/*************************************************************************
Problem testing
*************************************************************************/
static void testproblem(const ap::real_2d_array& a, int m, int n)
{
    int i;
    int j;
    int k;
    double mx;
    ap::real_2d_array b;
    ap::real_1d_array taub;
    ap::real_2d_array q;
    ap::real_2d_array l;
    ap::real_2d_array q2;
    double v;

    
    //
    // MX - estimate of the matrix norm
    //
    mx = 0;
    for(i = 0; i <= m-1; i++)
    {
        for(j = 0; j <= n-1; j++)
        {
            if( fabs(a(i,j))>mx )
            {
                mx = fabs(a(i,j));
            }
        }
    }
    if( mx==0 )
    {
        mx = 1;
    }
    
    //
    // Test decompose-and-unpack error
    //
    makeacopy(a, m, n, b);
    rmatrixlq(b, m, n, taub);
    rmatrixlqunpackq(b, m, n, taub, n, q);
    rmatrixlqunpackl(b, m, n, l);
    for(i = 0; i <= m-1; i++)
    {
        for(j = 0; j <= n-1; j++)
        {
            v = ap::vdotproduct(l.getrow(i, 0, n-1), q.getcolumn(j, 0, n-1));
            decomperrors = decomperrors||fabs(v-a(i,j))>=threshold;
        }
    }
    for(i = 0; i <= m-1; i++)
    {
        for(j = ap::minint(i, n-1)+1; j <= n-1; j++)
        {
            structerrors = structerrors||l(i,j)!=0;
        }
    }
    for(i = 0; i <= n-1; i++)
    {
        for(j = 0; j <= n-1; j++)
        {
            v = ap::vdotproduct(&q(i, 0), &q(j, 0), ap::vlen(0,n-1));
            if( i==j )
            {
                structerrors = structerrors||fabs(v-1)>=threshold;
            }
            else
            {
                structerrors = structerrors||fabs(v)>=threshold;
            }
        }
    }
    
    //
    // Test for other errors
    //
    for(k = 1; k <= n-1; k++)
    {
        rmatrixlqunpackq(b, m, n, taub, k, q2);
        for(i = 0; i <= k-1; i++)
        {
            for(j = 0; j <= n-1; j++)
            {
                othererrors = othererrors||q2(i,j)!=q(i,j);
            }
        }
    }
}
Exemple #2
0
/*************************************************************************
Weighted constained linear least squares fitting.

This  is  variation  of LSFitLinearW(), which searchs for min|A*x=b| given
that  K  additional  constaints  C*x=bc are satisfied. It reduces original
task to modified one: min|B*y-d| WITHOUT constraints,  then LSFitLinearW()
is called.

INPUT PARAMETERS:
    Y       -   array[0..N-1] Function values in  N  points.
    W       -   array[0..N-1]  Weights  corresponding to function  values.
                Each summand in square  sum  of  approximation  deviations
                from  given  values  is  multiplied  by  the   square   of
                corresponding weight.
    FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                FMatrix[I,J] - value of J-th basis function in I-th point.
    CMatrix -   a table of constaints, array[0..K-1,0..M].
                I-th row of CMatrix corresponds to I-th linear constraint:
                CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
    N       -   number of points used. N>=1.
    M       -   number of basis functions, M>=1.
    K       -   number of constraints, 0 <= K < M
                K=0 corresponds to absence of constraints.

OUTPUT PARAMETERS:
    Info    -   error code:
                * -4    internal SVD decomposition subroutine failed (very
                        rare and for degenerate systems only)
                * -3    either   too   many  constraints  (M   or   more),
                        degenerate  constraints   (some   constraints  are
                        repetead twice) or inconsistent  constraints  were
                        specified.
                * -1    incorrect N/M/K were specified
                *  1    task is solved
    C       -   decomposition coefficients, array[0..M-1]
    Rep     -   fitting report. Following fields are set:
                * RMSError          rms error on the (X,Y).
                * AvgError          average error on the (X,Y).
                * AvgRelError       average relative error on the non-zero Y
                * MaxError          maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

SEE ALSO
    LSFitLinear
    LSFitLinearC
    LSFitLinearWC

  -- ALGLIB --
     Copyright 07.09.2009 by Bochkanov Sergey
*************************************************************************/
void lsfitlinearwc(ap::real_1d_array y,
     const ap::real_1d_array& w,
     const ap::real_2d_array& fmatrix,
     ap::real_2d_array cmatrix,
     int n,
     int m,
     int k,
     int& info,
     ap::real_1d_array& c,
     lsfitreport& rep)
{
    int i;
    int j;
    ap::real_1d_array tau;
    ap::real_2d_array q;
    ap::real_2d_array f2;
    ap::real_1d_array tmp;
    ap::real_1d_array c0;
    double v;

    if( n<1||m<1||k<0 )
    {
        info = -1;
        return;
    }
    if( k>=m )
    {
        info = -3;
        return;
    }
    
    //
    // Solve
    //
    if( k==0 )
    {
        
        //
        // no constraints
        //
        lsfitlinearinternal(y, w, fmatrix, n, m, info, c, rep);
    }
    else
    {
        
        //
        // First, find general form solution of constraints system:
        // * factorize C = L*Q
        // * unpack Q
        // * fill upper part of C with zeros (for RCond)
        //
        // We got C=C0+Q2'*y where Q2 is lower M-K rows of Q.
        //
        rmatrixlq(cmatrix, k, m, tau);
        rmatrixlqunpackq(cmatrix, k, m, tau, m, q);
        for(i = 0; i <= k-1; i++)
        {
            for(j = i+1; j <= m-1; j++)
            {
                cmatrix(i,j) = 0.0;
            }
        }
        if( ap::fp_less(rmatrixlurcondinf(cmatrix, k),1000*ap::machineepsilon) )
        {
            info = -3;
            return;
        }
        tmp.setlength(k);
        for(i = 0; i <= k-1; i++)
        {
            if( i>0 )
            {
                v = ap::vdotproduct(&cmatrix(i, 0), 1, &tmp(0), 1, ap::vlen(0,i-1));
            }
            else
            {
                v = 0;
            }
            tmp(i) = (cmatrix(i,m)-v)/cmatrix(i,i);
        }
        c0.setlength(m);
        for(i = 0; i <= m-1; i++)
        {
            c0(i) = 0;
        }
        for(i = 0; i <= k-1; i++)
        {
            v = tmp(i);
            ap::vadd(&c0(0), 1, &q(i, 0), 1, ap::vlen(0,m-1), v);
        }
        
        //
        // Second, prepare modified matrix F2 = F*Q2' and solve modified task
        //
        tmp.setlength(ap::maxint(n, m)+1);
        f2.setlength(n, m-k);
        matrixvectormultiply(fmatrix, 0, n-1, 0, m-1, false, c0, 0, m-1, -1.0, y, 0, n-1, 1.0);
        matrixmatrixmultiply(fmatrix, 0, n-1, 0, m-1, false, q, k, m-1, 0, m-1, true, 1.0, f2, 0, n-1, 0, m-k-1, 0.0, tmp);
        lsfitlinearinternal(y, w, f2, n, m-k, info, tmp, rep);
        rep.taskrcond = -1;
        if( info<=0 )
        {
            return;
        }
        
        //
        // then, convert back to original answer: C = C0 + Q2'*Y0
        //
        c.setlength(m);
        ap::vmove(&c(0), 1, &c0(0), 1, ap::vlen(0,m-1));
        matrixvectormultiply(q, k, m-1, 0, m-1, true, tmp, 0, m-k-1, 1.0, c, 0, m-1, 1.0);
    }
}
Exemple #3
0
/*************************************************************************
Singular value decomposition of a rectangular matrix.

The algorithm calculates the singular value decomposition of a matrix of
size MxN: A = U * S * V^T

The algorithm finds the singular values and, optionally, matrices U and V^T.
The algorithm can find both first min(M,N) columns of matrix U and rows of
matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM
and NxN respectively).

Take into account that the subroutine does not return matrix V but V^T.

Input parameters:
    A           -   matrix to be decomposed.
                    Array whose indexes range within [0..M-1, 0..N-1].
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    UNeeded     -   0, 1 or 2. See the description of the parameter U.
    VTNeeded    -   0, 1 or 2. See the description of the parameter VT.
    AdditionalMemory -
                    If the parameter:
                     * equals 0, the algorithm doesn’t use additional
                       memory (lower requirements, lower performance).
                     * equals 1, the algorithm uses additional
                       memory of size min(M,N)*min(M,N) of real numbers.
                       It often speeds up the algorithm.
                     * equals 2, the algorithm uses additional
                       memory of size M*min(M,N) of real numbers.
                       It allows to get a maximum performance.
                    The recommended value of the parameter is 2.

Output parameters:
    W           -   contains singular values in descending order.
    U           -   if UNeeded=0, U isn't changed, the left singular vectors
                    are not calculated.
                    if Uneeded=1, U contains left singular vectors (first
                    min(M,N) columns of matrix U). Array whose indexes range
                    within [0..M-1, 0..Min(M,N)-1].
                    if UNeeded=2, U contains matrix U wholly. Array whose
                    indexes range within [0..M-1, 0..M-1].
    VT          -   if VTNeeded=0, VT isn’t changed, the right singular vectors
                    are not calculated.
                    if VTNeeded=1, VT contains right singular vectors (first
                    min(M,N) rows of matrix V^T). Array whose indexes range
                    within [0..min(M,N)-1, 0..N-1].
                    if VTNeeded=2, VT contains matrix V^T wholly. Array whose
                    indexes range within [0..N-1, 0..N-1].

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
bool rmatrixsvd(ap::real_2d_array a,
     int m,
     int n,
     int uneeded,
     int vtneeded,
     int additionalmemory,
     ap::real_1d_array& w,
     ap::real_2d_array& u,
     ap::real_2d_array& vt)
{
    bool result;
    ap::real_1d_array tauq;
    ap::real_1d_array taup;
    ap::real_1d_array tau;
    ap::real_1d_array e;
    ap::real_1d_array work;
    ap::real_2d_array t2;
    bool isupper;
    int minmn;
    int ncu;
    int nrvt;
    int nru;
    int ncvt;
    int i;
    int j;

    result = true;
    if( m==0||n==0 )
    {
        return result;
    }
    ap::ap_error::make_assertion(uneeded>=0&&uneeded<=2, "SVDDecomposition: wrong parameters!");
    ap::ap_error::make_assertion(vtneeded>=0&&vtneeded<=2, "SVDDecomposition: wrong parameters!");
    ap::ap_error::make_assertion(additionalmemory>=0&&additionalmemory<=2, "SVDDecomposition: wrong parameters!");
    
    //
    // initialize
    //
    minmn = ap::minint(m, n);
    w.setbounds(1, minmn);
    ncu = 0;
    nru = 0;
    if( uneeded==1 )
    {
        nru = m;
        ncu = minmn;
        u.setbounds(0, nru-1, 0, ncu-1);
    }
    if( uneeded==2 )
    {
        nru = m;
        ncu = m;
        u.setbounds(0, nru-1, 0, ncu-1);
    }
    nrvt = 0;
    ncvt = 0;
    if( vtneeded==1 )
    {
        nrvt = minmn;
        ncvt = n;
        vt.setbounds(0, nrvt-1, 0, ncvt-1);
    }
    if( vtneeded==2 )
    {
        nrvt = n;
        ncvt = n;
        vt.setbounds(0, nrvt-1, 0, ncvt-1);
    }
    
    //
    // M much larger than N
    // Use bidiagonal reduction with QR-decomposition
    //
    if( ap::fp_greater(m,1.6*n) )
    {
        if( uneeded==0 )
        {
            
            //
            // No left singular vectors to be computed
            //
            rmatrixqr(a, m, n, tau);
            for(i = 0; i <= n-1; i++)
            {
                for(j = 0; j <= i-1; j++)
                {
                    a(i,j) = 0;
                }
            }
            rmatrixbd(a, n, n, tauq, taup);
            rmatrixbdunpackpt(a, n, n, taup, nrvt, vt);
            rmatrixbdunpackdiagonals(a, n, n, isupper, w, e);
            result = rmatrixbdsvd(w, e, n, isupper, false, u, 0, a, 0, vt, ncvt);
            return result;
        }
        else
        {
            
            //
            // Left singular vectors (may be full matrix U) to be computed
            //
            rmatrixqr(a, m, n, tau);
            rmatrixqrunpackq(a, m, n, tau, ncu, u);
            for(i = 0; i <= n-1; i++)
            {
                for(j = 0; j <= i-1; j++)
                {
                    a(i,j) = 0;
                }
            }
            rmatrixbd(a, n, n, tauq, taup);
            rmatrixbdunpackpt(a, n, n, taup, nrvt, vt);
            rmatrixbdunpackdiagonals(a, n, n, isupper, w, e);
            if( additionalmemory<1 )
            {
                
                //
                // No additional memory can be used
                //
                rmatrixbdmultiplybyq(a, n, n, tauq, u, m, n, true, false);
                result = rmatrixbdsvd(w, e, n, isupper, false, u, m, a, 0, vt, ncvt);
            }
            else
            {
                
                //
                // Large U. Transforming intermediate matrix T2
                //
                work.setbounds(1, ap::maxint(m, n));
                rmatrixbdunpackq(a, n, n, tauq, n, t2);
                copymatrix(u, 0, m-1, 0, n-1, a, 0, m-1, 0, n-1);
                inplacetranspose(t2, 0, n-1, 0, n-1, work);
                result = rmatrixbdsvd(w, e, n, isupper, false, u, 0, t2, n, vt, ncvt);
                matrixmatrixmultiply(a, 0, m-1, 0, n-1, false, t2, 0, n-1, 0, n-1, true, 1.0, u, 0, m-1, 0, n-1, 0.0, work);
            }
            return result;
        }
    }
    
    //
    // N much larger than M
    // Use bidiagonal reduction with LQ-decomposition
    //
    if( ap::fp_greater(n,1.6*m) )
    {
        if( vtneeded==0 )
        {
            
            //
            // No right singular vectors to be computed
            //
            rmatrixlq(a, m, n, tau);
            for(i = 0; i <= m-1; i++)
            {
                for(j = i+1; j <= m-1; j++)
                {
                    a(i,j) = 0;
                }
            }
            rmatrixbd(a, m, m, tauq, taup);
            rmatrixbdunpackq(a, m, m, tauq, ncu, u);
            rmatrixbdunpackdiagonals(a, m, m, isupper, w, e);
            work.setbounds(1, m);
            inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
            result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, vt, 0);
            inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
            return result;
        }
        else
        {
            
            //
            // Right singular vectors (may be full matrix VT) to be computed
            //
            rmatrixlq(a, m, n, tau);
            rmatrixlqunpackq(a, m, n, tau, nrvt, vt);
            for(i = 0; i <= m-1; i++)
            {
                for(j = i+1; j <= m-1; j++)
                {
                    a(i,j) = 0;
                }
            }
            rmatrixbd(a, m, m, tauq, taup);
            rmatrixbdunpackq(a, m, m, tauq, ncu, u);
            rmatrixbdunpackdiagonals(a, m, m, isupper, w, e);
            work.setbounds(1, ap::maxint(m, n));
            inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
            if( additionalmemory<1 )
            {
                
                //
                // No additional memory available
                //
                rmatrixbdmultiplybyp(a, m, m, taup, vt, m, n, false, true);
                result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, vt, n);
            }
            else
            {
                
                //
                // Large VT. Transforming intermediate matrix T2
                //
                rmatrixbdunpackpt(a, m, m, taup, m, t2);
                result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, t2, m);
                copymatrix(vt, 0, m-1, 0, n-1, a, 0, m-1, 0, n-1);
                matrixmatrixmultiply(t2, 0, m-1, 0, m-1, false, a, 0, m-1, 0, n-1, false, 1.0, vt, 0, m-1, 0, n-1, 0.0, work);
            }
            inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
            return result;
        }
    }
    
    //
    // M<=N
    // We can use inplace transposition of U to get rid of columnwise operations
    //
    if( m<=n )
    {
        rmatrixbd(a, m, n, tauq, taup);
        rmatrixbdunpackq(a, m, n, tauq, ncu, u);
        rmatrixbdunpackpt(a, m, n, taup, nrvt, vt);
        rmatrixbdunpackdiagonals(a, m, n, isupper, w, e);
        work.setbounds(1, m);
        inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
        result = rmatrixbdsvd(w, e, minmn, isupper, false, a, 0, u, nru, vt, ncvt);
        inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
        return result;
    }
    
    //
    // Simple bidiagonal reduction
    //
    rmatrixbd(a, m, n, tauq, taup);
    rmatrixbdunpackq(a, m, n, tauq, ncu, u);
    rmatrixbdunpackpt(a, m, n, taup, nrvt, vt);
    rmatrixbdunpackdiagonals(a, m, n, isupper, w, e);
    if( additionalmemory<2||uneeded==0 )
    {
        
        //
        // We cant use additional memory or there is no need in such operations
        //
        result = rmatrixbdsvd(w, e, minmn, isupper, false, u, nru, a, 0, vt, ncvt);
    }
    else
    {
        
        //
        // We can use additional memory
        //
        t2.setbounds(0, minmn-1, 0, m-1);
        copyandtranspose(u, 0, m-1, 0, minmn-1, t2, 0, minmn-1, 0, m-1);
        result = rmatrixbdsvd(w, e, minmn, isupper, false, u, 0, t2, m, vt, ncvt);
        copyandtranspose(t2, 0, minmn-1, 0, m-1, u, 0, m-1, 0, minmn-1);
    }
    return result;
}
Exemple #4
0
/*************************************************************************
Internal fitting subroutine
*************************************************************************/
static void lsfitlinearinternal(const ap::real_1d_array& y,
     const ap::real_1d_array& w,
     const ap::real_2d_array& fmatrix,
     int n,
     int m,
     int& info,
     ap::real_1d_array& c,
     lsfitreport& rep)
{
    double threshold;
    ap::real_2d_array ft;
    ap::real_2d_array q;
    ap::real_2d_array l;
    ap::real_2d_array r;
    ap::real_1d_array b;
    ap::real_1d_array wmod;
    ap::real_1d_array tau;
    int i;
    int j;
    double v;
    ap::real_1d_array sv;
    ap::real_2d_array u;
    ap::real_2d_array vt;
    ap::real_1d_array tmp;
    ap::real_1d_array utb;
    ap::real_1d_array sutb;
    int relcnt;

    if( n<1||m<1 )
    {
        info = -1;
        return;
    }
    info = 1;
    threshold = sqrt(ap::machineepsilon);
    
    //
    // Degenerate case, needs special handling
    //
    if( n<m )
    {
        
        //
        // Create design matrix.
        //
        ft.setlength(n, m);
        b.setlength(n);
        wmod.setlength(n);
        for(j = 0; j <= n-1; j++)
        {
            v = w(j);
            ap::vmove(&ft(j, 0), 1, &fmatrix(j, 0), 1, ap::vlen(0,m-1), v);
            b(j) = w(j)*y(j);
            wmod(j) = 1;
        }
        
        //
        // LQ decomposition and reduction to M=N
        //
        c.setlength(m);
        for(i = 0; i <= m-1; i++)
        {
            c(i) = 0;
        }
        rep.taskrcond = 0;
        rmatrixlq(ft, n, m, tau);
        rmatrixlqunpackq(ft, n, m, tau, n, q);
        rmatrixlqunpackl(ft, n, m, l);
        lsfitlinearinternal(b, wmod, l, n, n, info, tmp, rep);
        if( info<=0 )
        {
            return;
        }
        for(i = 0; i <= n-1; i++)
        {
            v = tmp(i);
            ap::vadd(&c(0), 1, &q(i, 0), 1, ap::vlen(0,m-1), v);
        }
        return;
    }
    
    //
    // N>=M. Generate design matrix and reduce to N=M using
    // QR decomposition.
    //
    ft.setlength(n, m);
    b.setlength(n);
    for(j = 0; j <= n-1; j++)
    {
        v = w(j);
        ap::vmove(&ft(j, 0), 1, &fmatrix(j, 0), 1, ap::vlen(0,m-1), v);
        b(j) = w(j)*y(j);
    }
    rmatrixqr(ft, n, m, tau);
    rmatrixqrunpackq(ft, n, m, tau, m, q);
    rmatrixqrunpackr(ft, n, m, r);
    tmp.setlength(m);
    for(i = 0; i <= m-1; i++)
    {
        tmp(i) = 0;
    }
    for(i = 0; i <= n-1; i++)
    {
        v = b(i);
        ap::vadd(&tmp(0), 1, &q(i, 0), 1, ap::vlen(0,m-1), v);
    }
    b.setlength(m);
    ap::vmove(&b(0), 1, &tmp(0), 1, ap::vlen(0,m-1));
    
    //
    // R contains reduced MxM design upper triangular matrix,
    // B contains reduced Mx1 right part.
    //
    // Determine system condition number and decide
    // should we use triangular solver (faster) or
    // SVD-based solver (more stable).
    //
    // We can use LU-based RCond estimator for this task.
    //
    rep.taskrcond = rmatrixlurcondinf(r, m);
    if( ap::fp_greater(rep.taskrcond,threshold) )
    {
        
        //
        // use QR-based solver
        //
        c.setlength(m);
        c(m-1) = b(m-1)/r(m-1,m-1);
        for(i = m-2; i >= 0; i--)
        {
            v = ap::vdotproduct(&r(i, i+1), 1, &c(i+1), 1, ap::vlen(i+1,m-1));
            c(i) = (b(i)-v)/r(i,i);
        }
    }
    else
    {
        
        //
        // use SVD-based solver
        //
        if( !rmatrixsvd(r, m, m, 1, 1, 2, sv, u, vt) )
        {
            info = -4;
            return;
        }
        utb.setlength(m);
        sutb.setlength(m);
        for(i = 0; i <= m-1; i++)
        {
            utb(i) = 0;
        }
        for(i = 0; i <= m-1; i++)
        {
            v = b(i);
            ap::vadd(&utb(0), 1, &u(i, 0), 1, ap::vlen(0,m-1), v);
        }
        if( ap::fp_greater(sv(0),0) )
        {
            rep.taskrcond = sv(m-1)/sv(0);
            for(i = 0; i <= m-1; i++)
            {
                if( ap::fp_greater(sv(i),threshold*sv(0)) )
                {
                    sutb(i) = utb(i)/sv(i);
                }
                else
                {
                    sutb(i) = 0;
                }
            }
        }
        else
        {
            rep.taskrcond = 0;
            for(i = 0; i <= m-1; i++)
            {
                sutb(i) = 0;
            }
        }
        c.setlength(m);
        for(i = 0; i <= m-1; i++)
        {
            c(i) = 0;
        }
        for(i = 0; i <= m-1; i++)
        {
            v = sutb(i);
            ap::vadd(&c(0), 1, &vt(i, 0), 1, ap::vlen(0,m-1), v);
        }
    }
    
    //
    // calculate errors
    //
    rep.rmserror = 0;
    rep.avgerror = 0;
    rep.avgrelerror = 0;
    rep.maxerror = 0;
    relcnt = 0;
    for(i = 0; i <= n-1; i++)
    {
        v = ap::vdotproduct(&fmatrix(i, 0), 1, &c(0), 1, ap::vlen(0,m-1));
        rep.rmserror = rep.rmserror+ap::sqr(v-y(i));
        rep.avgerror = rep.avgerror+fabs(v-y(i));
        if( ap::fp_neq(y(i),0) )
        {
            rep.avgrelerror = rep.avgrelerror+fabs(v-y(i))/fabs(y(i));
            relcnt = relcnt+1;
        }
        rep.maxerror = ap::maxreal(rep.maxerror, fabs(v-y(i)));
    }
    rep.rmserror = sqrt(rep.rmserror/n);
    rep.avgerror = rep.avgerror/n;
    if( relcnt!=0 )
    {
        rep.avgrelerror = rep.avgrelerror/relcnt;
    }
}