Exemple #1
0
static void test(void)
{
  rtems_status_code sc;
  dev_t dev = 0;
  rtems_disk_device *dd;

  sc = rtems_disk_io_initialize();
  rtems_test_assert(sc == RTEMS_SUCCESSFUL);

  sc = rtems_disk_create_phys(
    dev,
    1,
    BLOCK_COUNT,
    test_disk_ioctl,
    NULL,
    NULL
  );
  rtems_test_assert(sc == RTEMS_SUCCESSFUL);

  dd = rtems_disk_obtain(dev);
  rtems_test_assert(dd != NULL);

  test_actions(dd);

  sc = rtems_disk_release(dd);
  rtems_test_assert(sc == RTEMS_SUCCESSFUL);

  sc = rtems_disk_delete(dev);
  rtems_test_assert(sc == RTEMS_SUCCESSFUL);
}
Exemple #2
0
int
rtems_rfs_buffer_sync (rtems_rfs_file_system* fs)
{
  int result = 0;
#if RTEMS_RFS_USE_LIBBLOCK
  rtems_status_code sc;
#endif

  if (rtems_rfs_trace (RTEMS_RFS_TRACE_BUFFER_SYNC))
    printf ("rtems-rfs: buffer-sync: syncing\n");

  /*
   * @todo Split in the separate files for each type.
   */
#if RTEMS_RFS_USE_LIBBLOCK
  sc = rtems_bdbuf_syncdev (rtems_rfs_fs_device (fs));
  if (sc != RTEMS_SUCCESSFUL)
  {
    if (rtems_rfs_trace (RTEMS_RFS_TRACE_BUFFER_SYNC))
      printf ("rtems-rfs: buffer-sync: device sync failed: %s\n",
              rtems_status_text (sc));
    result = EIO;
  }
  rtems_disk_release (fs->disk);
#else
  if (fsync (fs->device) < 0)
  {
    result = errno;
    if (rtems_rfs_trace (RTEMS_RFS_TRACE_BUFFER_CLOSE))
      printf ("rtems-rfs: buffer-sync: file sync failed: %d: %s\n",
              result, strerror (result));
  }
#endif
  return result;
}
Exemple #3
0
int
rtems_rfs_buffer_close (rtems_rfs_file_system* fs)
{
  int rc = 0;

  if (rtems_rfs_trace (RTEMS_RFS_TRACE_BUFFER_CLOSE))
    printf ("rtems-rfs: buffer-close: closing\n");

  /*
   * Change the block size to the media device size. It will release and sync
   * all buffers.
   */
  rc = rtems_rfs_buffer_setblksize (fs, rtems_rfs_fs_media_block_size (fs));

  if ((rc > 0) && rtems_rfs_trace (RTEMS_RFS_TRACE_BUFFER_CLOSE))
    printf ("rtems-rfs: buffer-close: set media block size failed: %d: %s\n",
            rc, strerror (rc));
  
#if RTEMS_RFS_USE_LIBBLOCK
  rtems_disk_release (fs->disk);
#else
  if (close (fs->device) < 0)
  {
    rc = errno;
    if (rtems_rfs_trace (RTEMS_RFS_TRACE_BUFFER_CLOSE))
      printf ("rtems-rfs: buffer-close: file close failed: %d: %s\n",
              rc, strerror (rc));
  }
#endif
  
  return rc;
}
Exemple #4
0
static rtems_task Init(rtems_task_argument argument)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;
  rtems_bdbuf_buffer *bd = NULL;
  dev_t dev = 0;
  rtems_disk_device *dd = NULL;

  printk("\n\n*** TEST BLOCK 9 ***\n");

  sc = rtems_disk_io_initialize();
  ASSERT_SC(sc);

  sc = disk_register(BLOCK_SIZE, BLOCK_COUNT, &dev);
  ASSERT_SC(sc);

  dd = rtems_disk_obtain(dev);
  assert(dd != NULL);

  check_read(dd, BLOCK_READ_IO_ERROR, RTEMS_IO_ERROR);
  check_read(dd, BLOCK_READ_UNSATISFIED, RTEMS_UNSATISFIED);
  check_read(dd, BLOCK_READ_SUCCESSFUL, RTEMS_SUCCESSFUL);
  check_read(dd, BLOCK_WRITE_IO_ERROR, RTEMS_SUCCESSFUL);

  /* Check write IO error */

  sc = rtems_bdbuf_read(dd, BLOCK_WRITE_IO_ERROR, &bd);
  ASSERT_SC(sc);

  bd->buffer [0] = 1;

  sc = rtems_bdbuf_sync(bd);
  ASSERT_SC(sc);

  sc = rtems_bdbuf_read(dd, BLOCK_WRITE_IO_ERROR, &bd);
  ASSERT_SC(sc);

  assert(bd->buffer [0] == 0);

  sc = rtems_bdbuf_release(bd);
  ASSERT_SC(sc);

  /* Check write to deleted disk */

  sc = rtems_bdbuf_read(dd, BLOCK_READ_SUCCESSFUL, &bd);
  ASSERT_SC(sc);

  sc = rtems_disk_delete(dev);
  ASSERT_SC(sc);

  sc = rtems_bdbuf_sync(bd);
  ASSERT_SC(sc);

  sc = rtems_disk_release(dd);
  ASSERT_SC(sc);

  printk("*** END OF TEST BLOCK 9 ***\n");

  exit(0);
}
Exemple #5
0
static void test_block_io_control_api(dev_t dev, ramdisk *rd)
{
    rtems_status_code sc = RTEMS_SUCCESSFUL;
    rtems_disk_device *dd = NULL;
    const rtems_disk_device *fd_dd = NULL;
    int fd = -1;
    int rv = -1;
    uint32_t value = 0;
    rtems_blkdev_bnum block_count = 0;

    sc = rtems_disk_create_phys(dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, "/dev/rda");
    ASSERT_SC(sc);

    dd = rtems_disk_obtain(dev);
    rtems_test_assert(dd != NULL);

    fd = open("/dev/rda", O_RDWR);
    rtems_test_assert(fd >= 0);

    value = 0;
    rv = rtems_disk_fd_get_media_block_size(fd, &value);
    rtems_test_assert(rv == 0);
    rtems_test_assert(value == BLOCK_SIZE);

    value = 0;
    rv = rtems_disk_fd_get_block_size(fd, &value);
    rtems_test_assert(rv == 0);
    rtems_test_assert(value == BLOCK_SIZE);

    value = 1024;
    rv = rtems_disk_fd_set_block_size(fd, value);
    rtems_test_assert(rv == 0);

    value = 0;
    rv = rtems_disk_fd_get_block_size(fd, &value);
    rtems_test_assert(rv == 0);
    rtems_test_assert(value == 1024);

    block_count = 0;
    rv = rtems_disk_fd_get_block_count(fd, &block_count);
    rtems_test_assert(rv == 0);
    rtems_test_assert(block_count == BLOCK_COUNT);

    rv = rtems_disk_fd_get_disk_device(fd, &fd_dd);
    rtems_test_assert(rv == 0);
    rtems_test_assert(fd_dd == dd);

    rv = rtems_disk_fd_sync(fd);
    rtems_test_assert(rv == 0);

    rv = close(fd);
    rtems_test_assert(rv == 0);

    sc = rtems_disk_release(dd);
    ASSERT_SC(sc);

    sc = rtems_disk_delete(dev);
    ASSERT_SC(sc);
}
Exemple #6
0
/* blkdev_generic_close --
 *     Generic block device close primitive.
 */
rtems_device_driver
rtems_blkdev_generic_close(
    rtems_device_major_number major __attribute__((unused)),
    rtems_device_minor_number minor __attribute__((unused)),
    void                    * arg)
{
  rtems_libio_open_close_args_t *oc = arg;
  rtems_libio_t *iop = oc->iop;
  rtems_disk_device *dd = iop->data1;

  rtems_disk_release(dd);

  return RTEMS_SUCCESSFUL;
}
/* fat_shutdown_drive --
 *     Free all allocated resources and synchronize all necessary data
 *
 * PARAMETERS:
 *     mt_entry - mount table entry
 *
 * RETURNS:
 *     RC_OK on success, or -1 if error occured
 *     and errno set appropriately
 */
int
fat_shutdown_drive(rtems_filesystem_mount_table_entry_t *mt_entry)
{
    int            rc = RC_OK;
    fat_fs_info_t *fs_info = mt_entry->fs_info;
    int            i = 0;

    if (fs_info->vol.type & FAT_FAT32)
    {
        rc = fat_fat32_update_fsinfo_sector(mt_entry, fs_info->vol.free_cls,
                                            fs_info->vol.next_cl);
        if ( rc != RC_OK )
            rc = -1;
    }

    fat_buf_release(fs_info);

    if (rtems_bdbuf_syncdev(fs_info->vol.dev) != RTEMS_SUCCESSFUL)
        rc = -1;

    for (i = 0; i < FAT_HASH_SIZE; i++)
    {
        Chain_Node    *node = NULL;
        Chain_Control *the_chain = fs_info->vhash + i;

        while ( (node = _Chain_Get(the_chain)) != NULL )
            free(node);
    }

    for (i = 0; i < FAT_HASH_SIZE; i++)
    {
        Chain_Node    *node = NULL;
        Chain_Control *the_chain = fs_info->rhash + i;

        while ( (node = _Chain_Get(the_chain)) != NULL )
            free(node);
    }

    free(fs_info->vhash);
    free(fs_info->rhash);

    free(fs_info->uino);
    free(fs_info->sec_buf);
    rtems_disk_release(fs_info->vol.dd);

    if (rc)
        errno = EIO;
    return rc;
}
static void test_diskdevs(void)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;
  rtems_device_major_number major = 0;
  rtems_device_minor_number minor = 0;
  rtems_disk_device *physical_dd = NULL;
  rtems_disk_device *logical_dd = NULL;
  rtems_disk_device *dd = NULL;
  dev_t physical_dev = 0;
  dev_t logical_dev = 0;
  dev_t logical_2_dev = 0;
  dev_t const big_major_dev = rtems_filesystem_make_dev_t((rtems_device_major_number) -2, 0);
  dev_t const big_minor_dev = rtems_filesystem_make_dev_t(0, (rtems_device_minor_number) -2);
  ramdisk *const rd = ramdisk_allocate(NULL, BLOCK_SIZE, BLOCK_COUNT, false);

  rtems_test_assert(rd != NULL);

  sc = rtems_disk_io_initialize();
  ASSERT_SC(sc);

  sc = rtems_io_register_driver(0, &ramdisk_ops, &major);
  ASSERT_SC(sc);

  physical_dev = rtems_filesystem_make_dev_t(major, minor);
  logical_dev = rtems_filesystem_make_dev_t(major, minor + 1);
  logical_2_dev = rtems_filesystem_make_dev_t(major, minor + 2);

  /* Consistency checks for physical disks creation */

  sc = rtems_disk_create_phys(physical_dev, BLOCK_SIZE, BLOCK_COUNT, NULL, rd, "/dev/rda");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_ADDRESS);

  sc = rtems_disk_create_phys(physical_dev, 0, BLOCK_COUNT, ramdisk_ioctl, rd, "/dev/rda");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_NUMBER);

  sc = rtems_disk_create_phys(big_major_dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, "/dev/rda");
  ASSERT_SC_EQ(sc, RTEMS_NO_MEMORY);

  sc = rtems_disk_create_phys(big_minor_dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, "/dev/rda");
  ASSERT_SC_EQ(sc, RTEMS_NO_MEMORY);

  sc = rtems_disk_create_phys(physical_dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, NULL);
  ASSERT_SC(sc);

  sc = rtems_disk_create_phys(physical_dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, NULL);
  ASSERT_SC_EQ(sc, RTEMS_RESOURCE_IN_USE);

  sc = rtems_disk_delete(physical_dev);
  ASSERT_SC(sc);

  /* Consistency checks for logical disks creation */

  sc = rtems_disk_create_log(logical_dev, physical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_ID);

  sc = rtems_disk_create_phys(physical_dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, "/dev/rda");
  ASSERT_SC(sc);

  sc = rtems_disk_create_log(big_major_dev, physical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_NO_MEMORY);

  sc = rtems_disk_create_log(big_minor_dev, physical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_NO_MEMORY);

  sc = rtems_disk_create_log(logical_dev, physical_dev, BLOCK_COUNT, 0, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_NUMBER);

  sc = rtems_disk_create_log(logical_dev, physical_dev, 0, BLOCK_COUNT + 1, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_NUMBER);

  sc = rtems_disk_create_log(logical_dev, physical_dev, 1, BLOCK_COUNT, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_NUMBER);

  sc = rtems_disk_create_log(logical_dev, physical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC(sc);

  sc = rtems_disk_create_log(logical_dev, physical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_RESOURCE_IN_USE);

  sc = rtems_disk_create_log(logical_2_dev, logical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC_EQ(sc, RTEMS_INVALID_ID);

  sc = rtems_disk_delete(logical_dev);
  ASSERT_SC(sc);

  /* Consistency checks delete */

  sc = rtems_disk_create_log(logical_dev, physical_dev, 0, 1, "/dev/rda1");
  ASSERT_SC(sc);

  physical_dd = rtems_disk_obtain(physical_dev);
  rtems_test_assert(physical_dd != NULL && physical_dd->uses == 2);

  sc = rtems_disk_release(physical_dd);
  ASSERT_SC(sc);

  logical_dd = rtems_disk_obtain(logical_dev);
  rtems_test_assert(logical_dd != NULL && logical_dd->uses == 1);

  sc = rtems_disk_delete(physical_dev);
  ASSERT_SC(sc);

  sc = rtems_disk_create_phys(physical_dev, BLOCK_SIZE, BLOCK_COUNT, ramdisk_ioctl, rd, "/dev/rda");
  ASSERT_SC_EQ(sc, RTEMS_RESOURCE_IN_USE);

  dd = rtems_disk_obtain(physical_dev);
  rtems_test_assert(dd == NULL);

  dd = rtems_disk_obtain(logical_dev);
  rtems_test_assert(dd == NULL);

  sc = rtems_disk_release(logical_dd);
  ASSERT_SC(sc);

  /* Cleanup */

  sc = rtems_io_unregister_driver(major);
  ASSERT_SC(sc);

  ramdisk_free(rd);

  sc = rtems_disk_io_done();
  ASSERT_SC(sc);
}
Exemple #9
0
void
run_bdbuf_tests()
{
    rtems_disk_device  *disk;
    rtems_status_code   sc;
    dev_t               dev = -1;
    dev_t               test_dev;
    unsigned int        i;

    rtems_device_major_number  major;
    rtems_driver_address_table testdisk = {
        test_disk_initialize,
        RTEMS_GENERIC_BLOCK_DEVICE_DRIVER_ENTRIES
    };

    /* Create a message queue to get events from disk driver. */
    sc = rtems_message_queue_create(TEST_TASK_RX_MQUEUE_NAME,
                                    TEST_TASK_RX_MQUEUE_COUNT,
                                    sizeof(bdbuf_test_msg),
                                    RTEMS_DEFAULT_ATTRIBUTES,
                                    &g_test_ctx.test_qid);

    if (sc != RTEMS_SUCCESSFUL)
    {
        printk("Failed to create message queue for test task: %u\n", sc);
        return;
    }

    /* Register a disk device that is used in tests */
    sc = rtems_io_register_driver(0, &testdisk, &major);
    if (sc != RTEMS_SUCCESSFUL)
    {
        printk("Failed to register TEST DEVICE: %d\n", sc);
        return;
    }

    test_dev = -1;
    while ((disk = rtems_disk_next(dev)) != NULL)
    {
        printk("DEV: %s [%lu]\n", disk->name, disk->size);
        dev = disk->dev;
        if (strcmp(disk->name, TEST_DISK_NAME) == 0)
            test_dev = dev;
        rtems_disk_release(disk);
    }

    if (test_dev == (dev_t)-1)
    {
        printf("Failed to find %s disk\n", TEST_DISK_NAME);
        return;
    }

    test_dd = rtems_disk_obtain(test_dev);
    if (test_dd == NULL)
    {
        printf("Failed to obtain %s disk\n", TEST_DISK_NAME);
        return;
    }

    /*
     * On initialization test disk device driver registers
     * its RX message queue, so we just need to locate it.
     */
    sc = rtems_message_queue_ident(TEST_DRV_RX_MQUEUE_NAME,
                                   RTEMS_SEARCH_ALL_NODES,
                                   &g_test_ctx.test_drv_qid);
    if (sc != RTEMS_SUCCESSFUL)
    {
        printf("Failed to find Test Driver Queue: %u\n", sc);
        return;
    }

    for (i = 0; i < ARRAY_NUM(g_test_ctx.test_sync_main); i++)
    {
        sc = rtems_semaphore_create(rtems_build_name('T', 'S', 'M', '0' + i),
                                    0, TEST_SEM_ATTRIBS, 0,
                                    &g_test_ctx.test_sync_main[i]);
        if (sc != RTEMS_SUCCESSFUL)
        {
            printk("Failed to create sync sem for test task: %u\n", sc);
            return;
        }
    }

    for (i = 0; i < ARRAY_NUM(g_test_ctx.test_sync); i++)
    {
        sc = rtems_semaphore_create(rtems_build_name('T', 'S', 'T', '0' + i),
                                    0, TEST_SEM_ATTRIBS, 0,
                                    &g_test_ctx.test_sync[i]);
        if (sc != RTEMS_SUCCESSFUL)
        {
            printk("Failed to create sync sem for test task #%d: %u\n", i + 1, sc);
            return;
        }
    }
    
    sc = rtems_semaphore_create(rtems_build_name('T', 'S', 'M', 'E'),
                                0, TEST_SEM_ATTRIBS, 0,
                                &g_test_ctx.test_end_main);
    if (sc != RTEMS_SUCCESSFUL)
    {
        printk("Failed to create end sync sem for test task: %u\n", sc);
        return;
    }

    for (i = 0; i < ARRAY_NUM(g_test_ctx.test_task); i++)
        g_test_ctx.test_task[i] = OBJECTS_ID_NONE;

    for (i = 0; i < sizeof(bdbuf_tests) / sizeof(bdbuf_tests[0]); i++)
    {
        bdbuf_tests[i].main();
    }
}
/* fat_init_volume_info --
 *     Get inforamtion about volume on which filesystem is mounted on
 *
 * PARAMETERS:
 *     mt_entry - mount table entry
 *
 * RETURNS:
 *     RC_OK on success, or -1 if error occured
 *     and errno set appropriately
 */
int
fat_init_volume_info(rtems_filesystem_mount_table_entry_t *mt_entry)
{
    int                 rc = RC_OK;
    fat_fs_info_t      *fs_info = mt_entry->fs_info;
    register fat_vol_t *vol = &fs_info->vol;
    uint32_t            data_secs = 0;
    char                boot_rec[FAT_MAX_BPB_SIZE];
    char                fs_info_sector[FAT_USEFUL_INFO_SIZE];
    ssize_t             ret = 0;
    int                 fd;
    struct stat         stat_buf;
    int                 i = 0;

    rc = stat(mt_entry->dev, &stat_buf);
    if (rc == -1)
        return rc;

    /* rtmes feature: no block devices, all are character devices */
    if (!S_ISCHR(stat_buf.st_mode))
        set_errno_and_return_minus_one(ENOTBLK);

    /* check that  device is registred as block device and lock it */
    vol->dd = rtems_disk_lookup(stat_buf.st_dev);
    if (vol->dd == NULL)
        set_errno_and_return_minus_one(ENOTBLK);

    vol->dev = stat_buf.st_dev;

    fd = open(mt_entry->dev, O_RDONLY);
    if (fd == -1)
    {
        rtems_disk_release(vol->dd);
        return -1;
    }

    ret = read(fd, (void *)boot_rec, FAT_MAX_BPB_SIZE);
    if ( ret != FAT_MAX_BPB_SIZE )
    {
        close(fd);
        rtems_disk_release(vol->dd);
        set_errno_and_return_minus_one( EIO );
    }
    close(fd);

    vol->bps = FAT_GET_BR_BYTES_PER_SECTOR(boot_rec);
 
    if ( (vol->bps != 512)  && 
         (vol->bps != 1024) && 
         (vol->bps != 2048) &&
         (vol->bps != 4096))
    {
        rtems_disk_release(vol->dd);
        set_errno_and_return_minus_one( EINVAL );
    }

    for (vol->sec_mul = 0, i = (vol->bps >> FAT_SECTOR512_BITS); (i & 1) == 0;
         i >>= 1, vol->sec_mul++);
    for (vol->sec_log2 = 0, i = vol->bps; (i & 1) == 0;
         i >>= 1, vol->sec_log2++);

    vol->spc = FAT_GET_BR_SECTORS_PER_CLUSTER(boot_rec);
    /*
     * "sectors per cluster" of zero is invalid
     * (and would hang the following loop)
     */
    if (vol->spc == 0)
    {
        rtems_disk_release(vol->dd);
        set_errno_and_return_minus_one(EINVAL);
    }

    for (vol->spc_log2 = 0, i = vol->spc; (i & 1) == 0;
         i >>= 1, vol->spc_log2++);

    /*
     * "bytes per cluster" value greater than 32K is invalid
     */
    if ((vol->bpc = vol->bps << vol->spc_log2) > MS_BYTES_PER_CLUSTER_LIMIT)
    {
        rtems_disk_release(vol->dd);
        set_errno_and_return_minus_one(EINVAL);
    }

    for (vol->bpc_log2 = 0, i = vol->bpc; (i & 1) == 0;
         i >>= 1, vol->bpc_log2++);

    vol->fats = FAT_GET_BR_FAT_NUM(boot_rec);
    vol->fat_loc = FAT_GET_BR_RESERVED_SECTORS_NUM(boot_rec);

    vol->rdir_entrs = FAT_GET_BR_FILES_PER_ROOT_DIR(boot_rec);
    
    /* calculate the count of sectors occupied by the root directory */
    vol->rdir_secs = ((vol->rdir_entrs * FAT_DIRENTRY_SIZE) + (vol->bps - 1)) /
                     vol->bps;

    vol->rdir_size = vol->rdir_secs << vol->sec_log2;

    if ( (FAT_GET_BR_SECTORS_PER_FAT(boot_rec)) != 0)
        vol->fat_length = FAT_GET_BR_SECTORS_PER_FAT(boot_rec);
    else
        vol->fat_length = FAT_GET_BR_SECTORS_PER_FAT32(boot_rec);
  
    vol->data_fsec = vol->fat_loc + vol->fats * vol->fat_length + 
                     vol->rdir_secs;

    /* for  FAT12/16 root dir starts at(sector) */
    vol->rdir_loc = vol->fat_loc + vol->fats * vol->fat_length;
  
    if ( (FAT_GET_BR_TOTAL_SECTORS_NUM16(boot_rec)) != 0)
        vol->tot_secs = FAT_GET_BR_TOTAL_SECTORS_NUM16(boot_rec);
    else
        vol->tot_secs = FAT_GET_BR_TOTAL_SECTORS_NUM32(boot_rec);
  
    data_secs = vol->tot_secs - vol->data_fsec;

    vol->data_cls = data_secs / vol->spc;

    /* determine FAT type at least */
    if ( vol->data_cls < FAT_FAT12_MAX_CLN)
    {
        vol->type = FAT_FAT12;
        vol->mask = FAT_FAT12_MASK;
        vol->eoc_val = FAT_FAT12_EOC;
    }
    else
    {
        if ( vol->data_cls < FAT_FAT16_MAX_CLN)
        {
            vol->type = FAT_FAT16;
            vol->mask = FAT_FAT16_MASK;
            vol->eoc_val = FAT_FAT16_EOC;
        }
        else
        {
            vol->type = FAT_FAT32;
            vol->mask = FAT_FAT32_MASK;
            vol->eoc_val = FAT_FAT32_EOC;
        }
    }

    if (vol->type == FAT_FAT32)
    {
        vol->rdir_cl = FAT_GET_BR_FAT32_ROOT_CLUSTER(boot_rec);
      
        vol->mirror = FAT_GET_BR_EXT_FLAGS(boot_rec) & FAT_BR_EXT_FLAGS_MIRROR;
        if (vol->mirror)
            vol->afat = FAT_GET_BR_EXT_FLAGS(boot_rec) & FAT_BR_EXT_FLAGS_FAT_NUM;
        else
            vol->afat = 0;

        vol->info_sec = FAT_GET_BR_FAT32_FS_INFO_SECTOR(boot_rec);
        if( vol->info_sec == 0 )
        {
            rtems_disk_release(vol->dd);
            set_errno_and_return_minus_one( EINVAL );
        }
        else
        {
            ret = _fat_block_read(mt_entry, vol->info_sec , 0,
                                  FAT_FSI_LEADSIG_SIZE, fs_info_sector);
            if ( ret < 0 )
            {
                rtems_disk_release(vol->dd);
                return -1;
            }    
      
            if (FAT_GET_FSINFO_LEAD_SIGNATURE(fs_info_sector) != 
                FAT_FSINFO_LEAD_SIGNATURE_VALUE)
            {
                rtems_disk_release(vol->dd);
                set_errno_and_return_minus_one( EINVAL );
            }
            else
            {
                ret = _fat_block_read(mt_entry, vol->info_sec , FAT_FSI_INFO,
                                      FAT_USEFUL_INFO_SIZE, fs_info_sector);
                if ( ret < 0 )
                {
                    rtems_disk_release(vol->dd);
                    return -1;
                }    
                    
                vol->free_cls = FAT_GET_FSINFO_FREE_CLUSTER_COUNT(fs_info_sector);
                vol->next_cl = FAT_GET_FSINFO_NEXT_FREE_CLUSTER(fs_info_sector);
                rc = fat_fat32_update_fsinfo_sector(mt_entry, 0xFFFFFFFF, 
                                                    0xFFFFFFFF);
                if ( rc != RC_OK )
                {
                    rtems_disk_release(vol->dd);
                    return rc;
                }
            }
        }
    }
    else
    {
        vol->rdir_cl = 0;
        vol->mirror = 0;
        vol->afat = 0;
        vol->free_cls = 0xFFFFFFFF;
        vol->next_cl = 0xFFFFFFFF;
    }
    vol->afat_loc = vol->fat_loc + vol->fat_length * vol->afat;

    /* set up collection of fat-files fd */
    fs_info->vhash = calloc(FAT_HASH_SIZE, sizeof(Chain_Control));
    if ( fs_info->vhash == NULL )
    {
        rtems_disk_release(vol->dd);
        set_errno_and_return_minus_one( ENOMEM );
    }

    for (i = 0; i < FAT_HASH_SIZE; i++)
        _Chain_Initialize_empty(fs_info->vhash + i);

    fs_info->rhash = calloc(FAT_HASH_SIZE, sizeof(Chain_Control));
    if ( fs_info->rhash == NULL )
    {
        rtems_disk_release(vol->dd);
        free(fs_info->vhash);
        set_errno_and_return_minus_one( ENOMEM );
    }
    for (i = 0; i < FAT_HASH_SIZE; i++)
        _Chain_Initialize_empty(fs_info->rhash + i);

    fs_info->uino_pool_size = FAT_UINO_POOL_INIT_SIZE;
    fs_info->uino_base = (vol->tot_secs << vol->sec_mul) << 4;
    fs_info->index = 0;
    fs_info->uino = (char *)calloc(fs_info->uino_pool_size, sizeof(char));
    if ( fs_info->uino == NULL )
    {
        rtems_disk_release(vol->dd);
        free(fs_info->vhash);
        free(fs_info->rhash);
        set_errno_and_return_minus_one( ENOMEM );
    }
    fs_info->sec_buf = (uint8_t *)calloc(vol->bps, sizeof(uint8_t));
    if (fs_info->sec_buf == NULL)
    {
        rtems_disk_release(vol->dd);
        free(fs_info->vhash);
        free(fs_info->rhash);
        free(fs_info->uino);
        set_errno_and_return_minus_one( ENOMEM );
    }

    return RC_OK;
}
Exemple #11
0
static rtems_status_code
rtems_bsd_sim_attach_worker(rtems_media_state state, const char *src, char **dest, void *arg)
{
	rtems_status_code sc = RTEMS_SUCCESSFUL;
	struct cam_sim *sim = arg;
	char *disk = NULL;

	if (state == RTEMS_MEDIA_STATE_READY) {
		unsigned retries = 0;

		struct scsi_inquiry_data inq_data;
		uint32_t block_count = 0;
		uint32_t block_size = 0;

		disk = rtems_media_create_path("/dev", src, cam_sim_unit(sim));
		if (disk == NULL) {
			BSD_PRINTF("OOPS: create path failed\n");
			goto error;
		}

		sc = rtems_bsd_scsi_inquiry(&sim->ccb, &inq_data);
		if (sc != RTEMS_SUCCESSFUL) {
			BSD_PRINTF("OOPS: inquiry failed\n");
			goto error;
		}
		scsi_print_inquiry(&inq_data);

		for (retries = 0; retries <= 3; ++retries) {
			sc = rtems_bsd_scsi_test_unit_ready(&sim->ccb);
			if (sc == RTEMS_SUCCESSFUL) {
				break;
			}
		}
		if (sc != RTEMS_SUCCESSFUL) {
			BSD_PRINTF("OOPS: test unit ready failed\n");
			goto error;
		}

		sc = rtems_bsd_scsi_read_capacity(&sim->ccb, &block_count, &block_size);
		if (sc != RTEMS_SUCCESSFUL) {
			BSD_PRINTF("OOPS: read capacity failed\n");
			goto error;
		}

		BSD_PRINTF("read capacity: block count %u, block size %u\n", block_count, block_size);

		sc = rtems_blkdev_create(disk, block_size, block_count, rtems_bsd_sim_disk_ioctl, sim);
		if (sc != RTEMS_SUCCESSFUL) {
			goto error;
		}

		/* FIXME */
#if 0
		rtems_disk_device *dd = rtems_disk_obtain(dev);
		dd->block_size *= 64;
		rtems_disk_release(dd);
#endif

		rtems_bsd_sim_disk_initialized(sim, disk);

		*dest = strdup(disk, M_RTEMS_HEAP);
	}

	return RTEMS_SUCCESSFUL;

error:

	free(disk, M_RTEMS_HEAP);

	rtems_bsd_sim_disk_initialized(sim, NULL);

	return RTEMS_IO_ERROR;
}