Exemple #1
0
static inline int __rt_comedi_command_data_wread(void *dev, unsigned int subdev, long nchans, lsampl_t *data, RTIME until, unsigned int *cbmaskarg, int waitmode)
{
	unsigned int cbmask, mask;
	long retval, kspace;
	if ((kspace = KSPACE(cbmaskarg))) {
		mask = cbmaskarg[0];
	} else {
		rt_get_user(mask, cbmaskarg);
	}
	switch (waitmode) {
		case WAIT:
			retval = rt_comedi_wait(&cbmask);
			break;
		case WAITIF:
			retval = rt_comedi_wait_if(&cbmask);
			break;
		case WAITUNTIL:
			retval = _rt_comedi_wait_until(&cbmask, until);
			break;
		default: // useless, just to avoid compiler warnings
			return RTE_PERM;
	}
	if (!retval && (mask & cbmask)) {
		if (kspace) {
			cbmaskarg[0] = cbmask;
		} else {
			rt_put_user(cbmask, cbmaskarg);
		}
		return rt_comedi_command_data_read(dev, subdev, nchans, data);
	}
	return retval;
}
Exemple #2
0
static inline long long handle_lxrt_request (unsigned int lxsrq, long *arg, RT_TASK *task)
{
#define larg ((struct arg *)arg)

	union {unsigned long name; RT_TASK *rt_task; SEM *sem; MBX *mbx; RWL *rwl; SPL *spl; int i; void *p; long long ll; } arg0;
	int srq;

	if (likely((srq = SRQ(lxsrq)) < MAX_LXRT_FUN)) {
		unsigned long type;
		struct rt_fun_entry *funcm;
/*
 * The next two lines of code do a lot. It makes possible to extend the use of
 * USP to any other real time module service in user space, both for soft and
 * hard real time. Concept contributed and copyrighted by: Giuseppe Renoldi 
 * ([email protected]).
 */
		if (unlikely(!(funcm = rt_fun_ext[INDX(lxsrq)]))) {
			rt_printk("BAD: null rt_fun_ext, no module for extension %d?\n", INDX(lxsrq));
			return -ENOSYS;
		}
		if (!(type = funcm[srq].type)) {
			return ((RTAI_SYSCALL_MODE long long (*)(unsigned long, ...))funcm[srq].fun)(RTAI_FUN_ARGS);
		}
		if (unlikely(NEED_TO_RW(type))) {
			lxrt_fun_call_wbuf(task, funcm[srq].fun, NARG(lxsrq), arg, type);
		} else {
			lxrt_fun_call(task, funcm[srq].fun, NARG(lxsrq), arg);
	        }
		return task->retval;
	}

	arg0.name = arg[0];
	switch (srq) {
		case LXRT_GET_ADR: {
			arg0.p = rt_get_adr(arg0.name);
			return arg0.ll;
		}

		case LXRT_GET_NAME: {
			arg0.name = rt_get_name(arg0.p);
			return arg0.ll;
		}

		case LXRT_TASK_INIT: {
			struct arg { unsigned long name; long prio, stack_size, max_msg_size, cpus_allowed; };
			arg0.rt_task = __task_init(arg0.name, larg->prio, larg->stack_size, larg->max_msg_size, larg->cpus_allowed);
			return arg0.ll;
		}

		case LXRT_TASK_DELETE: {
			arg0.i = __task_delete(arg0.rt_task ? arg0.rt_task : task);
			return arg0.ll;
		}

		case LXRT_SEM_INIT: {
			if (rt_get_adr(arg0.name)) {
				return 0;
			}
			if ((arg0.sem = rt_malloc(sizeof(SEM)))) {
				struct arg { unsigned long name; long cnt; long typ; };
				lxrt_typed_sem_init(arg0.sem, larg->cnt, larg->typ);
				if (rt_register(larg->name, arg0.sem, IS_SEM, current)) {
					return arg0.ll;
				} else {
					rt_free(arg0.sem);
				}
			}
			return 0;
		}

		case LXRT_SEM_DELETE: {
			if (lxrt_sem_delete(arg0.sem)) {
				arg0.i = -EFAULT;
				return arg0.ll;
			}
			rt_free(arg0.sem);
			arg0.i = rt_drg_on_adr(arg0.sem);
			return arg0.ll;
		}

		case LXRT_MBX_INIT: {
			if (rt_get_adr(arg0.name)) {
				return 0;
			}
			if ((arg0.mbx = rt_malloc(sizeof(MBX)))) {
				struct arg { unsigned long name; long size; int qtype; };
				if (lxrt_typed_mbx_init(arg0.mbx, larg->size, larg->qtype) < 0) {
					rt_free(arg0.mbx);
					return 0;
				}
				if (rt_register(larg->name, arg0.mbx, IS_MBX, current)) {
					return arg0.ll;
				} else {
					rt_free(arg0.mbx);
				}
			}
			return 0;
		}

		case LXRT_MBX_DELETE: {
			if (lxrt_mbx_delete(arg0.mbx)) {
				arg0.i = -EFAULT;
				return arg0.ll;
			}
			rt_free(arg0.mbx);
			arg0.i = rt_drg_on_adr(arg0.mbx);
			return arg0.ll;
		}

		case LXRT_RWL_INIT: {
			if (rt_get_adr(arg0.name)) {
				return 0;
			}
			if ((arg0.rwl = rt_malloc(sizeof(RWL)))) {
				struct arg { unsigned long name; long type; };
				lxrt_typed_rwl_init(arg0.rwl, larg->type);
				if (rt_register(larg->name, arg0.rwl, IS_SEM, current)) {
					return arg0.ll;
				} else {
					rt_free(arg0.rwl);
				}
			}
			return 0;
		}

		case LXRT_RWL_DELETE: {
			if (lxrt_rwl_delete(arg0.rwl)) {
				arg0.i = -EFAULT;
				return arg0.ll;
			}
			rt_free(arg0.rwl);
			arg0.i = rt_drg_on_adr(arg0.rwl);
			return arg0.ll;
		}

		case LXRT_SPL_INIT: {
			if (rt_get_adr(arg0.name)) {
				return 0;
			}
			if ((arg0.spl = rt_malloc(sizeof(SPL)))) {
				struct arg { unsigned long name; };
				lxrt_spl_init(arg0.spl);
				if (rt_register(larg->name, arg0.spl, IS_SEM, current)) {
					return arg0.ll;
				} else {
					rt_free(arg0.spl);
				}
			}
			return 0;
		}

		case LXRT_SPL_DELETE: {
			if (lxrt_spl_delete(arg0.spl)) {
				arg0.i = -EFAULT;
				return arg0.ll;
			}
			rt_free(arg0.spl);
			arg0.i = rt_drg_on_adr(arg0.spl);
			return arg0.ll;
		}

		case MAKE_HARD_RT: {
			rt_make_hard_real_time(task);
			return 0;
			if (!task || task->is_hard) {
				 return 0;
			}
			steal_from_linux(task);
			return 0;
		}

		case MAKE_SOFT_RT: {
			rt_make_soft_real_time(task);
			return 0;
			if (!task || !task->is_hard) {
				return 0;
			}
			if (task->is_hard < 0) {
				task->is_hard = 0;
			} else {
				give_back_to_linux(task, 0);
			}
			return 0;
		}
		case PRINT_TO_SCREEN: {
			struct arg { char *display; long nch; };
			arg0.i = rtai_print_to_screen("%s", larg->display);
			return arg0.ll;
		}

		case PRINTK: {
			struct arg { char *display; long nch; };
			arg0.i = rt_printk("%s", larg->display);
			return arg0.ll;
		}

		case NONROOT_HRT: {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24)
			current->cap_effective |= ((1 << CAP_IPC_LOCK)  |
						   (1 << CAP_SYS_RAWIO) |
						   (1 << CAP_SYS_NICE));
#else
			set_lxrt_perm(CAP_IPC_LOCK);
			set_lxrt_perm(CAP_SYS_RAWIO);
			set_lxrt_perm(CAP_SYS_NICE);
#endif
			return 0;
		}

		case RT_BUDDY: {
			arg0.rt_task = task && current->rtai_tskext(TSKEXT1) == current ? task : NULL;
			return arg0.ll;
		}

		case HRT_USE_FPU: {
			struct arg { RT_TASK *task; long use_fpu; };
			if(!larg->use_fpu) {
				clear_lnxtsk_uses_fpu((larg->task)->lnxtsk);
			} else {
				init_fpu((larg->task)->lnxtsk);
			}
			return 0;
		}

                case GET_USP_FLAGS: {
                        arg0.name = arg0.rt_task->usp_flags;
			return arg0.ll;
                }
                case SET_USP_FLAGS: {
                        struct arg { RT_TASK *task; unsigned long flags; };
                        arg0.rt_task->usp_flags = larg->flags;
                        arg0.rt_task->force_soft = (arg0.rt_task->is_hard > 0) && (larg->flags & arg0.rt_task->usp_flags_mask & FORCE_SOFT);
                        return 0;
                }

                case GET_USP_FLG_MSK: {
                        arg0.name = arg0.rt_task->usp_flags_mask;
			return arg0.ll;
                }

                case SET_USP_FLG_MSK: {
                        task->usp_flags_mask = arg0.name;
                        task->force_soft = (task->is_hard > 0) && (task->usp_flags & arg0.name & FORCE_SOFT);
                        return 0;
                }

                case FORCE_TASK_SOFT: {
			extern void rt_do_force_soft(RT_TASK *rt_task);
                        struct task_struct *ltsk;
                        if ((ltsk = find_task_by_pid(arg0.name)))  {
                                if ((arg0.rt_task = ltsk->rtai_tskext(TSKEXT0))) {
					if ((arg0.rt_task->force_soft = (arg0.rt_task->is_hard != 0) && FORCE_SOFT)) {
						rt_do_force_soft(arg0.rt_task);
					}
					return arg0.ll;
                                }
                        }
                        return 0;
                }

		case IS_HARD: {
			arg0.i = arg0.rt_task || (arg0.rt_task = current->rtai_tskext(TSKEXT0)) ? arg0.rt_task->is_hard : 0;
			return arg0.ll;
		}
		case GET_EXECTIME: {
			struct arg { RT_TASK *task; RTIME *exectime; };
			if ((larg->task)->exectime[0] && (larg->task)->exectime[1]) {
				larg->exectime[0] = (larg->task)->exectime[0]; 
				larg->exectime[1] = (larg->task)->exectime[1]; 
				larg->exectime[2] = rtai_rdtsc(); 
			}
                        return 0;
		}
		case GET_TIMEORIG: {
			struct arg { RTIME *time_orig; };
			if (larg->time_orig) {
				RTIME time_orig[2];
				rt_gettimeorig(time_orig);
				rt_copy_to_user(larg->time_orig, time_orig, sizeof(time_orig));
			} else {
				rt_gettimeorig(NULL);
			}
                        return 0;
		}

		case LINUX_SERVER: {
			struct arg { struct linux_syscalls_list syscalls; };
			if (larg->syscalls.nr) {
				if (larg->syscalls.task->linux_syscall_server) {
					RT_TASK *serv;
					rt_get_user(serv, &larg->syscalls.serv);
					rt_task_masked_unblock(serv, ~RT_SCHED_READY);
				}
				larg->syscalls.task->linux_syscall_server = larg->syscalls.serv;
				rtai_set_linux_task_priority(current, (larg->syscalls.task)->lnxtsk->policy, (larg->syscalls.task)->lnxtsk->rt_priority);
				arg0.rt_task = __task_init((unsigned long)larg->syscalls.task, larg->syscalls.task->base_priority >= BASE_SOFT_PRIORITY ? larg->syscalls.task->base_priority - BASE_SOFT_PRIORITY : larg->syscalls.task->base_priority, 0, 0, 1 << larg->syscalls.task->runnable_on_cpus);

				larg->syscalls.task->linux_syscall_server = arg0.rt_task;
				arg0.rt_task->linux_syscall_server = larg->syscalls.serv;

				return arg0.ll;
			} else {
				if (!larg->syscalls.task) {
					larg->syscalls.task = RT_CURRENT;
				}
				if ((arg0.rt_task = larg->syscalls.task->linux_syscall_server)) {
					larg->syscalls.task->linux_syscall_server = NULL;
					arg0.rt_task->suspdepth = -RTE_HIGERR;
					rt_task_masked_unblock(arg0.rt_task, ~RT_SCHED_READY);
				}
			}
			return 0;
		}

	        default: {
		    rt_printk("RTAI/LXRT: Unknown srq #%d\n", srq);
		    arg0.i = -ENOSYS;
		    return arg0.ll;
		}
	}
	return 0;
}