Exemple #1
0
static void __exit scc_enet_cleanup(void)
{
	struct rtnet_device *rtdev = rtdev_root;
	struct scc_enet_private *cep = (struct scc_enet_private *)rtdev->priv;
	volatile cpm8xx_t *cp = cpmp;
	volatile scc_enet_t *ep;

	if (rtdev) {
		rtdm_irq_disable(&cep->irq_handle);
		rtdm_irq_free(&cep->irq_handle);

		ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]);
		m8xx_cpm_dpfree(ep->sen_genscc.scc_rbase);
		m8xx_cpm_dpfree(ep->sen_genscc.scc_tbase);

		rt_stack_disconnect(rtdev);
		rt_unregister_rtnetdev(rtdev);
		rt_rtdev_disconnect(rtdev);

		printk("%s: unloaded\n", rtdev->name);
		rtskb_pool_release(&cep->skb_pool);
		rtdev_free(rtdev);
		rtdev_root = NULL;
	}
}
static int uart_close_nrt(struct rtdm_dev_context *context,rtdm_user_info_t * user_info)
{
	int err;
        MY_DEV *up=(MY_DEV *)context->device->device_data;
	
	dev_dbg(up->dev, "serial_omap_shutdown+%d\n", up->line);	
	
	up->ier = 0;
	serial_out(up, UART_IER, 0);

	//disable break condition and FIFOs
	serial_out(up,UART_LCR,serial_in(up,UART_LCR) & ~UART_LCR_SBC);
	serial_omap_clear_fifos(up);

	//read data port to reset things and then free irq
	if(serial_in(up,UART_LSR) & UART_LSR_DR)
		(void)serial_in(up,UART_RX);

	err=rtdm_irq_disable(&up->irq_handle);//enable irq
        if(err<0)
        {
                rtdm_printk("error in rtdm_irq_disable\n");
                return err;
        }
        rtdm_printk("rtdm_irq_disable\n");
	rtdm_irq_free(&up->irq_handle);	
	 free_irq(up->irq, up);		
        return 0;
}
Exemple #3
0
static int tulip_close (/*RTnet*/struct rtnet_device *rtdev)
{
	long ioaddr = rtdev->base_addr;
	struct tulip_private *tp = (struct tulip_private *) rtdev->priv;
	int i;

	rtnetif_stop_queue (rtdev);

	tulip_down (rtdev);

	if (tulip_debug > 1)
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
			rtdev->name, inl (ioaddr + CSR5));

	rtdm_irq_free(&tp->irq_handle);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct /*RTnet*/rtskb *skb = tp->rx_buffers[i].skb;
		dma_addr_t mapping = tp->rx_buffers[i].mapping;

		tp->rx_buffers[i].skb = NULL;
		tp->rx_buffers[i].mapping = 0;

		tp->rx_ring[i].status = 0;	/* Not owned by Tulip chip. */
		tp->rx_ring[i].length = 0;
		tp->rx_ring[i].buffer1 = 0xBADF00D0;	/* An invalid address. */
		if (skb) {
			pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
					 PCI_DMA_FROMDEVICE);
			/*RTnet*/dev_kfree_rtskb (skb);
		}
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		struct /*RTnet*/rtskb *skb = tp->tx_buffers[i].skb;

		if (skb != NULL) {
			pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
					 skb->len, PCI_DMA_TODEVICE);
			/*RTnet*/dev_kfree_rtskb (skb);
		}
		tp->tx_buffers[i].skb = NULL;
		tp->tx_buffers[i].mapping = 0;
	}

	rt_stack_disconnect(rtdev);

	return 0;
}
Exemple #4
0
void cleanup_mpu9150_irq(void)
{
	rtdm_printk("MPU9150-IRQ: Releasing IRQ resources...\n");

	if( irq_requested )
	{
		rtdm_irq_disable( &mpu9150_irq );
		rtdm_irq_free( &mpu9150_irq );
	}

	if( irq_gpio_requested )
		gpio_free( mpu9150_irq_desc.gpio_desc.gpio );

	// Close the pipe
	rt_pipe_delete( &pipe_desc );

	rtdm_printk("MPU9150-IRQ: IRQ resources released\n");
}
Exemple #5
0
int demo_close_rt(struct rtdm_dev_context   *context,
                  rtdm_user_info_t          *user_info)
{
    struct demodrv_context  *my_context;
    rtdm_lockctx_t          lock_ctx;
#ifdef USEMMAP
    unsigned long vaddr;
#endif
    // get the context
    my_context = (struct demodrv_context *)context->dev_private;

#ifdef USEMMAP
    // printk some test value
    printk("%d\n", *((int *)my_context->buf + 10));

    // munmap our buffer
    if (my_context->mapped_user_addr) {
        int ret = rtdm_munmap(my_context->mapped_user_info,
                              my_context->mapped_user_addr, BUFFER_SIZE);
        printk("rtdm_munmap = %p, %d\n", my_context->mapped_user_info, ret);
    }

    /* clear pages reserved */
    for (vaddr = (unsigned long)my_context->buf;
         vaddr < (unsigned long)my_context->buf + BUFFER_SIZE;
         vaddr += PAGE_SIZE)
        ClearPageReserved(virt_to_page(vaddr));

    kfree(my_context->buf);
#endif

    // if we need to do some stuff with preemption disabled:
    rtdm_lock_get_irqsave(&my_context->lock, lock_ctx);
    // other stuff here
    rtdm_lock_put_irqrestore(&my_context->lock, lock_ctx);

    // free irq in RTDM
    rtdm_irq_free(&my_context->irq_handle);
    // destroy our interrupt signal/event
    rtdm_event_destroy(&my_context->irq_event);
    return 0;
}
static int rt2x00_dev_radio_off(struct _rt2x00_device * device) {

    struct _rt2x00_pci	*rt2x00pci = rt2x00_priv(device);
    u32			reg = 0x00000000;
    int retval=0;

    rt2x00_register_write(rt2x00pci, PWRCSR0, cpu_to_le32(0x00000000));

    rt2x00_register_read(rt2x00pci, TXCSR0, &reg);
    rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
    rt2x00_register_write(rt2x00pci, TXCSR0, reg);

    rt2x00_register_read(rt2x00pci, RXCSR0, &reg);
    rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
    rt2x00_register_write(rt2x00pci, RXCSR0, reg);

    rt2x00_register_read(rt2x00pci, LEDCSR, &reg);
    rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
    rt2x00_register_write(rt2x00pci, LEDCSR, reg);

    rt2x00_register_read(rt2x00pci, CSR8, &reg);
    rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, 1);
    rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 1);
    rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 1);
    rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 1);
    rt2x00_set_field32(&reg, CSR8_RXDONE, 1);
    rt2x00_register_write(rt2x00pci, CSR8, reg);

    rt2x00_pci_free_rings(device);

    if((retval=rtdm_irq_free(&rt2x00pci->irq_handle)) != 0)
        ERROR("rtdm_irq_free=%d\n", retval);

    rt_stack_disconnect(device->rtnet_dev);

    return retval;
}
Exemple #7
0
/* Initialize the CPM Ethernet on SCC.  If EPPC-Bug loaded us, or performed
 * some other network I/O, a whole bunch of this has already been set up.
 * It is no big deal if we do it again, we just have to disable the
 * transmit and receive to make sure we don't catch the CPM with some
 * inconsistent control information.
 */
int __init scc_enet_init(void)
{
	struct rtnet_device *rtdev = NULL;
	struct scc_enet_private *cep;
	int i, j, k;
	unsigned char	*eap, *ba;
	dma_addr_t	mem_addr;
	bd_t		*bd;
	volatile	cbd_t		*bdp;
	volatile	cpm8xx_t	*cp;
	volatile	scc_t		*sccp;
	volatile	scc_enet_t	*ep;
	volatile	immap_t		*immap;

	cp = cpmp;	/* Get pointer to Communication Processor */

	immap = (immap_t *)(mfspr(IMMR) & 0xFFFF0000);	/* and to internal registers */

	bd = (bd_t *)__res;

	/* Configure the SCC parameters (this has formerly be done 
	 * by macro definitions).
	 */
	switch (rtnet_scc) {
	case 3:
		CPM_CR_ENET = CPM_CR_CH_SCC3;
		PROFF_ENET  = PROFF_SCC3;
		SCC_ENET    = 2;		/* Index, not number! */
		CPMVEC_ENET = CPMVEC_SCC3;
		break;
	case 2:
		CPM_CR_ENET = CPM_CR_CH_SCC2;
		PROFF_ENET  = PROFF_SCC2;
		SCC_ENET    = 1;		/* Index, not number! */
		CPMVEC_ENET = CPMVEC_SCC2;
		break;
	case 1:
		CPM_CR_ENET = CPM_CR_CH_SCC1;
		PROFF_ENET  = PROFF_SCC1;
		SCC_ENET    = 0;		/* Index, not number! */
		CPMVEC_ENET = CPMVEC_SCC1;
		break;
	default:
		printk(KERN_ERR "enet: SCC%d doesn't exit (check rtnet_scc)\n", rtnet_scc);
		return -1;
	}

	/* Allocate some private information and create an Ethernet device instance.
	*/
	rtdev = rtdev_root = rt_alloc_etherdev(sizeof(struct scc_enet_private));
	if (rtdev == NULL) {
		printk(KERN_ERR "enet: Could not allocate ethernet device.\n");
		return -1;
	}
	rtdev_alloc_name(rtdev, "rteth%d");
	rt_rtdev_connect(rtdev, &RTDEV_manager);
	RTNET_SET_MODULE_OWNER(rtdev);
	rtdev->vers = RTDEV_VERS_2_0;

	cep = (struct scc_enet_private *)rtdev->priv;
	rtdm_lock_init(&cep->lock);

	/* Get pointer to SCC area in parameter RAM.
	*/
	ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]);

	/* And another to the SCC register area.
	*/
	sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]);
	cep->sccp = (scc_t *)sccp;		/* Keep the pointer handy */

	/* Disable receive and transmit in case EPPC-Bug started it.
	*/
	sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);

	/* Cookbook style from the MPC860 manual.....
	 * Not all of this is necessary if EPPC-Bug has initialized
	 * the network.
	 * So far we are lucky, all board configurations use the same
	 * pins, or at least the same I/O Port for these functions.....
	 * It can't last though......
	 */

#if (defined(PA_ENET_RXD) && defined(PA_ENET_TXD))
	/* Configure port A pins for Txd and Rxd.
	*/
	immap->im_ioport.iop_papar |=  (PA_ENET_RXD | PA_ENET_TXD);
	immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD);
	immap->im_ioport.iop_paodr &=                ~PA_ENET_TXD;
#elif (defined(PB_ENET_RXD) && defined(PB_ENET_TXD))
	/* Configure port B pins for Txd and Rxd.
	*/
	immap->im_cpm.cp_pbpar |=  (PB_ENET_RXD | PB_ENET_TXD);
	immap->im_cpm.cp_pbdir &= ~(PB_ENET_RXD | PB_ENET_TXD);
	immap->im_cpm.cp_pbodr &=		 ~PB_ENET_TXD;
#else
#error Exactly ONE pair of PA_ENET_[RT]XD, PB_ENET_[RT]XD must be defined
#endif

#if defined(PC_ENET_LBK)
	/* Configure port C pins to disable External Loopback
	 */
	immap->im_ioport.iop_pcpar &= ~PC_ENET_LBK;
	immap->im_ioport.iop_pcdir |=  PC_ENET_LBK;
	immap->im_ioport.iop_pcso  &= ~PC_ENET_LBK;
	immap->im_ioport.iop_pcdat &= ~PC_ENET_LBK;	/* Disable Loopback */
#endif	/* PC_ENET_LBK */

	/* Configure port C pins to enable CLSN and RENA.
	*/
	immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA);
	immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA);
	immap->im_ioport.iop_pcso  |=  (PC_ENET_CLSN | PC_ENET_RENA);

	/* Configure port A for TCLK and RCLK.
	*/
	immap->im_ioport.iop_papar |=  (PA_ENET_TCLK | PA_ENET_RCLK);
	immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK);

	/* Configure Serial Interface clock routing.
	 * First, clear all SCC bits to zero, then set the ones we want.
	 */
	cp->cp_sicr &= ~SICR_ENET_MASK;
	cp->cp_sicr |=  SICR_ENET_CLKRT;

	/* Manual says set SDDR, but I can't find anything with that
	 * name.  I think it is a misprint, and should be SDCR.  This
	 * has already been set by the communication processor initialization.
	 */

	/* Allocate space for the buffer descriptors in the DP ram.
	 * These are relative offsets in the DP ram address space.
	 * Initialize base addresses for the buffer descriptors.
	 */
	i = m8xx_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE);
	ep->sen_genscc.scc_rbase = i;
	cep->rx_bd_base = (cbd_t *)&cp->cp_dpmem[i];

	i = m8xx_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE);
	ep->sen_genscc.scc_tbase = i;
	cep->tx_bd_base = (cbd_t *)&cp->cp_dpmem[i];

	cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
	cep->cur_rx = cep->rx_bd_base;

	/* Issue init Rx BD command for SCC.
	 * Manual says to perform an Init Rx parameters here.  We have
	 * to perform both Rx and Tx because the SCC may have been
	 * already running.
	 * In addition, we have to do it later because we don't yet have
	 * all of the BD control/status set properly.
	cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG;
	while (cp->cp_cpcr & CPM_CR_FLG);
	 */

	/* Initialize function code registers for big-endian.
	*/
	ep->sen_genscc.scc_rfcr = SCC_EB;
	ep->sen_genscc.scc_tfcr = SCC_EB;

	/* Set maximum bytes per receive buffer.
	 * This appears to be an Ethernet frame size, not the buffer
	 * fragment size.  It must be a multiple of four.
	 */
	ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;

	/* Set CRC preset and mask.
	*/
	ep->sen_cpres = 0xffffffff;
	ep->sen_cmask = 0xdebb20e3;

	ep->sen_crcec = 0;	/* CRC Error counter */
	ep->sen_alec = 0;	/* alignment error counter */
	ep->sen_disfc = 0;	/* discard frame counter */

	ep->sen_pads = 0x8888;	/* Tx short frame pad character */
	ep->sen_retlim = 15;	/* Retry limit threshold */

	ep->sen_maxflr = PKT_MAXBUF_SIZE;   /* maximum frame length register */
	ep->sen_minflr = PKT_MINBUF_SIZE;  /* minimum frame length register */

	ep->sen_maxd1 = PKT_MAXBLR_SIZE;	/* maximum DMA1 length */
	ep->sen_maxd2 = PKT_MAXBLR_SIZE;	/* maximum DMA2 length */

	/* Clear hash tables.
	*/
	ep->sen_gaddr1 = 0;
	ep->sen_gaddr2 = 0;
	ep->sen_gaddr3 = 0;
	ep->sen_gaddr4 = 0;
	ep->sen_iaddr1 = 0;
	ep->sen_iaddr2 = 0;
	ep->sen_iaddr3 = 0;
	ep->sen_iaddr4 = 0;

	/* Set Ethernet station address.
	 */
	eap = (unsigned char *)&(ep->sen_paddrh);
#ifdef CONFIG_FEC_ENET
	/* We need a second MAC address if FEC is used by Linux */
	for (i=5; i>=0; i--)
		*eap++ = rtdev->dev_addr[i] = (bd->bi_enetaddr[i] | 
					     (i==3 ? 0x80 : 0));
#else
	for (i=5; i>=0; i--)
		*eap++ = rtdev->dev_addr[i] = bd->bi_enetaddr[i];
#endif

	ep->sen_pper = 0;	/* 'cause the book says so */
	ep->sen_taddrl = 0;	/* temp address (LSB) */
	ep->sen_taddrm = 0;
	ep->sen_taddrh = 0;	/* temp address (MSB) */

	/* Now allocate the host memory pages and initialize the
	 * buffer descriptors.
	 */
	bdp = cep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	bdp = cep->rx_bd_base;
	k = 0;
	for (i=0; i<CPM_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		ba = (unsigned char *)consistent_alloc(GFP_KERNEL, PAGE_SIZE, &mem_addr);

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
			bdp->cbd_bufaddr = mem_addr;
			cep->rx_vaddr[k++] = ba;
			mem_addr += CPM_ENET_RX_FRSIZE;
			ba += CPM_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Let's re-initialize the channel now.  We have to do it later
	 * than the manual describes because we have just now finished
	 * the BD initialization.
	 */
	cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG;
	while (cp->cp_cpcr & CPM_CR_FLG);

	cep->skb_cur = cep->skb_dirty = 0;

	sccp->scc_scce = 0xffff;	/* Clear any pending events */

	/* Enable interrupts for transmit error, complete frame
	 * received, and any transmit buffer we have also set the
	 * interrupt flag.
	 */
	sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);

	/* Install our interrupt handler.
	*/
	rtdev->irq = CPM_IRQ_OFFSET + CPMVEC_ENET;
	rt_stack_connect(rtdev, &STACK_manager);
	if ((i = rtdm_irq_request(&cep->irq_handle, rtdev->irq,
				  scc_enet_interrupt, 0, "rt_mpc8xx_enet", rtdev))) {
		printk(KERN_ERR "Couldn't request IRQ %d\n", rtdev->irq);
		rtdev_free(rtdev);
		return i;
	}
	

	/* Set GSMR_H to enable all normal operating modes.
	 * Set GSMR_L to enable Ethernet to MC68160.
	 */
	sccp->scc_gsmrh = 0;
	sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);

	/* Set sync/delimiters.
	*/
	sccp->scc_dsr = 0xd555;

	/* Set processing mode.  Use Ethernet CRC, catch broadcast, and
	 * start frame search 22 bit times after RENA.
	 */
	sccp->scc_pmsr = (SCC_PMSR_ENCRC | SCC_PMSR_NIB22);

	/* It is now OK to enable the Ethernet transmitter.
	 * Unfortunately, there are board implementation differences here.
	 */
#if   (!defined (PB_ENET_TENA) &&  defined (PC_ENET_TENA))
	immap->im_ioport.iop_pcpar |=  PC_ENET_TENA;
	immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA;
#elif ( defined (PB_ENET_TENA) && !defined (PC_ENET_TENA))
	cp->cp_pbpar |= PB_ENET_TENA;
	cp->cp_pbdir |= PB_ENET_TENA;
#else
#error Configuration Error: define exactly ONE of PB_ENET_TENA, PC_ENET_TENA
#endif

#if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC)
	/* And while we are here, set the configuration to enable ethernet.
	*/
	*((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK;
	*((volatile uint *)RPX_CSR_ADDR) |=
			(BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS);
#endif

#ifdef CONFIG_BSEIP
	/* BSE uses port B and C for PHY control.
	*/
	cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS);
	cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
	cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);

	immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK;
	immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK;
	immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK;
	immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK;
#endif

#ifdef CONFIG_FADS
	cp->cp_pbpar |= PB_ENET_TENA;
	cp->cp_pbdir |= PB_ENET_TENA;

	/* Enable the EEST PHY.
	*/
	*((volatile uint *)BCSR1) &= ~BCSR1_ETHEN;
#endif

	rtdev->base_addr = (unsigned long)ep;

	/* The CPM Ethernet specific entries in the device structure. */
	rtdev->open = scc_enet_open;
	rtdev->hard_start_xmit = scc_enet_start_xmit;
	rtdev->stop = scc_enet_close;
	rtdev->hard_header = &rt_eth_header;
	rtdev->get_stats = scc_enet_get_stats;

	if (!rx_pool_size)
		rx_pool_size = RX_RING_SIZE * 2;
	if (rtskb_pool_init(&cep->skb_pool, rx_pool_size) < rx_pool_size) {
		rtdm_irq_disable(&cep->irq_handle);
		rtdm_irq_free(&cep->irq_handle);
		rtskb_pool_release(&cep->skb_pool);
		rtdev_free(rtdev);
		return -ENOMEM;
	}

	if ((i = rt_register_rtnetdev(rtdev))) {
		printk(KERN_ERR "Couldn't register rtdev\n");
		rtdm_irq_disable(&cep->irq_handle);
		rtdm_irq_free(&cep->irq_handle);
		rtskb_pool_release(&cep->skb_pool);
		rtdev_free(rtdev);
		return i;
	}

	/* And last, enable the transmit and receive processing.
	*/
	sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);

	printk("%s: CPM ENET Version 0.2 on SCC%d, irq %d, addr %02x:%02x:%02x:%02x:%02x:%02x\n", 
	       rtdev->name, SCC_ENET+1, rtdev->irq,
	       rtdev->dev_addr[0], rtdev->dev_addr[1], rtdev->dev_addr[2],
	       rtdev->dev_addr[3], rtdev->dev_addr[4], rtdev->dev_addr[5]);
	
	return 0;
}
Exemple #8
0
static void trigger_deinit(void)
{
	rtdm_irq_free(&irq_main_trigger);

	gpio_free(MAIN_TRIGGER);
}
static void __exit exemple_exit (void)
{
    rtdm_irq_free(& irq_rtdm);
    gpio_free(GPIO_OUT);
    gpio_free(GPIO_IN);
}