static int readRDNcomponent( INOUT STREAM *stream, 
							 INOUT DN_COMPONENT **dnComponentListPtrPtr,
							 IN_LENGTH_SHORT const int rdnDataLeft )
	{	
	CRYPT_ERRTYPE_TYPE dummy;
	BYTE stringBuffer[ MAX_ATTRIBUTE_SIZE + 8 ];
	void *value;
	const int rdnStart = stell( stream );
	int type, valueLength, valueStringType, stringTag;
	int flags = DN_FLAG_NOCHECK, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( dnComponentListPtrPtr, sizeof( DN_COMPONENT * ) ) );

	REQUIRES( rdnDataLeft > 0 && rdnDataLeft < MAX_INTLENGTH_SHORT );
	REQUIRES( rdnStart > 0 && rdnStart < MAX_INTLENGTH_SHORT );

	/* Read the type information for this AVA */
	status = readAVA( stream, &type, &valueLength, &stringTag );
	if( cryptStatusError( status ) )
		return( status );
	if( valueLength <= 0 )
		{
		/* Skip broken AVAs with zero-length strings */
		return( CRYPT_OK );
		}
	status = sMemGetDataBlock( stream, &value, valueLength );
	if( cryptStatusOK( status ) )
		status = sSkip( stream, valueLength );
	if( cryptStatusError( status ) )
		return( status );
	ANALYSER_HINT( value != NULL );

	/* If there's room for another AVA, mark this one as being continued.  The
	   +10 value is the minimum length for an AVA: SEQUENCE { OID, value } 
	   (2-bytes SEQUENCE + 5 bytes OID + 2 bytes (tag + length) + 1 byte min-
	   length data).  We don't do a simple =/!= check to get around incorrectly 
	   encoded lengths */
	if( rdnDataLeft >= ( stell( stream ) - rdnStart ) + 10 )
		flags |= DN_FLAG_CONTINUED;

	/* Convert the string into the local character set */
	status = copyFromAsn1String( stringBuffer, MAX_ATTRIBUTE_SIZE, 
								 &valueLength, &valueStringType, value, 
								 valueLength, stringTag );
	if( cryptStatusError( status ) )
		return( status );

	/* Add the DN component to the DN.  If we hit a non-memory related error
	   we turn it into a generic CRYPT_ERROR_BADDATA error since the other
	   codes are somewhat too specific for this case, something like 
	   CRYPT_ERROR_INITED or an arg error isn't too useful for the caller */
	status = insertDNstring( dnComponentListPtrPtr, type, stringBuffer, 
							 valueLength, valueStringType, flags, &dummy );
	return( ( cryptStatusError( status ) && status != CRYPT_ERROR_MEMORY ) ? \
			CRYPT_ERROR_BADDATA : status );
	}
Exemple #2
0
static int readRawSignature( INOUT STREAM *stream, 
							 OUT QUERY_INFO *queryInfo )
	{
	const int startPos = stell( stream );
	int status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( queryInfo, sizeof( QUERY_INFO ) ) );

	REQUIRES( startPos >= 0 && startPos < MAX_BUFFER_SIZE );

	/* Clear return value */
	memset( queryInfo, 0, sizeof( QUERY_INFO ) );

	/* Read the start of the signature */
	status = readBitStringHole( stream, &queryInfo->dataLength, 18 + 18,
								DEFAULT_TAG );
	if( cryptStatusError( status ) )
		return( status );
	queryInfo->dataStart = stell( stream ) - startPos;

	/* Make sure that the remaining signature data is present */
	return( sSkip( stream, queryInfo->dataLength, MAX_INTLENGTH_SHORT ) );
	}
Exemple #3
0
static int readConfigOption( INOUT STREAM *stream, 
							 IN_HANDLE CRYPT_USER iCryptUser )
	{
	CRYPT_ATTRIBUTE_TYPE attributeType;
	const BUILTIN_OPTION_INFO *builtinOptionInfoPtr;
	MESSAGE_DATA msgData;
	void *dataPtr DUMMY_INIT_PTR;
	long optionCode;
	int value, tag, length, status;

	/* Read the wrapper and option index and map it to the actual option.  
	   If we find an unknown index or one that shouldn't be writeable to 
	   persistent storage, we skip it and continue.  This is done to handle 
	   new options that may have been added after this version of cryptlib 
	   was built (for unknown indices) and because the stored configuration 
	   options are an untrusted source so we have to check for attempts to 
	   feed in bogus values (for non-writeable options) */
	readSequence( stream, NULL );
	status = readShortInteger( stream, &optionCode );
	if( cryptStatusError( status ) )
		return( status );
	if( optionCode < 0 || optionCode > LAST_OPTION_INDEX )
		{
		/* Unknown option, ignore it */
		return( readUniversal( stream ) );
		}
	builtinOptionInfoPtr = getBuiltinOptionInfoByCode( optionCode );
	if( builtinOptionInfoPtr == NULL || \
		builtinOptionInfoPtr->index < 0 || \
		builtinOptionInfoPtr->index > LAST_OPTION_INDEX || \
		builtinOptionInfoPtr->index == CRYPT_UNUSED )
		{
		/* Unknown option, ignore it */
		return( readUniversal( stream ) );
		}
	attributeType = builtinOptionInfoPtr->option;

	/* Read the option value and set the option.  We don't treat a failure 
	   to set the option as a problem since the user probably doesn't want 
	   the entire system to fail because of a bad configuration option, and 
	   in any case we'll fall back to a safe default value */
	status = tag = peekTag( stream );
	if( cryptStatusError( status ) )
		return( status );
	if( tag == BER_BOOLEAN || tag == BER_INTEGER )
		{
		/* It's a numeric value, read the appropriate type and try and set 
		   the option */
		if( tag == BER_BOOLEAN )
			status = readBoolean( stream, &value );
		else
			{
			long integer;

			status = readShortInteger( stream, &integer );
			if( cryptStatusOK( status ) )
				value = ( int ) integer;
			}
		if( cryptStatusError( status ) )
			return( status );
		( void ) krnlSendMessage( iCryptUser, IMESSAGE_SETATTRIBUTE, 
								  &value, attributeType );
		return( CRYPT_OK );
		}

	/* It's a string value, set the option straight from the encoded data */
	status = readGenericHole( stream, &length, 1, BER_STRING_UTF8 );
	if( cryptStatusOK( status ) )
		status = sMemGetDataBlock( stream, &dataPtr, length );
	if( cryptStatusOK( status ) )
		status = sSkip( stream, length, SSKIP_MAX );
	if( cryptStatusError( status ) )
		return( status );
	setMessageData( &msgData, dataPtr, length );
	( void ) krnlSendMessage( iCryptUser, IMESSAGE_SETATTRIBUTE_S, 
							  &msgData, attributeType );

	return( CRYPT_OK );
	}
static int readKeyIdentifiers( INOUT STREAM *stream, 
							   INOUT PKCS15_INFO *pkcs15infoPtr,
							   IN_LENGTH const int endPos )
	{
	int iterationCount, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( pkcs15infoPtr, sizeof( PKCS15_INFO ) ) );
	
	REQUIRES( endPos > 0 && endPos > stell( stream ) && \
			  endPos < MAX_INTLENGTH );

	for( status = CRYPT_OK, iterationCount = 0;
		 cryptStatusOK( status ) && stell( stream ) < endPos && \
			iterationCount < FAILSAFE_ITERATIONS_MED; iterationCount++ )
		{
		long value;
		int payloadLength;

		/* Read each identifier type and copy the useful ones into the PKCS
		   #15 information */
		readSequence( stream, &payloadLength );
		status = readShortInteger( stream, &value );
		if( cryptStatusError( status ) )
			return( status );
		switch( value )
			{
			case PKCS15_KEYID_ISSUERANDSERIALNUMBER:
				{
				HASHFUNCTION_ATOMIC hashFunctionAtomic;
				void *iAndSPtr = DUMMY_INIT_PTR;
				int iAndSLength, hashSize;

				/* If we've already got the iAndSID, use that version 
				   instead */
				if( pkcs15infoPtr->iAndSIDlength > 0 )
					{
					status = readUniversal( stream );
					continue;
					}

				/* Hash the full issuerAndSerialNumber to get an iAndSID */
				getHashAtomicParameters( CRYPT_ALGO_SHA1, 0,
										 &hashFunctionAtomic, &hashSize );
				status = getStreamObjectLength( stream, &iAndSLength );
				if( cryptStatusOK( status ) )
					status = sMemGetDataBlock( stream, &iAndSPtr, 
											   iAndSLength );
				if( cryptStatusOK( status ) )
					status = sSkip( stream, iAndSLength );
				if( cryptStatusError( status ) )
					return( status );
				hashFunctionAtomic( pkcs15infoPtr->iAndSID, KEYID_SIZE, 
									iAndSPtr, iAndSLength );
				pkcs15infoPtr->iAndSIDlength = hashSize;
				break;
				}

			case PKCS15_KEYID_SUBJECTKEYIDENTIFIER:
				status = readOctetString( stream, pkcs15infoPtr->keyID,
										  &pkcs15infoPtr->keyIDlength, 
										  8, CRYPT_MAX_HASHSIZE );
				break;

			case PKCS15_KEYID_ISSUERANDSERIALNUMBERHASH:
				/* If we've already got the iAndSID by hashing the
				   issuerAndSerialNumber, use that version instead */
				if( pkcs15infoPtr->iAndSIDlength > 0 )
					{
					status = readUniversal( stream );
					continue;
					}
				status = readOctetString( stream, pkcs15infoPtr->iAndSID,
										  &pkcs15infoPtr->iAndSIDlength, 
										  KEYID_SIZE, KEYID_SIZE );
				break;

			case PKCS15_KEYID_ISSUERNAMEHASH:
				status = readOctetString( stream, pkcs15infoPtr->issuerNameID,
										  &pkcs15infoPtr->issuerNameIDlength, 
										  KEYID_SIZE, KEYID_SIZE );
				break;

			case PKCS15_KEYID_SUBJECTNAMEHASH:
				status = readOctetString( stream, pkcs15infoPtr->subjectNameID,
										  &pkcs15infoPtr->subjectNameIDlength, 
										  KEYID_SIZE, KEYID_SIZE );
				break;

			case PKCS15_KEYID_PGP2:
				status = readOctetString( stream, pkcs15infoPtr->pgp2KeyID,
										  &pkcs15infoPtr->pgp2KeyIDlength, 
										  PGP_KEYID_SIZE, PGP_KEYID_SIZE );
				break;

			case PKCS15_KEYID_OPENPGP:
				status = readOctetString( stream, pkcs15infoPtr->openPGPKeyID,
										  &pkcs15infoPtr->openPGPKeyIDlength, 
										  PGP_KEYID_SIZE, PGP_KEYID_SIZE );
				break;

			default:
				status = readUniversal( stream );
			}
		}
	if( iterationCount >= FAILSAFE_ITERATIONS_MED )
		{
		/* This could be either an internal error or some seriously 
		   malformed data, since we can't tell without human intervention
		   we throw a debug exception but otherwise treat it as bad data */
		DEBUG_DIAG(( "Encountered more than %d key IDs", 
					 FAILSAFE_ITERATIONS_MED ));
		assert( DEBUG_WARN );
		return( CRYPT_ERROR_BADDATA );
		}

	return( status );
	}
Exemple #5
0
static int readRDNcomponent( INOUT STREAM *stream, 
							 INOUT DN_COMPONENT **dnComponentListPtrPtr,
							 IN_LENGTH_SHORT const int rdnDataLeft )
	{	
	CRYPT_ERRTYPE_TYPE dummy;
	BYTE stringBuffer[ MAX_ATTRIBUTE_SIZE + 8 ];
	void *value;
	const int rdnStart = stell( stream );
	int type, valueLength, valueStringType, stringTag;
	int flags = DN_FLAG_NOCHECK, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( dnComponentListPtrPtr, sizeof( DN_COMPONENT * ) ) );

	REQUIRES( rdnDataLeft > 0 && rdnDataLeft < MAX_INTLENGTH_SHORT );
	REQUIRES( rdnStart > 0 && rdnStart < MAX_INTLENGTH_SHORT );

	/* Read the type information for this AVA */
	status = readAVA( stream, &type, &valueLength, &stringTag );
	if( cryptStatusError( status ) )
		{
		/* If this is an unrecognised AVA, don't try and process it (the
		   content will already have been skipped in readAVA()) */
		if( status == OK_SPECIAL )
			return( CRYPT_OK );

		return( status );
		}

	/* Make sure that the string is a valid type for a DirectoryString.  We 
	   don't allow Universal strings since no-one in their right mind uses
	   those.
	   
	   Alongside DirectoryString values we also allow IA5Strings, from the
	   practice of stuffing email addresses into DNs */
	if( stringTag != BER_STRING_PRINTABLE && stringTag != BER_STRING_T61 && \
		stringTag != BER_STRING_BMP && stringTag != BER_STRING_UTF8 && \
		stringTag != BER_STRING_IA5 )
		return( CRYPT_ERROR_BADDATA );

	/* Skip broken AVAs with zero-length strings */
	if( valueLength <= 0 )
		return( CRYPT_OK );

	/* Record the string contents, avoiding moving it into a buffer */
	status = sMemGetDataBlock( stream, &value, valueLength );
	if( cryptStatusOK( status ) )
		status = sSkip( stream, valueLength, MAX_INTLENGTH_SHORT );
	if( cryptStatusError( status ) )
		return( status );
	ANALYSER_HINT( value != NULL );

	/* If there's room for another AVA, mark this one as being continued.  The
	   +10 value is the minimum length for an AVA: SEQUENCE { OID, value } 
	   (2-bytes SEQUENCE + 5 bytes OID + 2 bytes (tag + length) + 1 byte min-
	   length data).  We don't do a simple =/!= check to get around incorrectly 
	   encoded lengths */
	if( rdnDataLeft >= ( stell( stream ) - rdnStart ) + 10 )
		flags |= DN_FLAG_CONTINUED;

	/* Convert the string into the local character set */
	status = copyFromAsn1String( stringBuffer, MAX_ATTRIBUTE_SIZE, 
								 &valueLength, &valueStringType, value, 
								 valueLength, stringTag );
	if( cryptStatusError( status ) )
		return( status );

	/* Add the DN component to the DN.  If we hit a non-memory related error
	   we turn it into a generic CRYPT_ERROR_BADDATA error since the other
	   codes are somewhat too specific for this case, something like 
	   CRYPT_ERROR_INITED or an arg error isn't too useful for the caller */
	status = insertDNstring( dnComponentListPtrPtr, type, stringBuffer, 
							 valueLength, valueStringType, flags, &dummy );
	return( ( cryptStatusError( status ) && status != CRYPT_ERROR_MEMORY ) ? \
			CRYPT_ERROR_BADDATA : status );
	}
Exemple #6
0
static int scanPacketGroup( INOUT STREAM *stream,
							OUT_LENGTH_SHORT_Z int *packetGroupLength,
							const BOOLEAN isLastGroup )
	{
	BOOLEAN firstPacket = TRUE, skipPackets = FALSE;
	int endPos = 0, iterationCount, status = CRYPT_OK;

	assert( isReadPtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( packetGroupLength, sizeof( int ) ) );

	/* Clear return value */
	*packetGroupLength = 0;

	for( iterationCount = 0; iterationCount < FAILSAFE_ITERATIONS_LARGE;
		 iterationCount++ )
		{
		long length;
		int ctb, type;

		/* Get the next CTB.  If it's the start of another packet group,
		   we're done */
		ctb = status = sPeek( stream );
		if( cryptStatusOK( status ) && !( pgpIsCTB( ctb ) ) )
			status = CRYPT_ERROR_BADDATA;
		if( cryptStatusError( status ) )
			{
			/* If we ran out of input data let the caller know, however if 
			   this is the last packet group then running out of data isn't
			   an error */
			if( status == CRYPT_ERROR_UNDERFLOW )
				{
				if( !isLastGroup )
					skipPackets = TRUE;
				break;
				}
			return( status );
			}
		type = pgpGetPacketType( ctb );
		if( firstPacket )
			{
			/* If the packet group doesn't start with the expected packet
			   type, skip packets to try and resync */
			if( type != PGP_PACKET_PUBKEY && type != PGP_PACKET_SECKEY )
				skipPackets = TRUE;
			firstPacket = FALSE;
			}
		else
			{
			/* If we've found the start of a new packet group, we're done */
			if( type == PGP_PACKET_PUBKEY || type == PGP_PACKET_SECKEY )
				break;
			}

		/* Skip the current packet in the buffer */
		status = pgpReadPacketHeader( stream, NULL, &length, \
									  getMinPacketSize( type ) );
		if( cryptStatusOK( status ) )
			{
			endPos = stell( stream ) + length;
			status = sSkip( stream, length );
			}
		if( cryptStatusError( status ) )
			{
			/* If we ran out of input data let the caller know */
			if( status == CRYPT_ERROR_UNDERFLOW )
				{
				skipPackets = TRUE;
				break;
				}
			return( status );
			}
		}
	ENSURES( iterationCount < FAILSAFE_ITERATIONS_LARGE );

	/* Remember where the current packet group ends.  If we skipped packets 
	   or consumed all of the input in the buffer and there's more present 
	   beyond that, tell the caller to discard the data and try again */
	*packetGroupLength = endPos;
	return( skipPackets ? OK_SPECIAL : CRYPT_OK );
	}
Exemple #7
0
static int readKey( INOUT STREAM *stream, 
					INOUT PGP_INFO *pgpInfo, 
					IN_INT_SHORT_Z const int keyGroupNo,
					INOUT ERROR_INFO *errorInfo )
	{
	PGP_KEYINFO *keyInfo = &pgpInfo->key;
	HASHFUNCTION hashFunction;
	HASHINFO hashInfo;
	BYTE hash[ CRYPT_MAX_HASHSIZE + 8 ], packetHeader[ 64 + 8 ];
	BOOLEAN isPublicKey = TRUE, isPrimaryKey = FALSE;
	void *pubKeyPayload;
	long packetLength;
	int pubKeyPos, pubKeyPayloadPos, endPos, pubKeyPayloadLen;
	int ctb, length, value, hashSize, iterationCount, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( pgpInfo, sizeof( PGP_INFO ) ) );

	REQUIRES( keyGroupNo >= 0 && keyGroupNo < MAX_INTLENGTH_SHORT );
	REQUIRES( errorInfo != NULL );

	/* Process the CTB and packet length */
	ctb = sPeek( stream );
	if( cryptStatusError( ctb ) )
		{
		/* If there was an error reading the CTB, which is the first byte of 
		   the packet group, it means that we've run out of data so we 
		   return the status as a not-found error rather than the actual
		   stream status */
		return( CRYPT_ERROR_NOTFOUND );
		}
	switch( pgpGetPacketType( ctb ) )
		{
		case PGP_PACKET_SECKEY_SUB:
			keyInfo = &pgpInfo->subKey;
			isPublicKey = FALSE;
			break;

		case PGP_PACKET_SECKEY:
			isPublicKey = FALSE;
			break;

		case PGP_PACKET_PUBKEY_SUB:
			keyInfo = &pgpInfo->subKey;
			break;

		case PGP_PACKET_PUBKEY:
			isPrimaryKey = TRUE;
			break;

		default:
			retExt( CRYPT_ERROR_BADDATA, 
					( CRYPT_ERROR_BADDATA, errorInfo, 
					  "Invalid PGP CTB %02X for key packet group %d", 
					  ctb, keyGroupNo ) );
		}
	status = pgpReadPacketHeader( stream, NULL, &packetLength, 64 );
	if( cryptStatusError( status ) )
		{
		retExt( status,
				( status, errorInfo, 
				  "Invalid PGP key packet header for key packet group %d", 
				  keyGroupNo ) );
		}
	if( packetLength < 64 || packetLength > sMemDataLeft( stream ) )
		{
		retExt( CRYPT_ERROR_BADDATA, 
				( CRYPT_ERROR_BADDATA, errorInfo, 
				  "Invalid PGP key packet length %ld for key packet group %d", 
				  packetLength, keyGroupNo ) );
		}

	/* Since there can (in theory) be arbitrary numbers of subkeys and other 
	   odds and ends attached to a key and the details of what to do with 
	   these things gets a bit vague, we just skip any further subkeys that 
	   may be present */
	if( keyInfo->pkcAlgo != CRYPT_ALGO_NONE )
		{
		status = sSkip( stream, packetLength );
		for( iterationCount = 0; 
			 cryptStatusOK( status ) && \
				iterationCount < FAILSAFE_ITERATIONS_MED; 
			 iterationCount++ )
			{
			status = readUserID( stream, pgpInfo, 
								 isPrimaryKey ? &hashInfo : NULL );
			}
		ENSURES( iterationCount < FAILSAFE_ITERATIONS_MED );
		if( cryptStatusError( status ) && status != OK_SPECIAL )
			{
			retExt( status, 
					( status, errorInfo, 
					  "Invalid additional PGP subkey information for key "
					  "packet group %d", keyGroupNo ) );
			}

		/* We've skipped the current subkey, we're done */
		return( CRYPT_OK );
		}

	/* Determine which bits make up the public and the private key data.  The
	   public-key data starts at the version number and includes the date,
	   validity, and public-key components.  Since there's no length 
	   information included for this data block we have to record bookmarks
	   and then later retroactively calculate the length based on how much
	   data we've read in the meantime:

		  pubKey pubKeyPayload		 privKey			 endPos
			|		|					|					|
			v		v					v					v
		+---+---------------------------+-------------------+
		|hdr|		|	Public key		|	Private key		|
		+---+---------------------------+-------------------+
			|		|<pubKeyPayloadLen->|					|
			|<----- pubKeyDataLen ----->|<-- privKeyDLen -->| 
			|<--------------- packetLength ---------------->| */
	pubKeyPos = stell( stream );
	endPos = pubKeyPos + packetLength;
	ENSURES( endPos > pubKeyPos && endPos < MAX_BUFFER_SIZE );
	status = value = sgetc( stream );
	if( cryptStatusError( status ) )
		return( status );
	if( value != PGP_VERSION_2 && value != PGP_VERSION_3 && \
		value != PGP_VERSION_OPENPGP )
		{
		/* Unknown version number, skip this packet */
		return( OK_SPECIAL );
		}
	pgpInfo->isOpenPGP = ( value == PGP_VERSION_OPENPGP ) ? TRUE : FALSE;

	/* Build the packet header, which is hashed along with the key components
	   to get the OpenPGP keyID.  This is generated anyway when the context
	   is created but we need to generate it here as well in order to locate
	   the key in the first place:

		byte		ctb = 0x99
		byte[2]		length
		byte		version = 4
		byte[4]		key generation time
	  [	byte[2]		validity time - PGP 2.x only ]
		byte[]		key data

	   We can't add the length or key data yet since we have to parse the
	   key data to know how long it is, so we can only build the static part
	   of the header at this point */
	packetHeader[ 0 ] = 0x99;
	packetHeader[ 3 ] = PGP_VERSION_OPENPGP;

	/* Read the timestamp and validity period (for PGP 2.x keys) */
	status = sread( stream, packetHeader + 4, 4 );
	if( !cryptStatusError( status ) && !pgpInfo->isOpenPGP )
		status = sSkip( stream, 2 );
	if( cryptStatusError( status ) )
		return( status );

	/* Read the public key components */
	pubKeyPayloadPos = stell( stream );
	status = readPublicKeyComponents( stream, keyInfo, &length );
	if( cryptStatusError( status ) )
		{
		/* If the error status is OK_SPECIAL then the problem was an
		   unrecognised algorithm or something similar so we just skip the 
		   packet */
		if( status == OK_SPECIAL )
			{
			DEBUG_DIAG(( "Encountered unrecognised algorithm while "
						 "reading key" ));
			assert( DEBUG_WARN );
			return( OK_SPECIAL );
			}
		retExt( status, 
				( status, errorInfo, 
				  "Invalid PGP public-key components for key packet group %d",
				  keyGroupNo ) );
		}

	/* Now that we know where the public key data starts and finishes, we 
	   can set up references to it */
	keyInfo->pubKeyDataLen = stell( stream ) - pubKeyPos;
	status = sMemGetDataBlockAbs( stream, pubKeyPos, &keyInfo->pubKeyData, 
								  keyInfo->pubKeyDataLen );
	if( cryptStatusError( status ) )
		{
		DEBUG_DIAG(( "Couldn't set up reference to key data" ));
		assert( DEBUG_WARN );
		return( status );
		}
	pubKeyPayloadLen = stell( stream ) - pubKeyPayloadPos;
	status = sMemGetDataBlockAbs( stream, pubKeyPayloadPos, &pubKeyPayload, 
								  pubKeyPayloadLen );
	if( cryptStatusError( status ) )
		{
		DEBUG_DIAG(( "Couldn't set up reference to key data" ));
		assert( DEBUG_WARN );
		return( status );
		}

	/* Complete the packet header that we read earlier on by adding the
	   length information */
	packetHeader[ 1 ] = intToByte( ( ( 1 + 4 + length ) >> 8 ) & 0xFF );
	packetHeader[ 2 ] = intToByte( ( 1 + 4 + length ) & 0xFF );

	/* Hash the data needed to generate the OpenPGP keyID */
	getHashParameters( CRYPT_ALGO_SHA1, 0, &hashFunction, &hashSize );
	hashFunction( hashInfo, NULL, 0, packetHeader, 1 + 2 + 1 + 4, 
				  HASH_STATE_START );
	hashFunction( hashInfo, hash, CRYPT_MAX_HASHSIZE, 
				  pubKeyPayload, pubKeyPayloadLen, HASH_STATE_END );
	memcpy( keyInfo->openPGPkeyID, hash + hashSize - PGP_KEYID_SIZE,
			PGP_KEYID_SIZE );

	/* If it's a private keyring, process the private key components */
	if( !isPublicKey )
		{
		/* Handle decryption information for private-key components if 
		   necessary */
		status = readPrivateKeyDecryptionInfo( stream, keyInfo );
		if( cryptStatusError( status ) )
			{
			/* If the error status is OK_SPECIAL then the problem was an
			   unrecognised algorithm or something similar so we just skip
			   the packet */
			if( status == OK_SPECIAL )
				{
				DEBUG_DIAG(( "Encountered unrecognised algorithm while "
							 "reading key" ));
				assert( DEBUG_WARN );
				return( OK_SPECIAL );
				}
			retExt( status, 
					( status, errorInfo, 
					  "Invalid PGP private-key decryption information for "
					  "key packet group %d", keyGroupNo ) );
			}

		/* What's left is the private-key data */
		keyInfo->privKeyDataLen = endPos - stell( stream );
		status = sMemGetDataBlock( stream, &keyInfo->privKeyData, 
								   keyInfo->privKeyDataLen );
		if( cryptStatusOK( status ) )
			status = sSkip( stream, keyInfo->privKeyDataLen );
		if( cryptStatusError( status ) )
			return( status );
		}

	/* If it's the primary key, start hashing it in preparation for 
	   performing signature checks on subpackets */
	if( isPrimaryKey )
		{
		packetHeader[ 0 ] = 0x99;
		packetHeader[ 1 ] = intToByte( ( keyInfo->pubKeyDataLen >> 8 ) & 0xFF );
		packetHeader[ 2 ] = intToByte( keyInfo->pubKeyDataLen & 0xFF );	
		hashFunction( hashInfo, NULL, 0, packetHeader, 1 + 2, 
					  HASH_STATE_START );
		hashFunction( hashInfo, NULL, 0, keyInfo->pubKeyData, 
					  keyInfo->pubKeyDataLen, HASH_STATE_CONTINUE );
		}

	/* Read any associated subpacket(s), of which the only ones of real 
	   interest are the userID packet(s) */
	for( iterationCount = 0; 
		 cryptStatusOK( status ) && \
			iterationCount < FAILSAFE_ITERATIONS_MED; 
		 iterationCount++ )
		{
		status = readUserID( stream, pgpInfo, 
							 isPrimaryKey ? &hashInfo : NULL );
		}
	ENSURES( iterationCount < FAILSAFE_ITERATIONS_MED );
	if( cryptStatusError( status ) && status != OK_SPECIAL )
		{
		retExt( status, 
				( status, errorInfo, 
				  "Invalid PGP userID information for key packet group %d",
				  keyGroupNo ) );
		}

	/* If there's no user ID present, set a generic label */
	if( pgpInfo->lastUserID <= 0 )
		{
		pgpInfo->userID[ 0 ] = "PGP key (no user ID found)";
		pgpInfo->userIDlen[ 0 ] = 26;
		pgpInfo->lastUserID = 1;
		}

	return( CRYPT_OK );
	}
Exemple #8
0
static int readUserID( INOUT STREAM *stream, 
					   INOUT_OPT PGP_INFO *pgpInfo,
					   INOUT_OPT HASHINFO *hashInfo )
	{
	HASHINFO localHashInfo;
	long packetLength;
	int ctb, packetType = DUMMY_INIT, iterationCount, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( pgpInfo == NULL || \
			isWritePtr( pgpInfo, sizeof( PGP_INFO ) ) );
	assert( hashInfo == NULL || \
			isWritePtr( hashInfo, sizeof( HASHINFO ) ) );

	/* Take a local copy of the hash information from the primary key
	   packet */
	if( hashInfo != NULL )
		memcpy( &localHashInfo, hashInfo, sizeof( HASHINFO ) );

	/* Skip keyring trust packets, signature packets, and any private 
	   packets (GPG uses packet type 61, which might be a DSA self-
	   signature).

	   PGP has two ways of indicating key usage, either directly via the key 
	   type (e.g. PGP_ALGO_RSA_ENCRYPT vs. PGP_ALGO_RSA_SIGN) or in a rather 
	   schizophrenic manner in signature packets by allowing the signer to 
	   specify an X.509-style key usage.  Since it can appear in both self-
	   sigs and certification signatures, the exact usage for a key is 
	   somewhat complex to determine as a certification signer could 
	   indicate that they trust the key when it's used for signing while a 
	   self-signer could indicate that the key should be used for 
	   encryption.  This appears to be a preference indication rather than a 
	   hard limit like the X.509 keyUsage and also contains other odds and 
	   ends as well such as key splitting indicators.  For now we don't make 
	   use of these flags as it's a bit difficult to figure out what's what, 
	   and in any case DSA vs. Elgamal doesn't need any further constraints 
	   since there's only one usage possible */
	for( status = CRYPT_OK, iterationCount = 0; 
		 cryptStatusOK( status ) && iterationCount < FAILSAFE_ITERATIONS_MED;
		 iterationCount++ )
		{
		/* See what we've got.  If we've run out of input or it's a non-key-
		   related packet, we're done */
		status = ctb = sPeek( stream );
		if( cryptStatusError( status ) )
			break;
		packetType = pgpGetPacketType( ctb );
		if( packetType != PGP_PACKET_TRUST && \
			packetType != PGP_PACKET_SIGNATURE && \
			packetType != PGP_PACKET_USERATTR && \
			!pgpIsReservedPacket( packetType ) )
			break;

		/* Skip the packet.  If we get an error at this point we don't 
		   immediately bail out but try and return at least a partial 
		   response */
		status = pgpReadPacketHeader( stream, &ctb, &packetLength, \
									  getMinPacketSize( packetType ) );
		if( cryptStatusError( status ) )
			break;
		status = sSkip( stream, packetLength );
		}
	ENSURES( iterationCount < FAILSAFE_ITERATIONS_MED );

	/* If we've reached the end of the current collection of key packets, 
	   let the caller know that we're done.  Note that running out of input
	   is a valid condition so we don't return a fatal error code at this
	   point */
	if( cryptStatusError( status ) || packetType != PGP_PACKET_USERID )
		return( OK_SPECIAL );

	/* Record the userID (unless we're skipping the packet).  If there are 
	   more userIDs than we can record we silently ignore them.  This 
	   handles keys with weird numbers of userIDs without rejecting them 
	   just because they have, well, a weird number of userIDs */
	status = pgpReadPacketHeader( stream, &ctb, &packetLength, \
								  getMinPacketSize( packetType ) );
	if( cryptStatusError( status ) )
		return( status );
	if( pgpInfo != NULL && pgpInfo->lastUserID < MAX_PGP_USERIDS )
		{
		void *dataPtr;

		status = sMemGetDataBlock( stream, &dataPtr, packetLength );
		if( cryptStatusError( status ) )
			return( status );
		pgpInfo->userID[ pgpInfo->lastUserID ] = dataPtr;
		pgpInfo->userIDlen[ pgpInfo->lastUserID++ ] = ( int ) packetLength;
		}
	return( sSkip( stream, packetLength ) );
	}
Exemple #9
0
static int processCertWrapper( INOUT STREAM *stream, 
							   OUT_LENGTH_SHORT_Z int *objectOffset, 
							   OUT_DATALENGTH_Z int *objectLength, 
							   IN_DATALENGTH_Z const int objectStartPos )
	{
	static const CMS_CONTENT_INFO FAR_BSS oidInfoSignedData = { 1, 3 };
	static const OID_INFO FAR_BSS signedDataOIDinfo[] = {
		{ OID_CMS_SIGNEDDATA, CRYPT_OK, &oidInfoSignedData },
		{ NULL, 0 }, { NULL, 0 }
		};
	static const OID_INFO FAR_BSS dataOIDinfo[] = {
		{ OID_CMS_DATA, CRYPT_OK, NULL },
		{ NULL, 0 }, { NULL, 0 }
		};
	long length;
	int setLength, localLength, offset DUMMY_INIT, status;

	assert( isWritePtr( stream, sizeof( STREAM ) ) );
	assert( isWritePtr( objectOffset, sizeof( int ) ) );
	assert( isWritePtr( objectLength, sizeof( int ) ) );

	REQUIRES( objectStartPos >= 0 && objectStartPos < MAX_BUFFER_SIZE );

	/* Clear return values */
	*objectOffset = *objectLength = 0;

	/* Read the SignedData wrapper */
	sseek( stream, objectStartPos );
	status = readCMSheader( stream, signedDataOIDinfo, 
							FAILSAFE_ARRAYSIZE( signedDataOIDinfo, OID_INFO ), 
							&length, READCMS_FLAG_NONE );
	if( cryptStatusError( status ) )
		return( status );

	/* Read the SET OF DigestAlgorithmIdentifier, empty for a pure 
	   certificate chain, nonempty for signed data or buggy certificate 
	   chains */
	status = readSet( stream, &setLength );
	if( cryptStatusOK( status ) && setLength > 0 )
		status = sSkip( stream, setLength, MAX_INTLENGTH_SHORT );
	if( cryptStatusError( status ) )
		return( status );

	/* Read the ContentInfo information */
	status = readCMSheader( stream, dataOIDinfo, 
							FAILSAFE_ARRAYSIZE( dataOIDinfo, OID_INFO ), 
							&length, READCMS_FLAG_INNERHEADER );
	if( cryptStatusError( status ) )
		return( status );

	/* If we've been fed signed data (i.e. the ContentInfo has the content 
	   field present), skip the content to get to the certificate chain */
	if( length > 0 )
		{
		status = sSkip( stream, length, MAX_INTLENGTH_SHORT );
		if( cryptStatusError( status ) )
			return( status );
		}
	else
		{
		/* If we have an indefinite length then there could be up to three 
		   EOCs present (one for each of the SEQUENCE, [0], and OCTET 
		   STRING), which we have to skip.  In theory there could be content
		   present as well but at that point we're going to be replicating
		   large chunks of the de-enveloping code so we only try and process
		   zero-length content, created by some buggy browser's cert-export
		   code (possibly Firefox)  */
		if( length == CRYPT_UNUSED )
			{
			int i;

			for( i = 0; i < 3; i++ )
				{
				status = checkEOC( stream );
				if( cryptStatusError( status ) )
					return( status );
				if( !status )
					break;
				}
			}
		}

	/* We've reached the inner content encapsulation, find out how long the 
	   content (i.e. the chain of certificates) is */
	status = getStreamObjectLength( stream, &localLength );
	if( cryptStatusOK( status ) )
		{
		offset = stell( stream );
		status = readConstructedI( stream, NULL, 0 );
		}
	if( cryptStatusError( status ) )
		return( status );

	/* Adjust for the [0] { ... } wrapper that contains the list of 
	   certificate, returning a pointer to the collection of certificates
	   without any encapsulation */
	localLength -= stell( stream ) - offset;
	if( localLength < MIN_CERTSIZE || localLength >= MAX_INTLENGTH )
		return( CRYPT_ERROR_BADDATA );
	*objectOffset = stell( stream );
	*objectLength = localLength;
	
	return( CRYPT_OK );
	}