Exemple #1
0
/* This function updates continuous states using the ODE4 fixed-step
 * solver algorithm
 */
static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si , int_T tid)
{
  time_T t = rtsiGetT(si);
  time_T tnew = rtsiGetSolverStopTime(si);
  time_T h = rtsiGetStepSize(si);
  real_T *x = rtsiGetContStates(si);
  ODE4_IntgData *id = rtsiGetSolverData(si);
  real_T *y = id->y;
  real_T *f0 = id->f[0];
  real_T *f1 = id->f[1];
  real_T *f2 = id->f[2];
  real_T *f3 = id->f[3];
  real_T temp;
  int_T i;

  int_T nXc = 1;

  rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

  /* Save the state values at time t in y, we'll use x as ynew. */
  (void)memcpy(y, x, nXc*sizeof(real_T));

  /* Assumes that rtsiSetT and ModelOutputs are up-to-date */
  /* f0 = f(t,y) */
  rtsiSetdX(si, f0);
  m1006_derivatives();

  /* f1 = f(t + (h/2), y + (h/2)*f0) */
  temp = 0.5 * h;
  for (i = 0; i < nXc; i++) x[i] = y[i] + (temp*f0[i]);
  rtsiSetT(si, t + temp);
  rtsiSetdX(si, f1);
  m1006_output(0);
  m1006_derivatives();

  /* f2 = f(t + (h/2), y + (h/2)*f1) */
  for (i = 0; i < nXc; i++) x[i] = y[i] + (temp*f1[i]);
  rtsiSetdX(si, f2);
  m1006_output(0);
  m1006_derivatives();

  /* f3 = f(t + h, y + h*f2) */
  for (i = 0; i < nXc; i++) x[i] = y[i] + (h*f2[i]);
  rtsiSetT(si, tnew);
  rtsiSetdX(si, f3);
  m1006_output(0);
  m1006_derivatives();

  /* tnew = t + h
     ynew = y + (h/6)*(f0 + 2*f1 + 2*f2 + 2*f3) */
  temp = h / 6.0;
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + temp*(f0[i] + 2.0*f1[i] + 2.0*f2[i] + f3[i]);
  }

  rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}
/*
 * This function updates continuous states using the ODE2 fixed-step
 * solver algorithm
 */
void Position_TiltModelClass::rt_ertODEUpdateContinuousStates(RTWSolverInfo *si )
{
  time_T tnew = rtsiGetSolverStopTime(si);
  time_T h = rtsiGetStepSize(si);
  real_T *x = rtsiGetContStates(si);
  ODE2_IntgData *id = (ODE2_IntgData *)rtsiGetSolverData(si);
  real_T *y = id->y;
  real_T *f0 = id->f[0];
  real_T *f1 = id->f[1];
  real_T temp;
  int_T i;
  int_T nXc = 2;
  rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

  /* Save the state values at time t in y, we'll use x as ynew. */
  (void) memcpy(y, x,
                (uint_T)nXc*sizeof(real_T));

  /* Assumes that rtsiSetT and ModelOutputs are up-to-date */
  /* f0 = f(t,y) */
  rtsiSetdX(si, f0);
  Position_Tilt_derivatives();

  /* f1 = f(t + h, y + h*f0) */
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (h*f0[i]);
  }

  rtsiSetT(si, tnew);
  rtsiSetdX(si, f1);
  this->step();
  Position_Tilt_derivatives();

  /* tnew = t + h
     ynew = y + (h/2)*(f0 + f1) */
  temp = 0.5*h;
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + temp*(f0[i] + f1[i]);
  }

  rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}
Exemple #3
0
/*
 * This function updates continuous states using the ODE1 fixed-step
 * solver algorithm
 */
static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si )
{
  time_T tnew = rtsiGetSolverStopTime(si);
  time_T h = rtsiGetStepSize(si);
  real_T *x = rtsiGetContStates(si);
  ODE1_IntgData *id = (ODE1_IntgData *)rtsiGetSolverData(si);
  real_T *f0 = id->f[0];
  int_T i;
  int_T nXc = 2;
  rtsiSetSimTimeStep(si,MINOR_TIME_STEP);
  rtsiSetdX(si, f0);
  motor_io_position_derivatives();
  rtsiSetT(si, tnew);
  for (i = 0; i < nXc; i++) {
    *x += h * f0[i];
    x++;
  }

  rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}
/*
 * This function updates continuous states using the ODE3 fixed-step
 * solver algorithm
 */
static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si )
{
  /* Solver Matrices */
  static const real_T rt_ODE3_A[3] = {
    1.0/2.0, 3.0/4.0, 1.0
  };

  static const real_T rt_ODE3_B[3][3] = {
    { 1.0/2.0, 0.0, 0.0 },

    { 0.0, 3.0/4.0, 0.0 },

    { 2.0/9.0, 1.0/3.0, 4.0/9.0 }
  };

  time_T t = rtsiGetT(si);
  time_T tnew = rtsiGetSolverStopTime(si);
  time_T h = rtsiGetStepSize(si);
  real_T *x = rtsiGetContStates(si);
  ODE3_IntgData *id = (ODE3_IntgData *)rtsiGetSolverData(si);
  real_T *y = id->y;
  real_T *f0 = id->f[0];
  real_T *f1 = id->f[1];
  real_T *f2 = id->f[2];
  real_T hB[3];
  int_T i;
  int_T nXc = 4;
  rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

  /* Save the state values at time t in y, we'll use x as ynew. */
  (void) memcpy(y, x,
                (uint_T)nXc*sizeof(real_T));

  /* Assumes that rtsiSetT and ModelOutputs are up-to-date */
  /* f0 = f(t,y) */
  rtsiSetdX(si, f0);
  trajectoryModel_derivatives();

  /* f(:,2) = feval(odefile, t + hA(1), y + f*hB(:,1), args(:)(*)); */
  hB[0] = h * rt_ODE3_B[0][0];
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (f0[i]*hB[0]);
  }

  rtsiSetT(si, t + h*rt_ODE3_A[0]);
  rtsiSetdX(si, f1);
  trajectoryModel_step();
  trajectoryModel_derivatives();

  /* f(:,3) = feval(odefile, t + hA(2), y + f*hB(:,2), args(:)(*)); */
  for (i = 0; i <= 1; i++) {
    hB[i] = h * rt_ODE3_B[1][i];
  }

  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1]);
  }

  rtsiSetT(si, t + h*rt_ODE3_A[1]);
  rtsiSetdX(si, f2);
  trajectoryModel_step();
  trajectoryModel_derivatives();

  /* tnew = t + hA(3);
     ynew = y + f*hB(:,3); */
  for (i = 0; i <= 2; i++) {
    hB[i] = h * rt_ODE3_B[2][i];
  }

  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1] + f2[i]*hB[2]);
  }

  rtsiSetT(si, tnew);
  rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}
/* This function updates continuous states using the ODE3 fixed-step
 * solver algorithm
 */
static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si )
{
  time_T t = rtsiGetT(si);
  time_T tnew = rtsiGetSolverStopTime(si);
  time_T h = rtsiGetStepSize(si);
  real_T *x = rtsiGetContStates(si);
  ODE3_IntgData *id = (ODE3_IntgData *)rtsiGetSolverData(si);
  real_T *y = id->y;
  real_T *f0 = id->f[0];
  real_T *f1 = id->f[1];
  real_T *f2 = id->f[2];
  real_T hB[3];
  int_T i;
  int_T nXc = 10;
  rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

  /* Save the state values at time t in y, we'll use x as ynew. */
  (void) memcpy(y,x,
                nXc*sizeof(real_T));

  /* Assumes that rtsiSetT and ModelOutputs are up-to-date */
  /* f0 = f(t,y) */
  rtsiSetdX(si, f0);
  Mechanics_derivatives();

  /* f(:,2) = feval(odefile, t + hA(1), y + f*hB(:,1), args(:)(*)); */
  hB[0] = h * rt_ODE3_B[0][0];
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (f0[i]*hB[0]);
  }

  rtsiSetT(si, t + h*rt_ODE3_A[0]);
  rtsiSetdX(si, f1);
  Mechanics_output(0);
  Mechanics_derivatives();

  /* f(:,3) = feval(odefile, t + hA(2), y + f*hB(:,2), args(:)(*)); */
  for (i = 0; i <= 1; i++)
    hB[i] = h * rt_ODE3_B[1][i];
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1]);
  }

  rtsiSetT(si, t + h*rt_ODE3_A[1]);
  rtsiSetdX(si, f2);
  Mechanics_output(0);
  Mechanics_derivatives();

  /* tnew = t + hA(3);
     ynew = y + f*hB(:,3); */
  for (i = 0; i <= 2; i++)
    hB[i] = h * rt_ODE3_B[2][i];
  for (i = 0; i < nXc; i++) {
    x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1] + f2[i]*hB[2]);
  }

  rtsiSetT(si, tnew);
  Mechanics_output(0);
  Mechanics_projection();
  rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}
void rt_ODEUpdateContinuousStates(RTWSolverInfo *si)
{
    time_T    t          = rtsiGetT(si);
    time_T    tnew       = rtsiGetSolverStopTime(si);
    time_T    h          = rtsiGetStepSize(si);
    real_T    *x         = rtsiGetContStates(si);
    IntgData  *id        = rtsiGetSolverData(si);
    real_T    *y         = id->y;
    real_T    *f0        = id->f[0];
    real_T    *f1        = id->f[1];
    real_T    *f2        = id->f[2];
    real_T    hB[3];
    int_T     i;

#ifdef NCSTATES
    int_T     nXc        = NCSTATES;
#else
    int_T     nXc        = rtsiGetNumContStates(si);
#endif

    rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

    /* Save the state values at time t in y, we'll use x as ynew. */
    (void)memcpy(y, x, nXc*sizeof(real_T));

    /* Assumes that rtsiSetT and ModelOutputs are up-to-date */
    /* f0 = f(t,y) */
    rtsiSetdX(si, f0);
    DERIVATIVES(si);

    /* f(:,2) = feval(odefile, t + hA(1), y + f*hB(:,1), args(:)(*)); */
    hB[0] = h * rt_ODE3_B[0][0];
    for (i = 0; i < nXc; i++) {
	x[i] = y[i] + (f0[i]*hB[0]);
    }
    rtsiSetT(si, t + h*rt_ODE3_A[0]);
    rtsiSetdX(si, f1);
    OUTPUTS(si,0);
    DERIVATIVES(si);

    /* f(:,3) = feval(odefile, t + hA(2), y + f*hB(:,2), args(:)(*)); */
    for (i = 0; i <= 1; i++) hB[i] = h * rt_ODE3_B[1][i];
    for (i = 0; i < nXc; i++) {
	x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1]);
    }
    rtsiSetT(si, t + h*rt_ODE3_A[1]);
    rtsiSetdX(si, f2);
    OUTPUTS(si,0);
    DERIVATIVES(si);

    /* tnew = t + hA(3);
       ynew = y + f*hB(:,3); */
    for (i = 0; i <= 2; i++) hB[i] = h * rt_ODE3_B[2][i];
    for (i = 0; i < nXc; i++) {
	x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1] + f2[i]*hB[2]);
    }
    rtsiSetT(si, tnew);

    PROJECTION(si);

    rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}