appropriately inverted and set. Perform one step
    STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | (out_bits & STEPPING_MASK);
    delay_us(settings.pulse_microseconds/2);
    step_delay = (1000000/step_rate) - settings.pulse_microseconds - 100; // 100 = fester Wert für Schleifenzeit
    STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | (out_bits0 & STEPPING_MASK);
  
    // update position registers, Q&D Z fix!
  	if (jog_select==2) {
      if (reverse_flag) {
        sys.position[2]++;                // sys.position ist in Steps!
        work_position += mm_per_step_z;    // relative print_position in mm since last report
      } 
      else {
        sys.position[2]--; 
        work_position -= mm_per_step_z;    // relative print_position in mm since last report
      }
 	  }
    else {
      if (reverse_flag) {
        sys.position[jog_select]--;       // sys.position ist in Steps!
        work_position -= mm_per_step;
      } 
      else {
        sys.position[jog_select]++; 
        work_position += mm_per_step;    // relative print_position in mm since last report
      }
    }
    
    if (sys.execute & EXEC_STATUS_REPORT) {
      if (step_delay > 250) {
        // status report requested, print short msg only
        printPgmString(PSTR("Jog"));
        serial_write(88 + jog_select); // 88 = X + 1 = Y etc.
        serial_write(44);
        printFloat(work_position);
        serial_write(13);
        serial_write(10);

        step_delay -= 250;
      } 
      else 
      { 
        printPgmString(PSTR("JogF\r\n"));
      }
      sys.execute = 0;
    }
    
    delay_us(step_delay);
      
    while (!(ADCSRA && (1<<ADIF))) {} // warte ggf. bis ADIF-Bit gesetzt  
    ADCSRA = ADCSRA_init;     // exit conversion
    dest_step_rate = ADCH;    // set next dest_step_rate according to analog input
    dest_step_rate = (dest_step_rate * JOG_SPEED_FAC) + JOG_MIN_SPEED;  

  }
}
Exemple #2
0
// Executes run-time commands, when required. This is called from various check points in the main
// program, primarily where there may be a while loop waiting for a buffer to clear space or any
// point where the execution time from the last check point may be more than a fraction of a second.
// This is a way to execute runtime commands asynchronously (aka multitasking) with grbl's g-code
// parsing and planning functions. This function also serves as an interface for the interrupts to 
// set the system runtime flags, where only the main program handles them, removing the need to
// define more computationally-expensive volatile variables. This also provides a controlled way to 
// execute certain tasks without having two or more instances of the same task, such as the planner
// recalculating the buffer upon a feedhold or override.
// NOTE: The sys.execute variable flags are set by any process, step or serial interrupts, pinouts,
// limit switches, or the main program.
void protocol_execute_runtime()
{
  if (sys.execute) { // Enter only if any bit flag is true
    uint8_t rt_exec = sys.execute; // Avoid calling volatile multiple times
    
    // System alarm. Everything has shutdown by something that has gone severely wrong. Report
    // the source of the error to the user. If critical, Grbl disables by entering an infinite
    // loop until system reset/abort.
    if (rt_exec & (EXEC_ALARM | EXEC_CRIT_EVENT)) {      
      sys.state = STATE_ALARM; // Set system alarm state

      // Critical event. Only hard limit qualifies. Update this as new critical events surface.
      if (rt_exec & EXEC_CRIT_EVENT) {
        report_alarm_message(ALARM_HARD_LIMIT); 
        report_feedback_message(MESSAGE_CRITICAL_EVENT);
        bit_false(sys.execute,EXEC_RESET); // Disable any existing reset
        do { 
          // Nothing. Block EVERYTHING until user issues reset or power cycles. Hard limits
          // typically occur while unattended or not paying attention. Gives the user time
          // to do what is needed before resetting, like killing the incoming stream.
        } while (bit_isfalse(sys.execute,EXEC_RESET));

      // Standard alarm event. Only abort during motion qualifies.
      } else {
        // Runtime abort command issued during a cycle, feed hold, or homing cycle. Message the
        // user that position may have been lost and set alarm state to enable the alarm lockout
        // to indicate the possible severity of the problem.
        report_alarm_message(ALARM_ABORT_CYCLE);
      }
      bit_false(sys.execute,(EXEC_ALARM | EXEC_CRIT_EVENT));
    } 
  
    // Execute system abort. 
    if (rt_exec & EXEC_RESET) {
      sys.abort = true;  // Only place this is set true.
      return; // Nothing else to do but exit.
    }
    
    // Execute and serial print status
    if (rt_exec & EXEC_STATUS_REPORT) { 
      report_realtime_status();
      bit_false(sys.execute,EXEC_STATUS_REPORT);
    }
    
    // Initiate stepper feed hold
    if (rt_exec & EXEC_FEED_HOLD) {
      st_feed_hold(); // Initiate feed hold.
      bit_false(sys.execute,EXEC_FEED_HOLD);
    }
    
    // Reinitializes the stepper module running state and, if a feed hold, re-plans the buffer.
    // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
    if (rt_exec & EXEC_CYCLE_STOP) {
      st_cycle_reinitialize();
      bit_false(sys.execute,EXEC_CYCLE_STOP);
    }
    
    if (rt_exec & EXEC_CYCLE_START) { 
      st_cycle_start(); // Issue cycle start command to stepper subsystem
      if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) {
        sys.auto_start = true; // Re-enable auto start after feed hold.
      }
      bit_false(sys.execute,EXEC_CYCLE_START);
    }
  }
  
  // Overrides flag byte (sys.override) and execution should be installed here, since they 
  // are runtime and require a direct and controlled interface to the main stepper program.
}  
Exemple #3
0
// Executes run-time commands, when required. This is called from various check points in the main
// program, primarily where there may be a while loop waiting for a buffer to clear space or any
// point where the execution time from the last check point may be more than a fraction of a second.
// This is a way to execute realtime commands asynchronously (aka multitasking) with grbl's g-code
// parsing and planning functions. This function also serves as an interface for the interrupts to 
// set the system realtime flags, where only the main program handles them, removing the need to
// define more computationally-expensive volatile variables. This also provides a controlled way to 
// execute certain tasks without having two or more instances of the same task, such as the planner
// recalculating the buffer upon a feedhold or override.
// NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
// limit switches, or the main program.
void protocol_execute_realtime()
{
  uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times.

  do { // If system is suspended, suspend loop restarts here.
    
  // Check and execute alarms. 
  rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm.
  if (rt_exec) { // Enter only if any bit flag is true
    // System alarm. Everything has shutdown by something that has gone severely wrong. Report
    // the source of the error to the user. If critical, Grbl disables by entering an infinite
    // loop until system reset/abort.
    sys.state = STATE_ALARM; // Set system alarm state
    if (rt_exec & EXEC_ALARM_HARD_LIMIT) {
      report_alarm_message(ALARM_HARD_LIMIT_ERROR); 
    } else if (rt_exec & EXEC_ALARM_SOFT_LIMIT) {
      report_alarm_message(ALARM_SOFT_LIMIT_ERROR);
    } else if (rt_exec & EXEC_ALARM_ABORT_CYCLE) {      
      report_alarm_message(ALARM_ABORT_CYCLE);
    } else if (rt_exec & EXEC_ALARM_PROBE_FAIL) {
      report_alarm_message(ALARM_PROBE_FAIL);
    } else if (rt_exec & EXEC_ALARM_HOMING_FAIL) {
      report_alarm_message(ALARM_HOMING_FAIL);
    }
    // Halt everything upon a critical event flag. Currently hard and soft limits flag this.
    if (rt_exec & EXEC_CRITICAL_EVENT) {
      report_feedback_message(MESSAGE_CRITICAL_EVENT);
      bit_false_atomic(sys_rt_exec_state,EXEC_RESET); // Disable any existing reset
      do { 
        // Nothing. Block EVERYTHING until user issues reset or power cycles. Hard limits
        // typically occur while unattended or not paying attention. Gives the user time
        // to do what is needed before resetting, like killing the incoming stream. The 
        // same could be said about soft limits. While the position is not lost, the incoming
        // stream could be still engaged and cause a serious crash if it continues afterwards.
        
        // TODO: Allow status reports during a critical alarm. Still need to think about implications of this.
//         if (sys_rt_exec_state & EXEC_STATUS_REPORT) { 
//           report_realtime_status();
//           bit_false_atomic(sys_rt_exec_state,EXEC_STATUS_REPORT); 
//         }
      } while (bit_isfalse(sys_rt_exec_state,EXEC_RESET));
    }
    bit_false_atomic(sys_rt_exec_alarm,0xFF); // Clear all alarm flags
  }
  
  // Check amd execute realtime commands
  rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state.
  if (rt_exec) { // Enter only if any bit flag is true
  
    // Execute system abort. 
    if (rt_exec & EXEC_RESET) {
      sys.abort = true;  // Only place this is set true.
      return; // Nothing else to do but exit.
    }
    
    // Execute and serial print status
    if (rt_exec & EXEC_STATUS_REPORT) { 
      report_realtime_status();
      bit_false_atomic(sys_rt_exec_state,EXEC_STATUS_REPORT);
    }
  
    // Execute hold states.
    // NOTE: The math involved to calculate the hold should be low enough for most, if not all, 
    // operational scenarios. Once hold is initiated, the system enters a suspend state to block
    // all main program processes until either reset or resumed.
    if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR)) {
      
      // TODO: CHECK MODE? How to handle this? Likely nothing, since it only works when IDLE and then resets Grbl.
                
      // State check for allowable states for hold methods.
      if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOMING | STATE_MOTION_CANCEL | STATE_HOLD | STATE_SAFETY_DOOR))) {

        // If in CYCLE state, all hold states immediately initiate a motion HOLD.
        if (sys.state == STATE_CYCLE) {
          st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
          sys.suspend = SUSPEND_ENABLE_HOLD; // Initiate holding cycle with flag.
        }
        // If IDLE, Grbl is not in motion. Simply indicate suspend ready state.
        if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_ENABLE_READY; }
        
        // Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle
        // to halt and cancel the remainder of the motion.
        if (rt_exec & EXEC_MOTION_CANCEL) {
          // MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand
          // to hold the CYCLE. If so, only flag that motion cancel is complete.
          if (sys.state == STATE_CYCLE) { sys.state = STATE_MOTION_CANCEL; }
          sys.suspend |= SUSPEND_MOTION_CANCEL; // Indicate motion cancel when resuming. Special motion complete.
        }
    
        // Execute a feed hold with deceleration, only during cycle.
        if (rt_exec & EXEC_FEED_HOLD) {
          // Block SAFETY_DOOR state from prematurely changing back to HOLD.
          if (bit_isfalse(sys.state,STATE_SAFETY_DOOR)) { sys.state = STATE_HOLD; }
        }
  
        // Execute a safety door stop with a feed hold, only during a cycle, and disable spindle/coolant.
        // NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered
        // devices (spindle/coolant), and blocks resuming until switch is re-engaged. The power-down is 
        // executed here, if IDLE, or when the CYCLE completes via the EXEC_CYCLE_STOP flag.
        if (rt_exec & EXEC_SAFETY_DOOR) {
          report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR); 
          // If already in active, ready-to-resume HOLD, set CYCLE_STOP flag to force de-energize.
          // NOTE: Only temporarily sets the 'rt_exec' variable, not the volatile 'rt_exec_state' variable.
          if (sys.suspend & SUSPEND_ENABLE_READY) { bit_true(rt_exec,EXEC_CYCLE_STOP); }
          sys.suspend |= SUSPEND_ENERGIZE;
          sys.state = STATE_SAFETY_DOOR;
        }
         
      }
      bit_false_atomic(sys_rt_exec_state,(EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR));      
    }
          
    // Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue.
    if (rt_exec & EXEC_CYCLE_START) {
      // Block if called at same time as the hold commands: feed hold, motion cancel, and safety door.
      // Ensures auto-cycle-start doesn't resume a hold without an explicit user-input.
      if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) { 
        // Cycle start only when IDLE or when a hold is complete and ready to resume.
        // NOTE: SAFETY_DOOR is implicitly blocked. It reverts to HOLD when the door is closed.
        if ((sys.state == STATE_IDLE) || ((sys.state & (STATE_HOLD | STATE_MOTION_CANCEL)) && (sys.suspend & SUSPEND_ENABLE_READY))) {
          // Re-energize powered components, if disabled by SAFETY_DOOR.
          if (sys.suspend & SUSPEND_ENERGIZE) { 
            // Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle.
            if (gc_state.modal.spindle != SPINDLE_DISABLE) { 
              spindle_set_state(gc_state.modal.spindle, gc_state.spindle_speed); 
              delay_ms(SAFETY_DOOR_SPINDLE_DELAY); // TODO: Blocking function call. Need a non-blocking one eventually.
            }
            if (gc_state.modal.coolant != COOLANT_DISABLE) { 
              coolant_set_state(gc_state.modal.coolant); 
              delay_ms(SAFETY_DOOR_COOLANT_DELAY); // TODO: Blocking function call. Need a non-blocking one eventually.
            }
            // TODO: Install return to pre-park position.
          }
          // Start cycle only if queued motions exist in planner buffer and the motion is not canceled.
          if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) {
            sys.state = STATE_CYCLE;
            st_prep_buffer(); // Initialize step segment buffer before beginning cycle.
            st_wake_up();
          } else { // Otherwise, do nothing. Set and resume IDLE state.
            sys.state = STATE_IDLE;
          }
          sys.suspend = SUSPEND_DISABLE; // Break suspend state.
        }
      }    
      bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_START);
    }
    
    // Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by 
    // realtime command execution in the main program, ensuring that the planner re-plans safely.
    // NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
    // cycle reinitializations. The stepper path should continue exactly as if nothing has happened.   
    // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
    if (rt_exec & EXEC_CYCLE_STOP) {
      if (sys.state & (STATE_HOLD | STATE_SAFETY_DOOR)) {
        // Hold complete. Set to indicate ready to resume.  Remain in HOLD or DOOR states until user
        // has issued a resume command or reset.
        if (sys.suspend & SUSPEND_ENERGIZE) { // De-energize system if safety door has been opened.
          spindle_stop();
          coolant_stop();
          // TODO: Install parking motion here.
        }
        bit_true(sys.suspend,SUSPEND_ENABLE_READY);
      } else { // Motion is complete. Includes CYCLE, HOMING, and MOTION_CANCEL states.
        sys.suspend = SUSPEND_DISABLE;
        sys.state = STATE_IDLE;
      }
      bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_STOP);
    }
    
  }

  // Overrides flag byte (sys.override) and execution should be installed here, since they 
  // are realtime and require a direct and controlled interface to the main stepper program.

  // Reload step segment buffer
  if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_MOTION_CANCEL | STATE_SAFETY_DOOR | STATE_HOMING)) { st_prep_buffer(); }  
  
  // If safety door was opened, actively check when safety door is closed and ready to resume.
  // NOTE: This unlocks the SAFETY_DOOR state to a HOLD state, such that CYCLE_START can activate a resume.
  if (sys.state == STATE_SAFETY_DOOR) { 
    if (bit_istrue(sys.suspend,SUSPEND_ENABLE_READY)) { 
      #ifndef DEFAULTS_TRINAMIC
      if (!(system_check_safety_door_ajar())) {
        sys.state = STATE_HOLD; // Update to HOLD state to indicate door is closed and ready to resume.
      }
      #endif
    }
  }

  } while(sys.suspend); // Check for system suspend state before exiting.
  
}