static void redrat3_get_firmware_rev(struct redrat3_dev *rr3)
{
	int rc = 0;
	char *buffer;

	rr3_ftr(rr3->dev, "Entering %s\n", __func__);

	buffer = kzalloc(sizeof(char) * (RR3_FW_VERSION_LEN + 1), GFP_KERNEL);
	if (!buffer) {
		dev_err(rr3->dev, "Memory allocation failure\n");
		return;
	}

	rc = usb_control_msg(rr3->udev, usb_rcvctrlpipe(rr3->udev, 0),
			     RR3_FW_VERSION,
			     USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
			     0, 0, buffer, RR3_FW_VERSION_LEN, HZ * 5);

	if (rc >= 0)
		dev_info(rr3->dev, "Firmware rev: %s", buffer);
	else
		dev_err(rr3->dev, "Problem fetching firmware ID\n");

	kfree(buffer);
	rr3_ftr(rr3->dev, "Exiting %s\n", __func__);
}
static int redrat3_dev_suspend(struct usb_interface *intf, pm_message_t message)
{
	struct redrat3_dev *rr3 = usb_get_intfdata(intf);
	rr3_ftr(rr3->dev, "suspend\n");
	usb_kill_urb(rr3->read_urb);
	return 0;
}
/* gather IR data from incoming urb, process it when we have enough */
static int redrat3_get_ir_data(struct redrat3_dev *rr3, unsigned len)
{
    struct device *dev = rr3->dev;
    unsigned pkttype;
    int ret = 0;

    rr3_ftr(dev, "Entering %s\n", __func__);

    if (rr3->bytes_read == 0 && len >= sizeof(struct redrat3_header)) {
        redrat3_read_packet_start(rr3, len);
    } else if (rr3->bytes_read != 0) {
        redrat3_read_packet_continue(rr3, len);
    } else if (rr3->bytes_read == 0) {
        dev_err(dev, "error: no packet data read\n");
        ret = -ENODATA;
        goto out;
    }

    if (rr3->bytes_read < be16_to_cpu(rr3->irdata.header.length) +
            sizeof(struct redrat3_header))
        /* we're still accumulating data */
        return 0;

    /* if we get here, we've got IR data to decode */
    pkttype = be16_to_cpu(rr3->irdata.header.transfer_type);
    if (pkttype == RR3_MOD_SIGNAL_IN)
        redrat3_process_ir_data(rr3);
    else
        rr3_dbg(dev, "discarding non-signal data packet (type 0x%02x)\n",
                pkttype);

out:
    rr3->bytes_read = 0;
    return ret;
}
static int redrat3_dev_resume(struct usb_interface *intf)
{
	struct redrat3_dev *rr3 = usb_get_intfdata(intf);
	rr3_ftr(rr3->dev, "resume\n");
	if (usb_submit_urb(rr3->read_urb, GFP_ATOMIC))
		return -EIO;
	return 0;
}
static void redrat3_dev_disconnect(struct usb_interface *intf)
{
    struct usb_device *udev = interface_to_usbdev(intf);
    struct redrat3_dev *rr3 = usb_get_intfdata(intf);

    rr3_ftr(&intf->dev, "Entering %s\n", __func__);

    if (!rr3)
        return;

    usb_set_intfdata(intf, NULL);
    rc_unregister_device(rr3->rc);
    led_classdev_unregister(&rr3->led);
    del_timer_sync(&rr3->rx_timeout);
    redrat3_delete(rr3, udev);

    rr3_ftr(&intf->dev, "RedRat3 IR Transceiver now disconnected\n");
}
Exemple #6
0
static void __devexit redrat3_dev_disconnect(struct usb_interface *intf)
{
	struct usb_device *udev = interface_to_usbdev(intf);
	struct redrat3_dev *rr3 = usb_get_intfdata(intf);

	rr3_ftr(&intf->dev, "Entering %s\n", __func__);

	if (!rr3)
		return;

	redrat3_disable_detector(rr3);

	usb_set_intfdata(intf, NULL);
	rc_unregister_device(rr3->rc);
	redrat3_delete(rr3, udev);

	rr3_ftr(&intf->dev, "RedRat3 IR Transceiver now disconnected\n");
}
static void redrat3_read_packet_continue(struct redrat3_dev *rr3, int len)
{

	rr3_ftr(rr3->dev, "Entering %s\n", __func__);

	memcpy(rr3->datap, (unsigned char *)rr3->bulk_in_buf, len);
	rr3->datap += len;

	rr3->bytes_read += len;
	rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n",
		rr3->bytes_read, rr3->pktlen);
}
/*
 * redrat3_issue_async
 *
 *  Issues an async read to the ir data in port..
 *  sets the callback to be redrat3_handle_async
 */
static void redrat3_issue_async(struct redrat3_dev *rr3)
{
    int res;

    rr3_ftr(rr3->dev, "Entering %s\n", __func__);

    res = usb_submit_urb(rr3->read_urb, GFP_ATOMIC);
    if (res)
        rr3_dbg(rr3->dev, "%s: receive request FAILED! "
                "(res %d, len %d)\n", __func__, res,
                rr3->read_urb->transfer_buffer_length);
}
static inline void redrat3_delete(struct redrat3_dev *rr3,
                                  struct usb_device *udev)
{
    rr3_ftr(rr3->dev, "%s cleaning up\n", __func__);
    usb_kill_urb(rr3->read_urb);
    usb_kill_urb(rr3->flash_urb);
    usb_free_urb(rr3->read_urb);
    usb_free_urb(rr3->flash_urb);
    usb_free_coherent(udev, le16_to_cpu(rr3->ep_in->wMaxPacketSize),
                      rr3->bulk_in_buf, rr3->dma_in);

    kfree(rr3);
}
static void redrat3_write_bulk_callback(struct urb *urb, struct pt_regs *regs)
{
	struct redrat3_dev *rr3;
	int len;

	if (!urb)
		return;

	rr3 = urb->context;
	if (rr3) {
		len = urb->actual_length;
		rr3_ftr(rr3->dev, "%s: called (status=%d len=%d)\n",
			__func__, urb->status, len);
	}
}
Exemple #11
0
/* callback function from USB when async USB request has completed */
static void redrat3_handle_async(struct urb *urb, struct pt_regs *regs)
{
	struct redrat3_dev *rr3;

	if (!urb)
		return;

	rr3 = urb->context;
	if (!rr3) {
		pr_err("%s called with invalid context!\n", __func__);
		usb_unlink_urb(urb);
		return;
	}

	rr3_ftr(rr3->dev, "Entering %s\n", __func__);

	if (!rr3->det_enabled) {
		rr3_dbg(rr3->dev, "received a read callback but detector "
			"disabled - ignoring\n");
		return;
	}

	switch (urb->status) {
	case 0:
		redrat3_get_ir_data(rr3, urb->actual_length);
		break;

	case -ECONNRESET:
	case -ENOENT:
	case -ESHUTDOWN:
		usb_unlink_urb(urb);
		return;

	case -EPIPE:
	default:
		dev_warn(rr3->dev, "Error: urb status = %d\n", urb->status);
		rr3->bytes_read = 0;
		rr3->pktlen = 0;
		rr3->pkttype = 0;
		break;
	}

	if (!rr3->transmitting)
		redrat3_issue_async(rr3);
	else
		rr3_dbg(rr3->dev, "IR transmit in progress\n");
}
static void redrat3_read_packet_start(struct redrat3_dev *rr3, int len)
{
	u16 tx_error;
	u16 hdrlen;

	rr3_ftr(rr3->dev, "Entering %s\n", __func__);

	/*                                      */
	memcpy(&(rr3->pktlen), (unsigned char *) rr3->bulk_in_buf,
	       sizeof(rr3->pktlen));
	memcpy(&(rr3->pkttype), ((unsigned char *) rr3->bulk_in_buf +
		sizeof(rr3->pktlen)),
	       sizeof(rr3->pkttype));

	/*                                                      */
	rr3->pktlen = be16_to_cpu(rr3->pktlen);
	rr3->pkttype = be16_to_cpu(rr3->pkttype);

	switch (rr3->pkttype) {
	case RR3_ERROR:
		memcpy(&tx_error, ((unsigned char *)rr3->bulk_in_buf
			+ (sizeof(rr3->pktlen) + sizeof(rr3->pkttype))),
		       sizeof(tx_error));
		tx_error = be16_to_cpu(tx_error);
		redrat3_dump_fw_error(rr3, tx_error);
		break;

	case RR3_MOD_SIGNAL_IN:
		hdrlen = sizeof(rr3->pktlen) + sizeof(rr3->pkttype);
		rr3->bytes_read = len;
		rr3->bytes_read -= hdrlen;
		rr3->datap = &(rr3->pbuf[0]);

		memcpy(rr3->datap, ((unsigned char *)rr3->bulk_in_buf + hdrlen),
		       rr3->bytes_read);
		rr3->datap += rr3->bytes_read;
		rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n",
			rr3->bytes_read, rr3->pktlen);
		break;

	default:
		rr3_dbg(rr3->dev, "ignoring packet with type 0x%02x, "
			"len of %d, 0x%02x\n", rr3->pkttype, len, rr3->pktlen);
		break;
	}
}
static int redrat3_get_ir_data(struct redrat3_dev *rr3, int len)
{
	struct device *dev = rr3->dev;
	int ret = 0;

	rr3_ftr(dev, "Entering %s\n", __func__);

	if (rr3->pktlen > RR3_MAX_BUF_SIZE) {
		dev_err(rr3->dev, "error: packet larger than buffer\n");
		ret = -EINVAL;
		goto out;
	}

	if ((rr3->bytes_read == 0) &&
	    (len >= (sizeof(rr3->pkttype) + sizeof(rr3->pktlen)))) {
		redrat3_read_packet_start(rr3, len);
	} else if (rr3->bytes_read != 0) {
		redrat3_read_packet_continue(rr3, len);
	} else if (rr3->bytes_read == 0) {
		dev_err(dev, "error: no packet data read\n");
		ret = -ENODATA;
		goto out;
	}

	if (rr3->bytes_read > rr3->pktlen) {
		dev_err(dev, "bytes_read (%d) greater than pktlen (%d)\n",
			rr3->bytes_read, rr3->pktlen);
		ret = -EINVAL;
		goto out;
	} else if (rr3->bytes_read < rr3->pktlen)
		/*                               */
		return 0;

	/*                                             */
	if (rr3->pkttype == RR3_MOD_SIGNAL_IN)
		redrat3_process_ir_data(rr3);
	else
		rr3_dbg(dev, "discarding non-signal data packet "
			"(type 0x%02x)\n", rr3->pkttype);

out:
	rr3->bytes_read = 0;
	rr3->pktlen = 0;
	rr3->pkttype = 0;
	return ret;
}
static void redrat3_disable_detector(struct redrat3_dev *rr3)
{
	struct device *dev = rr3->dev;
	u8 ret;

	rr3_ftr(dev, "Entering %s\n", __func__);

	ret = redrat3_send_cmd(RR3_RC_DET_DISABLE, rr3);
	if (ret != 0)
		dev_err(dev, "%s: failure!\n", __func__);

	ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3);
	if (ret != 0)
		dev_warn(dev, "%s: detector status: %d, should be 0\n",
			 __func__, ret);

	rr3->det_enabled = false;
}
static void redrat3_read_packet_continue(struct redrat3_dev *rr3, unsigned len)
{
    void *irdata = &rr3->irdata;

    rr3_ftr(rr3->dev, "Entering %s\n", __func__);

    if (len + rr3->bytes_read > sizeof(rr3->irdata)) {
        dev_warn(rr3->dev, "too much data for packet\n");
        rr3->bytes_read = 0;
        return;
    }

    memcpy(irdata + rr3->bytes_read, rr3->bulk_in_buf, len);

    rr3->bytes_read += len;
    rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n", rr3->bytes_read,
            be16_to_cpu(rr3->irdata.header.length));
}
Exemple #16
0
/*
 * redrat3_issue_async
 *
 *  Issues an async read to the ir data in port..
 *  sets the callback to be redrat3_handle_async
 */
static void redrat3_issue_async(struct redrat3_dev *rr3)
{
	int res;

	rr3_ftr(rr3->dev, "Entering %s\n", __func__);

	if (!rr3->det_enabled) {
		dev_warn(rr3->dev, "not issuing async read, "
			 "detector not enabled\n");
		return;
	}

	memset(rr3->bulk_in_buf, 0, rr3->ep_in->wMaxPacketSize);
	res = usb_submit_urb(rr3->read_urb, GFP_ATOMIC);
	if (res)
		rr3_dbg(rr3->dev, "%s: receive request FAILED! "
			"(res %d, len %d)\n", __func__, res,
			rr3->read_urb->transfer_buffer_length);
}
static void redrat3_handle_async(struct urb *urb, struct pt_regs *regs)
{
	struct redrat3_dev *rr3;
	int ret;

	if (!urb)
		return;

	rr3 = urb->context;
	if (!rr3) {
		pr_err("%s called with invalid context!\n", __func__);
		usb_unlink_urb(urb);
		return;
	}

	rr3_ftr(rr3->dev, "Entering %s\n", __func__);

	switch (urb->status) {
	case 0:
		ret = redrat3_get_ir_data(rr3, urb->actual_length);
		if (!ret) {
			/*                                */
			redrat3_issue_async(rr3);
		}
		break;

	case -ECONNRESET:
	case -ENOENT:
	case -ESHUTDOWN:
		usb_unlink_urb(urb);
		return;

	case -EPIPE:
	default:
		dev_warn(rr3->dev, "Error: urb status = %d\n", urb->status);
		rr3->bytes_read = 0;
		rr3->pktlen = 0;
		rr3->pkttype = 0;
		break;
	}
}
static void redrat3_reset(struct redrat3_dev *rr3)
{
	struct usb_device *udev = rr3->udev;
	struct device *dev = rr3->dev;
	int rc, rxpipe, txpipe;
	u8 *val;
	int len = sizeof(u8);

	rr3_ftr(dev, "Entering %s\n", __func__);

	rxpipe = usb_rcvctrlpipe(udev, 0);
	txpipe = usb_sndctrlpipe(udev, 0);

	val = kzalloc(len, GFP_KERNEL);
	if (!val) {
		dev_err(dev, "Memory allocation failure\n");
		return;
	}

	*val = 0x01;
	rc = usb_control_msg(udev, rxpipe, RR3_RESET,
			     USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
			     RR3_CPUCS_REG_ADDR, 0, val, len, HZ * 25);
	rr3_dbg(dev, "reset returned 0x%02x\n", rc);

	*val = 5;
	rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
			     USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
			     RR3_IR_IO_LENGTH_FUZZ, 0, val, len, HZ * 25);
	rr3_dbg(dev, "set ir parm len fuzz %d rc 0x%02x\n", *val, rc);

	*val = RR3_DRIVER_MAXLENS;
	rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
			     USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
			     RR3_IR_IO_MAX_LENGTHS, 0, val, len, HZ * 25);
	rr3_dbg(dev, "set ir parm max lens %d rc 0x%02x\n", *val, rc);

	kfree(val);
}
static void redrat3_read_packet_start(struct redrat3_dev *rr3, unsigned len)
{
    struct redrat3_header *header = rr3->bulk_in_buf;
    unsigned pktlen, pkttype;

    rr3_ftr(rr3->dev, "Entering %s\n", __func__);

    /* grab the Length and type of transfer */
    pktlen = be16_to_cpu(header->length);
    pkttype = be16_to_cpu(header->transfer_type);

    if (pktlen > sizeof(rr3->irdata)) {
        dev_warn(rr3->dev, "packet length %u too large\n", pktlen);
        return;
    }

    switch (pkttype) {
    case RR3_ERROR:
        if (len >= sizeof(struct redrat3_error)) {
            struct redrat3_error *error = rr3->bulk_in_buf;
            unsigned fw_error = be16_to_cpu(error->fw_error);
            redrat3_dump_fw_error(rr3, fw_error);
        }
        break;

    case RR3_MOD_SIGNAL_IN:
        memcpy(&rr3->irdata, rr3->bulk_in_buf, len);
        rr3->bytes_read = len;
        rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n",
                rr3->bytes_read, pktlen);
        break;

    default:
        rr3_dbg(rr3->dev, "ignoring packet with type 0x%02x, len of %d, 0x%02x\n",
                pkttype, len, pktlen);
        break;
    }
}
/* Enables the long range detector and starts async receive */
static int redrat3_enable_detector(struct redrat3_dev *rr3)
{
    struct device *dev = rr3->dev;
    u8 ret;

    rr3_ftr(dev, "Entering %s\n", __func__);

    ret = redrat3_send_cmd(RR3_RC_DET_ENABLE, rr3);
    if (ret != 0)
        dev_dbg(dev, "%s: unexpected ret of %d\n",
                __func__, ret);

    ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3);
    if (ret != 1) {
        dev_err(dev, "%s: detector status: %d, should be 1\n",
                __func__, ret);
        return -EIO;
    }

    redrat3_issue_async(rr3);

    return 0;
}
static int redrat3_transmit_ir(struct rc_dev *rcdev, unsigned *txbuf,
                               unsigned count)
{
    struct redrat3_dev *rr3 = rcdev->priv;
    struct device *dev = rr3->dev;
    struct redrat3_irdata *irdata = NULL;
    int ret, ret_len;
    int lencheck, cur_sample_len, pipe;
    int *sample_lens = NULL;
    u8 curlencheck = 0;
    unsigned i, sendbuf_len;

    rr3_ftr(dev, "Entering %s\n", __func__);

    if (rr3->transmitting) {
        dev_warn(dev, "%s: transmitter already in use\n", __func__);
        return -EAGAIN;
    }

    if (count > RR3_MAX_SIG_SIZE - RR3_TX_TRAILER_LEN)
        return -EINVAL;

    /* rr3 will disable rc detector on transmit */
    rr3->transmitting = true;

    sample_lens = kzalloc(sizeof(int) * RR3_DRIVER_MAXLENS, GFP_KERNEL);
    if (!sample_lens) {
        ret = -ENOMEM;
        goto out;
    }

    irdata = kzalloc(sizeof(*irdata), GFP_KERNEL);
    if (!irdata) {
        ret = -ENOMEM;
        goto out;
    }

    for (i = 0; i < count; i++) {
        cur_sample_len = redrat3_us_to_len(txbuf[i]);
        if (cur_sample_len > 0xffff) {
            dev_warn(dev, "transmit period of %uus truncated to %uus\n",
                     txbuf[i], redrat3_len_to_us(0xffff));
            cur_sample_len = 0xffff;
        }
        for (lencheck = 0; lencheck < curlencheck; lencheck++) {
            if (sample_lens[lencheck] == cur_sample_len)
                break;
        }
        if (lencheck == curlencheck) {
            rr3_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n",
                    i, txbuf[i], curlencheck, cur_sample_len);
            if (curlencheck < RR3_DRIVER_MAXLENS) {
                /* now convert the value to a proper
                 * rr3 value.. */
                sample_lens[curlencheck] = cur_sample_len;
                put_unaligned_be16(cur_sample_len,
                                   &irdata->lens[curlencheck]);
                curlencheck++;
            } else {
                ret = -EINVAL;
                goto out;
            }
        }
        irdata->sigdata[i] = lencheck;
    }

    irdata->sigdata[count] = RR3_END_OF_SIGNAL;
    irdata->sigdata[count + 1] = RR3_END_OF_SIGNAL;

    sendbuf_len = offsetof(struct redrat3_irdata,
                           sigdata[count + RR3_TX_TRAILER_LEN]);
    /* fill in our packet header */
    irdata->header.length = cpu_to_be16(sendbuf_len -
                                        sizeof(struct redrat3_header));
    irdata->header.transfer_type = cpu_to_be16(RR3_MOD_SIGNAL_OUT);
    irdata->pause = cpu_to_be32(redrat3_len_to_us(100));
    irdata->mod_freq_count = cpu_to_be16(mod_freq_to_val(rr3->carrier));
    irdata->no_lengths = curlencheck;
    irdata->sig_size = cpu_to_be16(count + RR3_TX_TRAILER_LEN);

    pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress);
    ret = usb_bulk_msg(rr3->udev, pipe, irdata,
                       sendbuf_len, &ret_len, 10 * HZ);
    rr3_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, ret);

    /* now tell the hardware to transmit what we sent it */
    pipe = usb_rcvctrlpipe(rr3->udev, 0);
    ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL,
                          USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
                          0, 0, irdata, 2, HZ * 10);

    if (ret < 0)
        dev_err(dev, "Error: control msg send failed, rc %d\n", ret);
    else
        ret = count;

out:
    kfree(sample_lens);
    kfree(irdata);

    rr3->transmitting = false;
    /* rr3 re-enables rc detector because it was enabled before */

    return ret;
}
Exemple #22
0
static void redrat3_process_ir_data(struct redrat3_dev *rr3)
{
	DEFINE_IR_RAW_EVENT(rawir);
	struct redrat3_signal_header header;
	struct device *dev;
	int i;
	unsigned long delay;
	u32 mod_freq, single_len;
	u16 *len_vals;
	u8 *data_vals;
	u32 tmp32;
	u16 tmp16;
	char *sig_data;

	if (!rr3) {
		pr_err("%s called with no context!\n", __func__);
		return;
	}

	rr3_ftr(rr3->dev, "Entered %s\n", __func__);

	dev = rr3->dev;
	sig_data = rr3->pbuf;

	header.length = rr3->pktlen;
	header.transfer_type = rr3->pkttype;

	/* Sanity check */
	if (!(header.length >= RR3_HEADER_LENGTH))
		dev_warn(dev, "read returned less than rr3 header len\n");

	delay = usecs_to_jiffies(rr3->rc->timeout / 1000);
	mod_timer(&rr3->rx_timeout, jiffies + delay);

	memcpy(&tmp32, sig_data + RR3_PAUSE_OFFSET, sizeof(tmp32));
	header.pause = be32_to_cpu(tmp32);

	memcpy(&tmp16, sig_data + RR3_FREQ_COUNT_OFFSET, sizeof(tmp16));
	header.mod_freq_count = be16_to_cpu(tmp16);

	memcpy(&tmp16, sig_data + RR3_NUM_PERIOD_OFFSET, sizeof(tmp16));
	header.no_periods = be16_to_cpu(tmp16);

	header.max_lengths = sig_data[RR3_MAX_LENGTHS_OFFSET];
	header.no_lengths = sig_data[RR3_NUM_LENGTHS_OFFSET];

	memcpy(&tmp16, sig_data + RR3_MAX_SIGS_OFFSET, sizeof(tmp16));
	header.max_sig_size = be16_to_cpu(tmp16);

	memcpy(&tmp16, sig_data + RR3_NUM_SIGS_OFFSET, sizeof(tmp16));
	header.sig_size = be16_to_cpu(tmp16);

	header.no_repeats= sig_data[RR3_REPEATS_OFFSET];

	if (debug) {
		redrat3_dump_signal_header(&header);
		redrat3_dump_signal_data(sig_data, header.sig_size);
	}

	mod_freq = redrat3_val_to_mod_freq(&header);
	rr3_dbg(dev, "Got mod_freq of %u\n", mod_freq);

	/* Here we pull out the 'length' values from the signal */
	len_vals = (u16 *)(sig_data + RR3_HEADER_LENGTH);

	data_vals = sig_data + RR3_HEADER_LENGTH +
		    (header.max_lengths * sizeof(u16));

	/* process each rr3 encoded byte into an int */
	for (i = 0; i < header.sig_size; i++) {
		u16 val = len_vals[data_vals[i]];
		single_len = redrat3_len_to_us((u32)be16_to_cpu(val));

		/* cap the value to IR_MAX_DURATION */
		single_len &= IR_MAX_DURATION;

		/* we should always get pulse/space/pulse/space samples */
		if (i % 2)
			rawir.pulse = false;
		else
			rawir.pulse = true;

		rawir.duration = US_TO_NS(single_len);
		rr3_dbg(dev, "storing %s with duration %d (i: %d)\n",
			rawir.pulse ? "pulse" : "space", rawir.duration, i);
		ir_raw_event_store_with_filter(rr3->rc, &rawir);
	}

	/* add a trailing space, if need be */
	if (i % 2) {
		rawir.pulse = false;
		/* this duration is made up, and may not be ideal... */
		rawir.duration = rr3->rc->timeout / 2;
		rr3_dbg(dev, "storing trailing space with duration %d\n",
			rawir.duration);
		ir_raw_event_store_with_filter(rr3->rc, &rawir);
	}

	rr3_dbg(dev, "calling ir_raw_event_handle\n");
	ir_raw_event_handle(rr3->rc);

	return;
}
static void redrat3_process_ir_data(struct redrat3_dev *rr3)
{
    DEFINE_IR_RAW_EVENT(rawir);
    struct device *dev;
    unsigned i, trailer = 0;
    unsigned sig_size, single_len, offset, val;
    unsigned long delay;
    u32 mod_freq;

    if (!rr3) {
        pr_err("%s called with no context!\n", __func__);
        return;
    }

    rr3_ftr(rr3->dev, "Entered %s\n", __func__);

    dev = rr3->dev;

    /* Make sure we reset the IR kfifo after a bit of inactivity */
    delay = usecs_to_jiffies(rr3->hw_timeout);
    mod_timer(&rr3->rx_timeout, jiffies + delay);

    mod_freq = redrat3_val_to_mod_freq(&rr3->irdata);
    rr3_dbg(dev, "Got mod_freq of %u\n", mod_freq);

    /* process each rr3 encoded byte into an int */
    sig_size = be16_to_cpu(rr3->irdata.sig_size);
    for (i = 0; i < sig_size; i++) {
        offset = rr3->irdata.sigdata[i];
        val = get_unaligned_be16(&rr3->irdata.lens[offset]);
        single_len = redrat3_len_to_us(val);

        /* we should always get pulse/space/pulse/space samples */
        if (i % 2)
            rawir.pulse = false;
        else
            rawir.pulse = true;

        rawir.duration = US_TO_NS(single_len);
        /* Save initial pulse length to fudge trailer */
        if (i == 0)
            trailer = rawir.duration;
        /* cap the value to IR_MAX_DURATION */
        rawir.duration &= IR_MAX_DURATION;

        rr3_dbg(dev, "storing %s with duration %d (i: %d)\n",
                rawir.pulse ? "pulse" : "space", rawir.duration, i);
        ir_raw_event_store_with_filter(rr3->rc, &rawir);
    }

    /* add a trailing space, if need be */
    if (i % 2) {
        rawir.pulse = false;
        /* this duration is made up, and may not be ideal... */
        if (trailer < US_TO_NS(1000))
            rawir.duration = US_TO_NS(2800);
        else
            rawir.duration = trailer;
        rr3_dbg(dev, "storing trailing space with duration %d\n",
                rawir.duration);
        ir_raw_event_store_with_filter(rr3->rc, &rawir);
    }

    rr3_dbg(dev, "calling ir_raw_event_handle\n");
    ir_raw_event_handle(rr3->rc);
}
static int __devinit redrat3_dev_probe(struct usb_interface *intf,
				       const struct usb_device_id *id)
{
	struct usb_device *udev = interface_to_usbdev(intf);
	struct device *dev = &intf->dev;
	struct usb_host_interface *uhi;
	struct redrat3_dev *rr3;
	struct usb_endpoint_descriptor *ep;
	struct usb_endpoint_descriptor *ep_in = NULL;
	struct usb_endpoint_descriptor *ep_out = NULL;
	u8 addr, attrs;
	int pipe, i;
	int retval = -ENOMEM;

	rr3_ftr(dev, "%s called\n", __func__);

	uhi = intf->cur_altsetting;

	/*                                         */
	for (i = 0; i < uhi->desc.bNumEndpoints; ++i) {
		ep = &uhi->endpoint[i].desc;
		addr = ep->bEndpointAddress;
		attrs = ep->bmAttributes;

		if ((ep_in == NULL) &&
		    ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) &&
		    ((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
		     USB_ENDPOINT_XFER_BULK)) {
			rr3_dbg(dev, "found bulk-in endpoint at 0x%02x\n",
				ep->bEndpointAddress);
			/*                                                  */
			if (ep->bEndpointAddress == RR3_BULK_IN_EP_ADDR)
				ep_in = ep;
		}

		if ((ep_out == NULL) &&
		    ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) &&
		    ((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
		     USB_ENDPOINT_XFER_BULK)) {
			rr3_dbg(dev, "found bulk-out endpoint at 0x%02x\n",
				ep->bEndpointAddress);
			ep_out = ep;
		}
	}

	if (!ep_in || !ep_out) {
		dev_err(dev, "Couldn't find both in and out endpoints\n");
		retval = -ENODEV;
		goto no_endpoints;
	}

	/*                                                        */
	rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL);
	if (rr3 == NULL) {
		dev_err(dev, "Memory allocation failure\n");
		goto no_endpoints;
	}

	rr3->dev = &intf->dev;

	/*                         */
	rr3->read_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!rr3->read_urb) {
		dev_err(dev, "Read urb allocation failure\n");
		goto error;
	}

	rr3->ep_in = ep_in;
	rr3->bulk_in_buf = usb_alloc_coherent(udev, ep_in->wMaxPacketSize,
					      GFP_ATOMIC, &rr3->dma_in);
	if (!rr3->bulk_in_buf) {
		dev_err(dev, "Read buffer allocation failure\n");
		goto error;
	}

	pipe = usb_rcvbulkpipe(udev, ep_in->bEndpointAddress);
	usb_fill_bulk_urb(rr3->read_urb, udev, pipe,
			  rr3->bulk_in_buf, ep_in->wMaxPacketSize,
			  (usb_complete_t)redrat3_handle_async, rr3);

	/*                         */
	rr3->write_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!rr3->write_urb) {
		dev_err(dev, "Write urb allocation failure\n");
		goto error;
	}

	rr3->ep_out = ep_out;
	rr3->bulk_out_buf = usb_alloc_coherent(udev, ep_out->wMaxPacketSize,
					       GFP_ATOMIC, &rr3->dma_out);
	if (!rr3->bulk_out_buf) {
		dev_err(dev, "Write buffer allocation failure\n");
		goto error;
	}

	pipe = usb_sndbulkpipe(udev, ep_out->bEndpointAddress);
	usb_fill_bulk_urb(rr3->write_urb, udev, pipe,
			  rr3->bulk_out_buf, ep_out->wMaxPacketSize,
			  (usb_complete_t)redrat3_write_bulk_callback, rr3);

	mutex_init(&rr3->lock);
	rr3->udev = udev;

	redrat3_reset(rr3);
	redrat3_get_firmware_rev(rr3);

	/*                             */
	retval = redrat3_enable_detector(rr3);
	if (retval < 0)
		goto error;

	/*                                                                  */
	rr3->hw_timeout = redrat3_get_timeout(rr3);

	/*                                                                */
	rr3->carrier = 38000;

	rr3->rc = redrat3_init_rc_dev(rr3);
	if (!rr3->rc)
		goto error;

	setup_timer(&rr3->rx_timeout, redrat3_rx_timeout, (unsigned long)rr3);

	/*                                                */
	usb_set_intfdata(intf, rr3);

	rr3_ftr(dev, "Exiting %s\n", __func__);
	return 0;

error:
	redrat3_delete(rr3, rr3->udev);

no_endpoints:
	dev_err(dev, "%s: retval = %x", __func__, retval);

	return retval;
}
static void redrat3_process_ir_data(struct redrat3_dev *rr3)
{
	DEFINE_IR_RAW_EVENT(rawir);
	struct redrat3_signal_header header;
	struct device *dev;
	int i, trailer = 0;
	unsigned long delay;
	u32 mod_freq, single_len;
	u16 *len_vals;
	u8 *data_vals;
	u32 tmp32;
	u16 tmp16;
	char *sig_data;

	if (!rr3) {
		pr_err("%s called with no context!\n", __func__);
		return;
	}

	rr3_ftr(rr3->dev, "Entered %s\n", __func__);

	dev = rr3->dev;
	sig_data = rr3->pbuf;

	header.length = rr3->pktlen;
	header.transfer_type = rr3->pkttype;

	/*              */
	if (!(header.length >= RR3_HEADER_LENGTH))
		dev_warn(dev, "read returned less than rr3 header len\n");

	/*                                                           */
	delay = usecs_to_jiffies(rr3->hw_timeout);
	mod_timer(&rr3->rx_timeout, jiffies + delay);

	memcpy(&tmp32, sig_data + RR3_PAUSE_OFFSET, sizeof(tmp32));
	header.pause = be32_to_cpu(tmp32);

	memcpy(&tmp16, sig_data + RR3_FREQ_COUNT_OFFSET, sizeof(tmp16));
	header.mod_freq_count = be16_to_cpu(tmp16);

	memcpy(&tmp16, sig_data + RR3_NUM_PERIOD_OFFSET, sizeof(tmp16));
	header.no_periods = be16_to_cpu(tmp16);

	header.max_lengths = sig_data[RR3_MAX_LENGTHS_OFFSET];
	header.no_lengths = sig_data[RR3_NUM_LENGTHS_OFFSET];

	memcpy(&tmp16, sig_data + RR3_MAX_SIGS_OFFSET, sizeof(tmp16));
	header.max_sig_size = be16_to_cpu(tmp16);

	memcpy(&tmp16, sig_data + RR3_NUM_SIGS_OFFSET, sizeof(tmp16));
	header.sig_size = be16_to_cpu(tmp16);

	header.no_repeats= sig_data[RR3_REPEATS_OFFSET];

	if (debug) {
		redrat3_dump_signal_header(&header);
		redrat3_dump_signal_data(sig_data, header.sig_size);
	}

	mod_freq = redrat3_val_to_mod_freq(&header);
	rr3_dbg(dev, "Got mod_freq of %u\n", mod_freq);

	/*                                                      */
	len_vals = (u16 *)(sig_data + RR3_HEADER_LENGTH);

	data_vals = sig_data + RR3_HEADER_LENGTH +
		    (header.max_lengths * sizeof(u16));

	/*                                           */
	for (i = 0; i < header.sig_size; i++) {
		u16 val = len_vals[data_vals[i]];
		single_len = redrat3_len_to_us((u32)be16_to_cpu(val));

		/*                                                      */
		if (i % 2)
			rawir.pulse = false;
		else
			rawir.pulse = true;

		rawir.duration = US_TO_NS(single_len);
		/*                                            */
		if (i == 0)
			trailer = rawir.duration;
		/*                                  */
		rawir.duration &= IR_MAX_DURATION;

		rr3_dbg(dev, "storing %s with duration %d (i: %d)\n",
			rawir.pulse ? "pulse" : "space", rawir.duration, i);
		ir_raw_event_store_with_filter(rr3->rc, &rawir);
	}

	/*                                  */
	if (i % 2) {
		rawir.pulse = false;
		/*                                                   */
		if (trailer < US_TO_NS(1000))
			rawir.duration = US_TO_NS(2800);
		else
			rawir.duration = trailer;
		rr3_dbg(dev, "storing trailing space with duration %d\n",
			rawir.duration);
		ir_raw_event_store_with_filter(rr3->rc, &rawir);
	}

	rr3_dbg(dev, "calling ir_raw_event_handle\n");
	ir_raw_event_handle(rr3->rc);

	return;
}
static int redrat3_transmit_ir(struct rc_dev *rcdev, unsigned *txbuf,
				unsigned count)
{
	struct redrat3_dev *rr3 = rcdev->priv;
	struct device *dev = rr3->dev;
	struct redrat3_signal_header header;
	int i, j, ret, ret_len, offset;
	int lencheck, cur_sample_len, pipe;
	char *buffer = NULL, *sigdata = NULL;
	int *sample_lens = NULL;
	u32 tmpi;
	u16 tmps;
	u8 *datap;
	u8 curlencheck = 0;
	u16 *lengths_ptr;
	int sendbuf_len;

	rr3_ftr(dev, "Entering %s\n", __func__);

	if (rr3->transmitting) {
		dev_warn(dev, "%s: transmitter already in use\n", __func__);
		return -EAGAIN;
	}

	if (count > (RR3_DRIVER_MAXLENS * 2))
		return -EINVAL;

	/*                                          */
	rr3->det_enabled = false;
	rr3->transmitting = true;

	sample_lens = kzalloc(sizeof(int) * RR3_DRIVER_MAXLENS, GFP_KERNEL);
	if (!sample_lens) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < count; i++) {
		for (lencheck = 0; lencheck < curlencheck; lencheck++) {
			cur_sample_len = redrat3_us_to_len(txbuf[i]);
			if (sample_lens[lencheck] == cur_sample_len)
				break;
		}
		if (lencheck == curlencheck) {
			cur_sample_len = redrat3_us_to_len(txbuf[i]);
			rr3_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n",
				i, txbuf[i], curlencheck, cur_sample_len);
			if (curlencheck < 255) {
				/*                                  
                   */
				sample_lens[curlencheck] = cur_sample_len;
				curlencheck++;
			} else {
				dev_err(dev, "signal too long\n");
				ret = -EINVAL;
				goto out;
			}
		}
	}

	sigdata = kzalloc((count + RR3_TX_TRAILER_LEN), GFP_KERNEL);
	if (!sigdata) {
		ret = -ENOMEM;
		goto out;
	}

	sigdata[count] = RR3_END_OF_SIGNAL;
	sigdata[count + 1] = RR3_END_OF_SIGNAL;
	for (i = 0; i < count; i++) {
		for (j = 0; j < curlencheck; j++) {
			if (sample_lens[j] == redrat3_us_to_len(txbuf[i]))
				sigdata[i] = j;
		}
	}

	offset = RR3_TX_HEADER_OFFSET;
	sendbuf_len = RR3_HEADER_LENGTH + (sizeof(u16) * RR3_DRIVER_MAXLENS)
			+ count + RR3_TX_TRAILER_LEN + offset;

	buffer = kzalloc(sendbuf_len, GFP_KERNEL);
	if (!buffer) {
		ret = -ENOMEM;
		goto out;
	}

	/*                           */
	header.length = sendbuf_len - offset;
	header.transfer_type = RR3_MOD_SIGNAL_OUT;
	header.pause = redrat3_len_to_us(100);
	header.mod_freq_count = mod_freq_to_val(rr3->carrier);
	header.no_periods = 0; /*                 */
	header.max_lengths = RR3_DRIVER_MAXLENS;
	header.no_lengths = curlencheck;
	header.max_sig_size = RR3_MAX_SIG_SIZE;
	header.sig_size = count + RR3_TX_TRAILER_LEN;
	/*                                                                */
	header.no_repeats = 0;

	tmps = cpu_to_be16(header.length);
	memcpy(buffer, &tmps, 2);

	tmps = cpu_to_be16(header.transfer_type);
	memcpy(buffer + 2, &tmps, 2);

	tmpi = cpu_to_be32(header.pause);
	memcpy(buffer + offset, &tmpi, sizeof(tmpi));

	tmps = cpu_to_be16(header.mod_freq_count);
	memcpy(buffer + offset + RR3_FREQ_COUNT_OFFSET, &tmps, 2);

	buffer[offset + RR3_NUM_LENGTHS_OFFSET] = header.no_lengths;

	tmps = cpu_to_be16(header.sig_size);
	memcpy(buffer + offset + RR3_NUM_SIGS_OFFSET, &tmps, 2);

	buffer[offset + RR3_REPEATS_OFFSET] = header.no_repeats;

	lengths_ptr = (u16 *)(buffer + offset + RR3_HEADER_LENGTH);
	for (i = 0; i < curlencheck; ++i)
		lengths_ptr[i] = cpu_to_be16(sample_lens[i]);

	datap = (u8 *)(buffer + offset + RR3_HEADER_LENGTH +
			    (sizeof(u16) * RR3_DRIVER_MAXLENS));
	memcpy(datap, sigdata, (count + RR3_TX_TRAILER_LEN));

	if (debug) {
		redrat3_dump_signal_header(&header);
		redrat3_dump_signal_data(buffer, header.sig_size);
	}

	pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress);
	tmps = usb_bulk_msg(rr3->udev, pipe, buffer,
			    sendbuf_len, &ret_len, 10 * HZ);
	rr3_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, tmps);

	/*                                                   */
	pipe = usb_rcvctrlpipe(rr3->udev, 0);
	ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL,
			      USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
			      0, 0, buffer, 2, HZ * 10);

	if (ret < 0)
		dev_err(dev, "Error: control msg send failed, rc %d\n", ret);
	else
		ret = count;

out:
	kfree(sample_lens);
	kfree(buffer);
	kfree(sigdata);

	rr3->transmitting = false;
	/*                                                          */
	rr3->det_enabled = true;

	return ret;
}
static int redrat3_dev_probe(struct usb_interface *intf,
                             const struct usb_device_id *id)
{
    struct usb_device *udev = interface_to_usbdev(intf);
    struct device *dev = &intf->dev;
    struct usb_host_interface *uhi;
    struct redrat3_dev *rr3;
    struct usb_endpoint_descriptor *ep;
    struct usb_endpoint_descriptor *ep_in = NULL;
    struct usb_endpoint_descriptor *ep_out = NULL;
    u8 addr, attrs;
    int pipe, i;
    int retval = -ENOMEM;

    rr3_ftr(dev, "%s called\n", __func__);

    uhi = intf->cur_altsetting;

    /* find our bulk-in and bulk-out endpoints */
    for (i = 0; i < uhi->desc.bNumEndpoints; ++i) {
        ep = &uhi->endpoint[i].desc;
        addr = ep->bEndpointAddress;
        attrs = ep->bmAttributes;

        if ((ep_in == NULL) &&
                ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) &&
                ((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
                 USB_ENDPOINT_XFER_BULK)) {
            rr3_dbg(dev, "found bulk-in endpoint at 0x%02x\n",
                    ep->bEndpointAddress);
            /* data comes in on 0x82, 0x81 is for other data... */
            if (ep->bEndpointAddress == RR3_BULK_IN_EP_ADDR)
                ep_in = ep;
        }

        if ((ep_out == NULL) &&
                ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) &&
                ((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
                 USB_ENDPOINT_XFER_BULK)) {
            rr3_dbg(dev, "found bulk-out endpoint at 0x%02x\n",
                    ep->bEndpointAddress);
            ep_out = ep;
        }
    }

    if (!ep_in || !ep_out) {
        dev_err(dev, "Couldn't find both in and out endpoints\n");
        retval = -ENODEV;
        goto no_endpoints;
    }

    /* allocate memory for our device state and initialize it */
    rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL);
    if (rr3 == NULL) {
        dev_err(dev, "Memory allocation failure\n");
        goto no_endpoints;
    }

    rr3->dev = &intf->dev;

    /* set up bulk-in endpoint */
    rr3->read_urb = usb_alloc_urb(0, GFP_KERNEL);
    if (!rr3->read_urb) {
        dev_err(dev, "Read urb allocation failure\n");
        goto error;
    }

    rr3->ep_in = ep_in;
    rr3->bulk_in_buf = usb_alloc_coherent(udev,
                                          le16_to_cpu(ep_in->wMaxPacketSize), GFP_ATOMIC, &rr3->dma_in);
    if (!rr3->bulk_in_buf) {
        dev_err(dev, "Read buffer allocation failure\n");
        goto error;
    }

    pipe = usb_rcvbulkpipe(udev, ep_in->bEndpointAddress);
    usb_fill_bulk_urb(rr3->read_urb, udev, pipe, rr3->bulk_in_buf,
                      le16_to_cpu(ep_in->wMaxPacketSize), redrat3_handle_async, rr3);

    rr3->ep_out = ep_out;
    rr3->udev = udev;

    redrat3_reset(rr3);
    redrat3_get_firmware_rev(rr3);

    /* might be all we need to do? */
    retval = redrat3_enable_detector(rr3);
    if (retval < 0)
        goto error;

    /* store current hardware timeout, in us, will use for kfifo resets */
    rr3->hw_timeout = redrat3_get_timeout(rr3);

    /* default.. will get overridden by any sends with a freq defined */
    rr3->carrier = 38000;

    /* led control */
    rr3->led.name = "redrat3:red:feedback";
    rr3->led.default_trigger = "rc-feedback";
    rr3->led.brightness_set = redrat3_brightness_set;
    retval = led_classdev_register(&intf->dev, &rr3->led);
    if (retval)
        goto error;

    atomic_set(&rr3->flash, 0);
    rr3->flash_urb = usb_alloc_urb(0, GFP_KERNEL);
    if (!rr3->flash_urb) {
        retval = -ENOMEM;
        goto led_free_error;
    }

    /* setup packet is 'c0 b9 0000 0000 0001' */
    rr3->flash_control.bRequestType = 0xc0;
    rr3->flash_control.bRequest = RR3_BLINK_LED;
    rr3->flash_control.wLength = cpu_to_le16(1);

    usb_fill_control_urb(rr3->flash_urb, udev, usb_rcvctrlpipe(udev, 0),
                         (unsigned char *)&rr3->flash_control,
                         &rr3->flash_in_buf, sizeof(rr3->flash_in_buf),
                         redrat3_led_complete, rr3);

    rr3->rc = redrat3_init_rc_dev(rr3);
    if (!rr3->rc) {
        retval = -ENOMEM;
        goto led_free_error;
    }
    setup_timer(&rr3->rx_timeout, redrat3_rx_timeout, (unsigned long)rr3);

    /* we can register the device now, as it is ready */
    usb_set_intfdata(intf, rr3);

    rr3_ftr(dev, "Exiting %s\n", __func__);
    return 0;

led_free_error:
    led_classdev_unregister(&rr3->led);
error:
    redrat3_delete(rr3, rr3->udev);

no_endpoints:
    dev_err(dev, "%s: retval = %x", __func__, retval);

    return retval;
}