Exemple #1
0
/*private*/
void
ScaledNoder::rescale(SegmentString::NonConstVect& segStrings) const
{
	ReScaler rescaler(*this);
	for (SegmentString::NonConstVect::const_iterator
		i0=segStrings.begin(), i0End=segStrings.end();
			i0!=i0End; ++i0)
	{

		SegmentString* ss=*i0;

		ss->getCoordinates()->apply_rw(&rescaler);

	}
}
Exemple #2
0
void OpenSMTContext::staticCheckSAT( ) 
{
  if ( config.verbosity > 1 )
    cerr << "# OpenSMTContext::Statically Checking" << endl;

  // Retrieve the formula
  Enode * formula = egraph.getUncheckedAssertions( );

  if ( config.dump_formula != 0 )
    egraph.dumpToFile( "original.smt2", formula );

  if ( formula == NULL )
    opensmt_error( "formula undefined" );

  if ( config.logic == UNDEF )
    opensmt_error( "unable to determine logic" );

  // Removes ITEs if there is any
  if ( egraph.hasItes( ) )
  {
    ExpandITEs expander( egraph, config );
    formula = expander.doit( formula );

    if ( config.dump_formula != 0 )
      egraph.dumpToFile( "ite_expanded.smt2", formula );
  }

  // Gather interface terms for DTC
  if ( ( config.logic == QF_UFIDL
      || config.logic == QF_UFLRA )
    // Don't use with DTC of course
    && config.sat_lazy_dtc == 1
    // Don't use when dumping interpolants
    && config.sat_dump_rnd_inter == 0 )
  {
    Purify purifier( egraph, config );
    purifier.doit( formula );
  }

  // Ackermanize away functional symbols
  if ( ( config.logic == QF_UFIDL
      || config.logic == QF_UFLRA )
    // Don't use with DTC of course
    && config.sat_lazy_dtc == 0
    // Don't use when dumping interpolants
    && config.sat_dump_rnd_inter == 0 )
  {
    Ackermanize ackermanizer( egraph, config );
    formula = ackermanizer.doit( formula );

    if ( config.dump_formula != 0 )
      egraph.dumpToFile( "ackermanized.smt2", formula );
  }

  // Artificially create a boolean
  // abstraction, if necessary
  if ( config.logic == QF_BV )
  {
    BVBooleanize booleanizer( egraph, config );
    formula = booleanizer.doit( formula );
  }

  if ( config.dump_formula != 0 )
    egraph.dumpToFile( "prepropagated.smt2", formula );

  // Top-Level Propagator. It also canonize atoms
  TopLevelProp propagator( egraph, config );
  // Only if sat_dump_rnd_inter is not set
  if ( config.sat_dump_rnd_inter == 0 )
    formula = propagator.doit( formula );

  if ( config.dump_formula != 0 )
    egraph.dumpToFile( "propagated.smt2", formula );

  AXDiffPreproc2 axdiffpreproc( egraph, sstore, config );
  if ( config.logic == QF_AX
    || config.logic == QF_AXDIFF )
  {
    formula = axdiffpreproc.doit( formula );
    if ( config.dump_formula != 0 )
      egraph.dumpToFile( "axdiffpreproc.smt2", formula );
  }

  // Convert RDL into IDL, also compute if GMP is needed
  if ( config.logic == QF_RDL )
  {
    DLRescale rescaler( egraph, config );
    rescaler.doit( formula );
  }

  // For static checking, make sure that if DTC is used
  // then incrementality is enabled
  if ( ( config.logic == QF_UFIDL
      || config.logic == QF_UFLRA )
      && config.sat_lazy_dtc != 0 )
  {
    config.incremental = 1;
    config.sat_polarity_mode = 4;
  }

  if ( config.dump_formula != 0 )
    egraph.dumpToFile( "presolve.smt2", formula );

  // Solve only if not simplified already
  if ( formula->isTrue( ) )
  {
    state = l_True;
  }
  else if ( formula->isFalse( ) )
  {
    state = l_False;
  }
  else
  {
    assert(egraph.isInitialized());
    // Initialize theory solvers
    // egraph.initializeTheorySolvers( &solver );

    // Compute polarities
    egraph.computePolarities( formula );

    // CNFize the input formula and feed clauses to the solver
    state = cnfizer.cnfizeAndGiveToSolver( formula );

    // Solve
    if ( state == l_Undef )
    {
      state = solver.smtSolve( config.sat_preprocess_booleans != 0
                            || config.sat_preprocess_theory   != 0 );
    }

    // If computation has been stopped, return undef
    if ( opensmt::stop ) state = l_Undef;
  }
}