Exemple #1
0
/**Function*************************************************************

  Synopsis    [Adds trivial clause.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkClauseAnd( sat_solver * pSat, Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, Vec_Int_t * vVars )
{
    int fComp1, Var, Var1, i;
//printf( "Adding AND %d.  (%d)    %d\n", pNode->Id, vSuper->nSize+1, (int)pSat->sat_solver_stats.clauses );

    assert( !Abc_ObjIsComplement( pNode ) );
    assert( Abc_ObjIsNode( pNode ) );

//    nVars = sat_solver_nvars(pSat);
    Var = (int)(ABC_PTRINT_T)pNode->pCopy;
//    Var = pNode->Id;

//    assert( Var  < nVars ); 
    for ( i = 0; i < vSuper->nSize; i++ )
    {
        // get the predecessor nodes
        // get the complemented attributes of the nodes
        fComp1 = Abc_ObjIsComplement((Abc_Obj_t *)vSuper->pArray[i]);
        // determine the variable numbers
        Var1 = (int)(ABC_PTRINT_T)Abc_ObjRegular((Abc_Obj_t *)vSuper->pArray[i])->pCopy;
//        Var1 = (int)Abc_ObjRegular(vSuper->pArray[i])->Id;

        // check that the variables are in the SAT manager
//        assert( Var1 < nVars );

        // suppose the AND-gate is A * B = C
        // add !A => !C   or   A + !C
    //  fprintf( pFile, "%d %d 0%c", Var1, -Var, 10 );
        vVars->nSize = 0;
        Vec_IntPush( vVars, toLitCond(Var1, fComp1) );
        Vec_IntPush( vVars, toLitCond(Var,  1     ) );
        if ( !sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize ) )
            return 0;
    }

    // add A & B => C   or   !A + !B + C
//  fprintf( pFile, "%d %d %d 0%c", -Var1, -Var2, Var, 10 );
    vVars->nSize = 0;
    for ( i = 0; i < vSuper->nSize; i++ )
    {
        // get the predecessor nodes
        // get the complemented attributes of the nodes
        fComp1 = Abc_ObjIsComplement((Abc_Obj_t *)vSuper->pArray[i]);
        // determine the variable numbers
        Var1 = (int)(ABC_PTRINT_T)Abc_ObjRegular((Abc_Obj_t *)vSuper->pArray[i])->pCopy;
//        Var1 = (int)Abc_ObjRegular(vSuper->pArray[i])->Id;
        // add this variable to the array
        Vec_IntPush( vVars, toLitCond(Var1, !fComp1) );
    }
    Vec_IntPush( vVars, toLitCond(Var, 0) );
    return sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
Exemple #2
0
void Cnf_AddCardinConstrTest()
{
    int i, status, nVars = 7;
    Vec_Int_t * vVars = Vec_IntStartNatural( nVars );
    sat_solver * pSat = sat_solver_new();
    sat_solver_setnvars( pSat, nVars );
    Cnf_AddCardinConstr( pSat, vVars );
    while ( 1 )
    {
        status = sat_solver_solve( pSat, NULL, NULL, 0, 0, 0, 0 );
        if ( status != l_True )
            break;
        Vec_IntClear( vVars );
        for ( i = 0; i < nVars; i++ )
        {
            Vec_IntPush( vVars, Abc_Var2Lit(i, sat_solver_var_value(pSat, i)) );
            printf( "%d", sat_solver_var_value(pSat, i) );
        }
        printf( "\n" );
        status = sat_solver_addclause( pSat, Vec_IntArray(vVars), Vec_IntArray(vVars) + Vec_IntSize(vVars) );
        if ( status == 0 )
            break;
    }
    sat_solver_delete( pSat );
    Vec_IntFree( vVars );
}
Exemple #3
0
static inline int Pdr_ObjSatVar2FindOrAdd( Pdr_Man_t * p, int k, Aig_Obj_t * pObj )
{ 
    Vec_Int_t * vId2Vars = p->pvId2Vars + Aig_ObjId(pObj);
    assert( p->pCnf2->pObj2Count[Aig_ObjId(pObj)] >= 0 );
    if ( Vec_IntSize(vId2Vars) == 0 )
        Vec_IntGrow(vId2Vars, 2 * k + 1);
    if ( Vec_IntGetEntry(vId2Vars, k) == 0 )
    {
        sat_solver * pSat = Pdr_ManSolver(p, k);
        Vec_Int_t * vVar2Ids = (Vec_Int_t *)Vec_PtrEntry(&p->vVar2Ids, k);
        int iVarNew = Vec_IntSize( vVar2Ids );
        assert( iVarNew > 0 );
        Vec_IntPush( vVar2Ids, Aig_ObjId(pObj) );
        Vec_IntWriteEntry( vId2Vars, k, iVarNew << 2 );
        sat_solver_setnvars( pSat, iVarNew + 1 );
        if ( k == 0 && Saig_ObjIsLo(p->pAig, pObj) ) // initialize the register output
        {
            int Lit = toLitCond( iVarNew, 1 );
            int RetValue = sat_solver_addclause( pSat, &Lit, &Lit + 1 );
            assert( RetValue == 1 );
            (void) RetValue;
            sat_solver_compress( pSat );
        }
    }
    return Vec_IntEntry( vId2Vars, k );
}
Exemple #4
0
/**Function*************************************************************

  Synopsis    [Creating/deleting the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline Swp_Man_t * Swp_ManStart( Gia_Man_t * pGia )
{
    Swp_Man_t * p;
    int Lit;
    assert( pGia->pHTable != NULL );
    pGia->pData = p = ABC_CALLOC( Swp_Man_t, 1 );
    p->pGia         = pGia;
    p->nConfMax     = 1000;
    p->vProbes      = Vec_IntAlloc( 100 );
    p->vProbRefs    = Vec_IntAlloc( 100 );
    p->vLit2Prob    = Vec_IntStartFull( 10000 );
    p->vCondProbes  = Vec_IntAlloc( 100 );
    p->vCondAssump  = Vec_IntAlloc( 100 );
    p->vId2Lit      = Vec_IntAlloc( 10000 );
    p->vFront       = Vec_IntAlloc( 100 );
    p->vFanins      = Vec_IntAlloc( 100 );
    p->vCexSwp      = Vec_IntAlloc( 100 );
    p->pSat         = sat_solver_new();
    p->nSatVars     = 1;
    sat_solver_setnvars( p->pSat, 1000 );
    Swp_ManSetObj2Lit( p, 0, (Lit = Abc_Var2Lit(p->nSatVars++, 0)) );
    Lit = Abc_LitNot(Lit);
    sat_solver_addclause( p->pSat, &Lit, &Lit + 1 );
    p->timeStart    = Abc_Clock();
    return p;
}
Exemple #5
0
/**Function*************************************************************

  Synopsis    [Adds trivial clause.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkClauseTriv( sat_solver * pSat, Abc_Obj_t * pNode, Vec_Int_t * vVars )
{
//printf( "Adding triv %d.         %d\n", Abc_ObjRegular(pNode)->Id, (int)pSat->sat_solver_stats.clauses );
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond( (int)(ABC_PTRINT_T)Abc_ObjRegular(pNode)->pCopy, Abc_ObjIsComplement(pNode) ) );
//    Vec_IntPush( vVars, toLitCond( (int)Abc_ObjRegular(pNode)->Id, Abc_ObjIsComplement(pNode) ) );
    return sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
Exemple #6
0
/**Function*************************************************************

  Synopsis    [Compute the patch function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_EcoPatch( Gia_Man_t * p, int nIns, int nOuts )
{
    int i, Lit, RetValue, Root;
    Gia_Obj_t * pObj;
    Vec_Int_t * vVars;
    // generate CNF and solver
    Cnf_Dat_t * pCnf = Cnf_DeriveGiaRemapped( p );
    sat_solver * pSat = sat_solver_new();
    sat_solver_setnvars( pSat, pCnf->nVars );
    // add timeframe clauses
    for ( i = 0; i < pCnf->nClauses; i++ )
        if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
            assert( 0 );
    // add equality constraints
    assert( Gia_ManPoNum(p) == nOuts + 1 + nIns );
    Gia_ManForEachPo( p, pObj, i )
    {
        if ( i == nOuts )
            break;
        Lit = Abc_Var2Lit( pCnf->pVarNums[Gia_ObjId(p, pObj)], 1 ); // neg lit
        RetValue = sat_solver_addclause( pSat, &Lit, &Lit + 1 );
        assert( RetValue );
    }
    // add inequality constraint
    pObj = Gia_ManPo( p, nOuts );
    Lit = Abc_Var2Lit( pCnf->pVarNums[Gia_ObjId(p, pObj)], 0 ); // pos lit
    RetValue = sat_solver_addclause( pSat, &Lit, &Lit + 1 );
    assert( RetValue );
    // simplify the SAT solver
    RetValue = sat_solver_simplify( pSat );
    assert( RetValue );
    // collect input variables
    vVars = Vec_IntAlloc( nIns );
    Gia_ManForEachPo( p, pObj, i )
        if ( i >= nOuts + 1 )
            Vec_IntPush( vVars, pCnf->pVarNums[Gia_ObjId(p, pObj)] );
    assert( Vec_IntSize(vVars) == nIns );
    // derive the root variable
    pObj = Gia_ManPi( p, Gia_ManPiNum(p) - 1 );
    Root = pCnf->pVarNums[Gia_ObjId(p, pObj)];
    // solve the problem
    RetValue = Bmc_EcoSolve( pSat, Root, vVars );
    Vec_IntFree( vVars );
    return RetValue;
}
Exemple #7
0
/**Function*************************************************************

  Synopsis    [Solve the enumeration problem.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_EcoSolve( sat_solver * pSat, int Root, Vec_Int_t * vVars )
{
    int nBTLimit = 1000000;
    Vec_Int_t * vLits   = Vec_IntAlloc( Vec_IntSize(vVars) );
    int status, i, Div, iVar, nFinal, * pFinal, nIter = 0, RetValue = 0;
    int pLits[2], nVars = sat_solver_nvars( pSat );
    sat_solver_setnvars( pSat, nVars + 1 );
    pLits[0] = Abc_Var2Lit( Root, 0 );  // F = 1
    pLits[1] = Abc_Var2Lit( nVars, 0 ); // iNewLit
    while ( 1 ) 
    {
        // find onset minterm
        status = sat_solver_solve( pSat, pLits, pLits + 2, nBTLimit, 0, 0, 0 );
        if ( status == l_Undef )
            { RetValue = -1; break; }
        if ( status == l_False )
            { RetValue = 1; break; }
        assert( status == l_True );
        // collect divisor literals
        Vec_IntClear( vLits );
        Vec_IntPush( vLits, Abc_LitNot(pLits[0]) ); // F = 0
        Vec_IntForEachEntry( vVars, Div, i )
            Vec_IntPush( vLits, sat_solver_var_literal(pSat, Div) );
        // check against offset
        status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), nBTLimit, 0, 0, 0 );
        if ( status == l_Undef )
            { RetValue = -1; break; }
        if ( status == l_True )
            break;
        assert( status == l_False );
        // compute cube and add clause
        nFinal = sat_solver_final( pSat, &pFinal );
        Vec_IntClear( vLits );
        Vec_IntPush( vLits, Abc_LitNot(pLits[1]) ); // NOT(iNewLit)
        printf( "Cube %d : ", nIter );
        for ( i = 0; i < nFinal; i++ )
        {
            if ( pFinal[i] == pLits[0] )
                continue;
            Vec_IntPush( vLits, pFinal[i] );
            iVar = Vec_IntFind( vVars, Abc_Lit2Var(pFinal[i]) );   assert( iVar >= 0 );
            printf( "%s%d ", Abc_LitIsCompl(pFinal[i]) ? "+":"-", iVar );
        }
        printf( "\n" );
        status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits) );
        assert( status );
        nIter++;
    }
//    assert( status == l_True );
    Vec_IntFree( vLits );
    return RetValue;
}
Exemple #8
0
/**Function*************************************************************

  Synopsis    [Constrains one node in the SAT solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ssw_NodeIsConstrained( Ssw_Man_t * p, Aig_Obj_t * pPoObj )
{
    int RetValue, Lit;
    Ssw_CnfNodeAddToSolver( p->pMSat, Aig_ObjFanin0(pPoObj) );
    // add constraint A = 1  ---->  A
    Lit = toLitCond( Ssw_ObjSatNum(p->pMSat,Aig_ObjFanin0(pPoObj)), !Aig_ObjFaninC0(pPoObj) );
    if ( p->pPars->fPolarFlip )
    {
        if ( Aig_ObjFanin0(pPoObj)->fPhase )  Lit = lit_neg( Lit );
    }
    RetValue = sat_solver_addclause( p->pMSat->pSat, &Lit, &Lit + 1 );
    assert( RetValue );
    return 1;
}
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bmc_Load_t * Bmc_LoadStart( Gia_Man_t * pGia )
{
    Bmc_Load_t * p;
    int Lit;
    Gia_ManSetPhase( pGia );
    Gia_ManCleanValue( pGia );
    Gia_ManCreateRefs( pGia );
    p = ABC_CALLOC( Bmc_Load_t, 1 );
    p->pGia      = pGia;
    p->pSat      = sat_solver_new();
    p->vSat2Id   = Vec_IntAlloc( 1000 );
    Vec_IntPush( p->vSat2Id, 0 );
    // create constant node
    Lit = Abc_Var2Lit( Bmc_LoadGetSatVar(p, 0), 1 );
    sat_solver_addclause( p->pSat, &Lit, &Lit + 1 );
    return p;
}
/**Function*************************************************************

  Synopsis    [Addes clauses to the solver.]

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Gia_ManAddClausesSuper( Ssc_Man_t * p, Gia_Obj_t * pNode, Vec_Int_t * vSuper )
{
    int i, RetValue, Lit, LitNode, pLits[2];
    assert( !Gia_IsComplement(pNode) );
    assert( Gia_ObjIsAnd( pNode ) );
    // suppose AND-gate is A & B = C
    // add !A => !C   or   A + !C
    // add !B => !C   or   B + !C
    LitNode = Ssc_ObjSatLit( p, Gia_Obj2Lit(p->pFraig,pNode) );
    Vec_IntForEachEntry( vSuper, Lit, i )
    {
        pLits[0] = Ssc_ObjSatLit( p, Lit );
        pLits[1] = Abc_LitNot( LitNode );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        // update literals
        Vec_IntWriteEntry( vSuper, i, Abc_LitNot(pLits[0]) );
    }
Exemple #11
0
/**Function*************************************************************

  Synopsis    [Add uniqueness constraint.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_ManAddUniqueness( sat_solver * pSat, Vec_Int_t * vState, int nRegs, int i, int k, int * pnSatVarNum, int * pnClauses )
{
    int * pStateI = (int *)Vec_IntArray(vState) + nRegs * i;
    int * pStateK = (int *)Vec_IntArray(vState) + nRegs * k;
    int v, iVars, nSatVarsOld, RetValue, * pClause;
    assert( i && k && i < k );
    assert( nRegs * k <= Vec_IntSize(vState) );
    // check if the states are available
    for ( v = 0; v < nRegs; v++ )
        if ( pStateI[v] >= 0 && pStateK[v] == -1 )
        {
//            printf( "Cannot constrain an incomplete state.\n" );
            return;
        }
    // add XORs
    nSatVarsOld = *pnSatVarNum;
    for ( v = 0; v < nRegs; v++ )
        if ( pStateI[v] >= 0 )
        {
            *pnClauses += 4;
            RetValue = Cnf_DataAddXorClause( pSat, pStateI[v], pStateK[v], (*pnSatVarNum)++ );
            if ( RetValue == 0 )
            {
                printf( "SAT solver became UNSAT.\n" );
                return;
            }
        }
    // add OR clause
    (*pnClauses)++;
    iVars = 0;
    pClause = ABC_ALLOC( int, nRegs );
    for ( v = nSatVarsOld; v < *pnSatVarNum; v++ )
        pClause[iVars++] = toLitCond( v, 0 );
    assert( iVars <= nRegs );
    RetValue = sat_solver_addclause( pSat, pClause, pClause + iVars );
    ABC_FREE( pClause );
    if ( RetValue == 0 )
    {
        printf( "SAT solver became UNSAT.\n" );
        return;
    }
}
Exemple #12
0
/**Function*************************************************************

  Synopsis    [Addes clauses to the solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Cec_AddClausesSuper( Cec_ManSat_t * p, Gia_Obj_t * pNode, Vec_Ptr_t * vSuper )
{
    Gia_Obj_t * pFanin;
    int * pLits, nLits, RetValue, i;
    assert( !Gia_IsComplement(pNode) );
    assert( Gia_ObjIsAnd( pNode ) );
    // create storage for literals
    nLits = Vec_PtrSize(vSuper) + 1;
    pLits = ABC_ALLOC( int, nLits );
    // suppose AND-gate is A & B = C
    // add !A => !C   or   A + !C
    Vec_PtrForEachEntry( Gia_Obj_t *, vSuper, pFanin, i )
    {
        pLits[0] = toLitCond(Cec_ObjSatNum(p,Gia_Regular(pFanin)), Gia_IsComplement(pFanin));
        pLits[1] = toLitCond(Cec_ObjSatNum(p,pNode), 1);
        if ( p->pPars->fPolarFlip )
        {
            if ( Gia_Regular(pFanin)->fPhase )  pLits[0] = lit_neg( pLits[0] );
            if ( pNode->fPhase )                pLits[1] = lit_neg( pLits[1] );
        }
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
    }
Exemple #13
0
/**Function*************************************************************

  Synopsis    [Add constraint that no more than 1 variable is 1.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Cnf_AddCardinConstr( sat_solver * p, Vec_Int_t * vVars )
{
    int i, k, pLits[2], iVar, nVars = sat_solver_nvars(p);
    Vec_IntForEachEntry( vVars, iVar, i )
        assert( iVar >= 0 && iVar < nVars );
    iVar = nVars;
    sat_solver_setnvars( p, nVars + Vec_IntSize(vVars) - 1 );
    while ( Vec_IntSize(vVars) > 1 )
    {
        for ( k = i = 0; i < Vec_IntSize(vVars)/2; i++ )
        {
            pLits[0] = Abc_Var2Lit( Vec_IntEntry(vVars, 2*i), 1 );
            pLits[1] = Abc_Var2Lit( Vec_IntEntry(vVars, 2*i+1), 1 );
            sat_solver_addclause( p, pLits, pLits + 2 );
            sat_solver_add_and( p, iVar, Vec_IntEntry(vVars, 2*i), Vec_IntEntry(vVars, 2*i+1), 1, 1, 1 );
            Vec_IntWriteEntry( vVars, k++, iVar++ );
        }
        if ( Vec_IntSize(vVars) & 1 )
            Vec_IntWriteEntry( vVars, k++, Vec_IntEntryLast(vVars) );
        Vec_IntShrink( vVars, k );
    }
    return iVar;
}
Exemple #14
0
/**Function*************************************************************

  Synopsis    [Performs induction by unrolling timeframes backward.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_ManInduction( Aig_Man_t * p, int nFramesMax, int nConfMax, int fUnique, int fUniqueAll, int fGetCex, int fVerbose, int fVeryVerbose )
{
    sat_solver * pSat;
    Aig_Man_t * pAigPart;
    Cnf_Dat_t * pCnfPart;
    Vec_Int_t * vTopVarNums, * vState, * vTopVarIds = NULL;
    Vec_Ptr_t * vTop, * vBot;
    Aig_Obj_t * pObjPi, * pObjPiCopy, * pObjPo;
    int i, k, f, clk, Lits[2], status, RetValue, nSatVarNum, nConfPrev;
    int nOldSize, iReg, iLast, fAdded, nConstrs = 0, nClauses = 0;
    assert( fUnique == 0 || fUniqueAll == 0 );
    assert( Saig_ManPoNum(p) == 1 );
    Aig_ManSetPioNumbers( p );

    // start the top by including the PO
    vBot = Vec_PtrAlloc( 100 );
    vTop = Vec_PtrAlloc( 100 );
    vState = Vec_IntAlloc( 1000 );
    Vec_PtrPush( vTop, Aig_ManPo(p, 0) );
    // start the array of CNF variables
    vTopVarNums = Vec_IntAlloc( 100 );
    // start the solver
    pSat = sat_solver_new();
    sat_solver_setnvars( pSat, 1000 );

    // iterate backward unrolling
    RetValue = -1;
    nSatVarNum = 0;
    if ( fVerbose )
        printf( "Induction parameters: FramesMax = %5d. ConflictMax = %6d.\n", nFramesMax, nConfMax );
    for ( f = 0; ; f++ )
    { 
        if ( f > 0 )
        {
            Aig_ManStop( pAigPart );
            Cnf_DataFree( pCnfPart );
        }
        clk = clock();
        // get the bottom
        Aig_SupportNodes( p, (Aig_Obj_t **)Vec_PtrArray(vTop), Vec_PtrSize(vTop), vBot );
        // derive AIG for the part between top and bottom
        pAigPart = Aig_ManDupSimpleDfsPart( p, vBot, vTop );
        // convert it into CNF
        pCnfPart = Cnf_Derive( pAigPart, Aig_ManPoNum(pAigPart) );
        Cnf_DataLift( pCnfPart, nSatVarNum );
        nSatVarNum += pCnfPart->nVars;
        nClauses   += pCnfPart->nClauses;

        // remember top frame var IDs
        if ( fGetCex && vTopVarIds == NULL )
        {
            vTopVarIds = Vec_IntStartFull( Aig_ManPiNum(p) );
            Aig_ManForEachPi( p, pObjPi, i )
            {
                if ( pObjPi->pData == NULL )
                    continue;
                pObjPiCopy = (Aig_Obj_t *)pObjPi->pData;
                assert( Aig_ObjIsPi(pObjPiCopy) );
                if ( Saig_ObjIsPi(p, pObjPi) )
                    Vec_IntWriteEntry( vTopVarIds, Aig_ObjPioNum(pObjPi) + Saig_ManRegNum(p), pCnfPart->pVarNums[Aig_ObjId(pObjPiCopy)] );
                else if ( Saig_ObjIsLo(p, pObjPi) )
                    Vec_IntWriteEntry( vTopVarIds, Aig_ObjPioNum(pObjPi) - Saig_ManPiNum(p), pCnfPart->pVarNums[Aig_ObjId(pObjPiCopy)] );
                else assert( 0 );
            }
        }

        // stitch variables of top and bot
        assert( Aig_ManPoNum(pAigPart)-1 == Vec_IntSize(vTopVarNums) );
        Aig_ManForEachPo( pAigPart, pObjPo, i )
        {
            if ( i == 0 )
            {
                // do not perform inductive strengthening
//                if ( f > 0 )
//                    continue;
                // add topmost literal
                Lits[0] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], f>0 );
                if ( !sat_solver_addclause( pSat, Lits, Lits+1 ) )
                    assert( 0 );
                nClauses++;
                continue;
            }
            Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i-1), 0 );
            Lits[1] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], 1 );
            if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
                assert( 0 );
            Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i-1), 1 );
            Lits[1] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], 0 );
            if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
                assert( 0 );
            nClauses += 2;
        }
        // add CNF to the SAT solver
        for ( i = 0; i < pCnfPart->nClauses; i++ )
            if ( !sat_solver_addclause( pSat, pCnfPart->pClauses[i], pCnfPart->pClauses[i+1] ) )
                break;
        if ( i < pCnfPart->nClauses )
        {
//            printf( "SAT solver became UNSAT after adding clauses.\n" );
            RetValue = 1;
            break;
        }

        // create new set of POs to derive new top
        Vec_PtrClear( vTop );
        Vec_PtrPush( vTop, Aig_ManPo(p, 0) );
        Vec_IntClear( vTopVarNums );
        nOldSize = Vec_IntSize(vState);
        Vec_IntFillExtra( vState, nOldSize + Aig_ManRegNum(p), -1 );
        Vec_PtrForEachEntry( Aig_Obj_t *, vBot, pObjPi, i )
        {
            assert( Aig_ObjIsPi(pObjPi) );
            if ( Saig_ObjIsLo(p, pObjPi) )
            {
                pObjPiCopy = (Aig_Obj_t *)pObjPi->pData;
                assert( pObjPiCopy != NULL );
                Vec_PtrPush( vTop, Saig_ObjLoToLi(p, pObjPi) );
                Vec_IntPush( vTopVarNums, pCnfPart->pVarNums[pObjPiCopy->Id] );

                iReg = pObjPi->PioNum - Saig_ManPiNum(p);
                assert( iReg >= 0 && iReg < Aig_ManRegNum(p) );
                Vec_IntWriteEntry( vState, nOldSize+iReg, pCnfPart->pVarNums[pObjPiCopy->Id] );
            }
        } 
Exemple #15
0
/**Function*************************************************************

  Synopsis    [Adds trivial clause.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkClauseMux( sat_solver * pSat, Abc_Obj_t * pNode, Abc_Obj_t * pNodeC, Abc_Obj_t * pNodeT, Abc_Obj_t * pNodeE, Vec_Int_t * vVars )
{
    int VarF, VarI, VarT, VarE, fCompT, fCompE;
//printf( "Adding mux %d.         %d\n", pNode->Id, (int)pSat->sat_solver_stats.clauses );

    assert( !Abc_ObjIsComplement( pNode ) );
    assert( Abc_NodeIsMuxType( pNode ) );
    // get the variable numbers
    VarF = (int)(ABC_PTRINT_T)pNode->pCopy;
    VarI = (int)(ABC_PTRINT_T)pNodeC->pCopy;
    VarT = (int)(ABC_PTRINT_T)Abc_ObjRegular(pNodeT)->pCopy;
    VarE = (int)(ABC_PTRINT_T)Abc_ObjRegular(pNodeE)->pCopy;
//    VarF = (int)pNode->Id;
//    VarI = (int)pNodeC->Id;
//    VarT = (int)Abc_ObjRegular(pNodeT)->Id;
//    VarE = (int)Abc_ObjRegular(pNodeE)->Id;

    // get the complementation flags
    fCompT = Abc_ObjIsComplement(pNodeT);
    fCompE = Abc_ObjIsComplement(pNodeE);

    // f = ITE(i, t, e)
    // i' + t' + f
    // i' + t  + f'
    // i  + e' + f
    // i  + e  + f'
    // create four clauses
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond(VarI,  1) );
    Vec_IntPush( vVars, toLitCond(VarT,  1^fCompT) );
    Vec_IntPush( vVars, toLitCond(VarF,  0) );
    if ( !sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize ) )
        return 0;
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond(VarI,  1) );
    Vec_IntPush( vVars, toLitCond(VarT,  0^fCompT) );
    Vec_IntPush( vVars, toLitCond(VarF,  1) );
    if ( !sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize ) )
        return 0;
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond(VarI,  0) );
    Vec_IntPush( vVars, toLitCond(VarE,  1^fCompE) );
    Vec_IntPush( vVars, toLitCond(VarF,  0) );
    if ( !sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize ) )
        return 0;
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond(VarI,  0) );
    Vec_IntPush( vVars, toLitCond(VarE,  0^fCompE) );
    Vec_IntPush( vVars, toLitCond(VarF,  1) );
    if ( !sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize ) )
        return 0;
 
    if ( VarT == VarE )
    {
//        assert( fCompT == !fCompE );
        return 1;
    }

    // two additional clauses
    // t' & e' -> f'       t  + e   + f'
    // t  & e  -> f        t' + e'  + f 
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond(VarT,  0^fCompT) );
    Vec_IntPush( vVars, toLitCond(VarE,  0^fCompE) );
    Vec_IntPush( vVars, toLitCond(VarF,  1) );
    if ( !sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize ) )
        return 0;
    vVars->nSize = 0;
    Vec_IntPush( vVars, toLitCond(VarT,  1^fCompT) );
    Vec_IntPush( vVars, toLitCond(VarE,  1^fCompE) );
    Vec_IntPush( vVars, toLitCond(VarF,  0) );
    return sat_solver_addclause( pSat, vVars->pArray, vVars->pArray + vVars->nSize );
}
Exemple #16
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////


/**Function*************************************************************

  Synopsis    [Runs equivalence test for the two nodes.]

  Description [Both nodes should be regular and different from each other.]

  SideEffects []

  SeeAlso     []

***********************************************************************/
int Cgt_CheckImplication( Cgt_Man_t * p, Aig_Obj_t * pGate, Aig_Obj_t * pMiter )
{
    int nBTLimit = p->pPars->nConfMax;
    int pLits[2], RetValue, clk;
    p->nCalls++;

    // sanity checks
    assert( p->pSat && p->pCnf );
    assert( !Aig_IsComplement(pMiter) );
    assert( Aig_Regular(pGate) != pMiter );

    // solve under assumptions
    // G => !M -- true     G & M -- false
    pLits[0] = toLitCond( p->pCnf->pVarNums[Aig_Regular(pGate)->Id], Aig_IsComplement(pGate) );
    pLits[1] = toLitCond( p->pCnf->pVarNums[pMiter->Id], 0 );

    clk = clock();
    RetValue = sat_solver_solve( p->pSat, pLits, pLits + 2, (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
    p->timeSat += clock() - clk;
    if ( RetValue == l_False )
    {
        p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        sat_solver_compress( p->pSat );
        p->nCallsUnsat++;
        return 1;
    }
    else if ( RetValue == l_True )
    {
        p->timeSatSat += clock() - clk;
        p->nCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
        p->timeSatUndec += clock() - clk;
        p->nCallsUndec++;
        return -1;
    }
    return -2;
}
Exemple #17
0
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Aig_ManInterFast( Aig_Man_t * pManOn, Aig_Man_t * pManOff, int fVerbose )
{
    sat_solver * pSat;
    Cnf_Dat_t * pCnfOn, * pCnfOff;
    Aig_Obj_t * pObj, * pObj2;
    int Lits[3], status, i;
//    abctime clk = Abc_Clock();

    assert( Aig_ManCiNum(pManOn) == Aig_ManCiNum(pManOff) );
    assert( Aig_ManCoNum(pManOn) == Aig_ManCoNum(pManOff) );

    // derive CNFs
    pManOn->nRegs = Aig_ManCoNum(pManOn);
    pCnfOn  = Cnf_Derive( pManOn, Aig_ManCoNum(pManOn) );
    pManOn->nRegs = 0;

    pManOff->nRegs = Aig_ManCoNum(pManOn);
    pCnfOff = Cnf_Derive( pManOff, Aig_ManCoNum(pManOff) );
    pManOff->nRegs = 0;

//    pCnfOn  = Cnf_DeriveSimple( pManOn, Aig_ManCoNum(pManOn) );
//    pCnfOff = Cnf_DeriveSimple( pManOff, Aig_ManCoNum(pManOn) );
    Cnf_DataLift( pCnfOff, pCnfOn->nVars );

    // start the solver
    pSat = sat_solver_new();
    sat_solver_setnvars( pSat, pCnfOn->nVars + pCnfOff->nVars );

    // add clauses of A
    for ( i = 0; i < pCnfOn->nClauses; i++ )
    {
        if ( !sat_solver_addclause( pSat, pCnfOn->pClauses[i], pCnfOn->pClauses[i+1] ) )
        {
            Cnf_DataFree( pCnfOn );
            Cnf_DataFree( pCnfOff );
            sat_solver_delete( pSat );
            return;
        }
    }

    // add clauses of B
    for ( i = 0; i < pCnfOff->nClauses; i++ )
    {
        if ( !sat_solver_addclause( pSat, pCnfOff->pClauses[i], pCnfOff->pClauses[i+1] ) )
        {
            Cnf_DataFree( pCnfOn );
            Cnf_DataFree( pCnfOff );
            sat_solver_delete( pSat );
            return;
        }
    }

    // add PI clauses
    // collect the common variables
    Aig_ManForEachCi( pManOn, pObj, i )
    {
        pObj2 = Aig_ManCi( pManOff, i );

        Lits[0] = toLitCond( pCnfOn->pVarNums[pObj->Id], 0 );
        Lits[1] = toLitCond( pCnfOff->pVarNums[pObj2->Id], 1 );
        if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
            assert( 0 );
        Lits[0] = toLitCond( pCnfOn->pVarNums[pObj->Id], 1 );
        Lits[1] = toLitCond( pCnfOff->pVarNums[pObj2->Id], 0 );
        if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
            assert( 0 );
    }
Exemple #18
0
int Pdr_ObjSatVar2( Pdr_Man_t * p, int k, Aig_Obj_t * pObj, int Level, int Pol )
{
    Vec_Int_t * vLits;
    sat_solver * pSat;
    Vec_Int_t * vVar2Ids = (Vec_Int_t *)Vec_PtrEntry(&p->vVar2Ids, k);
    int nVarCount = Vec_IntSize(vVar2Ids);
    int iVarThis  = Pdr_ObjSatVar2FindOrAdd( p, k, pObj );
    int * pLit, i, iVar, iClaBeg, iClaEnd, RetValue;
    int PolPres = (iVarThis & 3);
    iVarThis >>= 2;
    if ( Aig_ObjIsCi(pObj) )
        return iVarThis;
//    Pol = 3;
//    if ( nVarCount != Vec_IntSize(vVar2Ids) || (Pol & ~PolPres) )
    if ( (Pol & ~PolPres) )
    {
        *Vec_IntEntryP( p->pvId2Vars + Aig_ObjId(pObj), k ) |= Pol;
        iClaBeg = p->pCnf2->pObj2Clause[Aig_ObjId(pObj)];
        iClaEnd = iClaBeg + p->pCnf2->pObj2Count[Aig_ObjId(pObj)];
        assert( iClaBeg < iClaEnd );
/*
        if ( (Pol & ~PolPres) != 3 )
        for ( i = iFirstClause; i < iFirstClause + nClauses; i++ )
        {
            printf( "Clause %5d : ", i );
            for ( iVar = 0; iVar < 4; iVar++ )
                printf( "%d ", ((unsigned)p->pCnf2->pClaPols[i] >> (2*iVar)) & 3 );
            printf( "  " );
            for ( pLit = p->pCnf2->pClauses[i]; pLit < p->pCnf2->pClauses[i+1]; pLit++ )
                printf( "%6d ", *pLit );
            printf( "\n" );
        }
*/
        pSat = Pdr_ManSolver(p, k);
        vLits = Vec_WecEntry( p->vVLits, Level );
        if ( (Pol & ~PolPres) == 3 )
        {
            assert( nVarCount + 1 == Vec_IntSize(vVar2Ids) );
            for ( i = iClaBeg; i < iClaEnd; i++ )
            {
                Vec_IntClear( vLits );
                Vec_IntPush( vLits, toLitCond( iVarThis, lit_sign(p->pCnf2->pClauses[i][0]) ) );
                for ( pLit = p->pCnf2->pClauses[i]+1; pLit < p->pCnf2->pClauses[i+1]; pLit++ )
                {
                    iVar = Pdr_ObjSatVar2( p, k, Aig_ManObj(p->pAig, lit_var(*pLit)), Level+1, 3 );
                    Vec_IntPush( vLits, toLitCond( iVar, lit_sign(*pLit) ) );
                }
                RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits)+Vec_IntSize(vLits) );
                assert( RetValue );
                (void) RetValue;
            }
        }
        else // if ( (Pol & ~PolPres) == 2 || (Pol & ~PolPres) == 1 ) // write pos/neg polarity
        {
            assert( (Pol & ~PolPres) );
            for ( i = iClaBeg; i < iClaEnd; i++ )
            if ( 2 - !Abc_LitIsCompl(p->pCnf2->pClauses[i][0]) == (Pol & ~PolPres) ) // taking opposite literal
            {
                Vec_IntClear( vLits );
                Vec_IntPush( vLits, toLitCond( iVarThis, Abc_LitIsCompl(p->pCnf2->pClauses[i][0]) ) );
                for ( pLit = p->pCnf2->pClauses[i]+1; pLit < p->pCnf2->pClauses[i+1]; pLit++ )
                {
                    iVar = Pdr_ObjSatVar2( p, k, Aig_ManObj(p->pAig, lit_var(*pLit)), Level+1, ((unsigned)p->pCnf2->pClaPols[i] >> (2*(pLit-p->pCnf2->pClauses[i]-1))) & 3 );
                    Vec_IntPush( vLits, toLitCond( iVar, lit_sign(*pLit) ) );
                }
                RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits)+Vec_IntSize(vLits) );
                assert( RetValue );
                (void) RetValue;
            }
        }
Exemple #19
0
/**Function*************************************************************

  Synopsis    [Addes clauses to the solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Cec_AddClausesMux( Cec_ManSat_t * p, Gia_Obj_t * pNode )
{
    Gia_Obj_t * pNodeI, * pNodeT, * pNodeE;
    int pLits[4], RetValue, VarF, VarI, VarT, VarE, fCompT, fCompE;

    assert( !Gia_IsComplement( pNode ) );
    assert( Gia_ObjIsMuxType( pNode ) );
    // get nodes (I = if, T = then, E = else)
    pNodeI = Gia_ObjRecognizeMux( pNode, &pNodeT, &pNodeE );
    // get the variable numbers
    VarF = Cec_ObjSatNum(p,pNode);
    VarI = Cec_ObjSatNum(p,pNodeI);
    VarT = Cec_ObjSatNum(p,Gia_Regular(pNodeT));
    VarE = Cec_ObjSatNum(p,Gia_Regular(pNodeE));
    // get the complementation flags
    fCompT = Gia_IsComplement(pNodeT);
    fCompE = Gia_IsComplement(pNodeE);

    // f = ITE(i, t, e)

    // i' + t' + f
    // i' + t  + f'
    // i  + e' + f
    // i  + e  + f'

    // create four clauses
    pLits[0] = toLitCond(VarI, 1);
    pLits[1] = toLitCond(VarT, 1^fCompT);
    pLits[2] = toLitCond(VarF, 0);
    if ( p->pPars->fPolarFlip )
    {
        if ( pNodeI->fPhase )               pLits[0] = lit_neg( pLits[0] );
        if ( Gia_Regular(pNodeT)->fPhase )  pLits[1] = lit_neg( pLits[1] );
        if ( pNode->fPhase )                pLits[2] = lit_neg( pLits[2] );
    }
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarI, 1);
    pLits[1] = toLitCond(VarT, 0^fCompT);
    pLits[2] = toLitCond(VarF, 1);
    if ( p->pPars->fPolarFlip )
    {
        if ( pNodeI->fPhase )               pLits[0] = lit_neg( pLits[0] );
        if ( Gia_Regular(pNodeT)->fPhase )  pLits[1] = lit_neg( pLits[1] );
        if ( pNode->fPhase )                pLits[2] = lit_neg( pLits[2] );
    }
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarI, 0);
    pLits[1] = toLitCond(VarE, 1^fCompE);
    pLits[2] = toLitCond(VarF, 0);
    if ( p->pPars->fPolarFlip )
    {
        if ( pNodeI->fPhase )               pLits[0] = lit_neg( pLits[0] );
        if ( Gia_Regular(pNodeE)->fPhase )  pLits[1] = lit_neg( pLits[1] );
        if ( pNode->fPhase )                pLits[2] = lit_neg( pLits[2] );
    }
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarI, 0);
    pLits[1] = toLitCond(VarE, 0^fCompE);
    pLits[2] = toLitCond(VarF, 1);
    if ( p->pPars->fPolarFlip )
    {
        if ( pNodeI->fPhase )               pLits[0] = lit_neg( pLits[0] );
        if ( Gia_Regular(pNodeE)->fPhase )  pLits[1] = lit_neg( pLits[1] );
        if ( pNode->fPhase )                pLits[2] = lit_neg( pLits[2] );
    }
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );

    // two additional clauses
    // t' & e' -> f'
    // t  & e  -> f 

    // t  + e   + f'
    // t' + e'  + f 

    if ( VarT == VarE )
    {
//        assert( fCompT == !fCompE );
        return;
    }

    pLits[0] = toLitCond(VarT, 0^fCompT);
    pLits[1] = toLitCond(VarE, 0^fCompE);
    pLits[2] = toLitCond(VarF, 1);
    if ( p->pPars->fPolarFlip )
    {
        if ( Gia_Regular(pNodeT)->fPhase )  pLits[0] = lit_neg( pLits[0] );
        if ( Gia_Regular(pNodeE)->fPhase )  pLits[1] = lit_neg( pLits[1] );
        if ( pNode->fPhase )                pLits[2] = lit_neg( pLits[2] );
    }
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarT, 1^fCompT);
    pLits[1] = toLitCond(VarE, 1^fCompE);
    pLits[2] = toLitCond(VarF, 0);
    if ( p->pPars->fPolarFlip )
    {
        if ( Gia_Regular(pNodeT)->fPhase )  pLits[0] = lit_neg( pLits[0] );
        if ( Gia_Regular(pNodeE)->fPhase )  pLits[1] = lit_neg( pLits[1] );
        if ( pNode->fPhase )                pLits[2] = lit_neg( pLits[2] );
    }
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
}
    // suppose AND-gate is A & B = C
    // add !A => !C   or   A + !C
    // add !B => !C   or   B + !C
    LitNode = Ssc_ObjSatLit( p, Gia_Obj2Lit(p->pFraig,pNode) );
    Vec_IntForEachEntry( vSuper, Lit, i )
    {
        pLits[0] = Ssc_ObjSatLit( p, Lit );
        pLits[1] = Abc_LitNot( LitNode );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        // update literals
        Vec_IntWriteEntry( vSuper, i, Abc_LitNot(pLits[0]) );
    }
    // add A & B => C   or   !A + !B + C
    Vec_IntPush( vSuper, LitNode );
    RetValue = sat_solver_addclause( p->pSat, Vec_IntArray(vSuper), Vec_IntArray(vSuper) + Vec_IntSize(vSuper) );
    assert( RetValue );
    (void) RetValue;
}


/**Function*************************************************************

  Synopsis    [Collects the supergate.]

  Description []

  SideEffects []

  SeeAlso     []
Exemple #21
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Runs equivalence test for the two nodes.]

  Description [Both nodes should be regular and different from each other.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ssw_NodesAreEquiv( Ssw_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
    int nBTLimit = p->pPars->nBTLimit;
    int pLits[3], nLits, RetValue, RetValue1, clk;//, status;
    p->nSatCalls++;
    p->pMSat->nSolverCalls++;

    // sanity checks
    assert( !Aig_IsComplement(pOld) );
    assert( !Aig_IsComplement(pNew) );
    assert( pOld != pNew );
    assert( p->pMSat != NULL );

    // if the nodes do not have SAT variables, allocate them
    Ssw_CnfNodeAddToSolver( p->pMSat, pOld );
    Ssw_CnfNodeAddToSolver( p->pMSat, pNew );

    // solve under assumptions
    // A = 1; B = 0     OR     A = 1; B = 1 
    nLits = 2;
    pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pOld), 0 );
    pLits[1] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), pOld->fPhase == pNew->fPhase );
    if ( p->iOutputLit > -1 )
        pLits[nLits++] = p->iOutputLit;
    if ( p->pPars->fPolarFlip )
    {
        if ( pOld->fPhase )  pLits[0] = lit_neg( pLits[0] );
        if ( pNew->fPhase )  pLits[1] = lit_neg( pLits[1] );
    }
//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 );

    if ( p->pMSat->pSat->qtail != p->pMSat->pSat->qhead )
    {
        RetValue = sat_solver_simplify(p->pMSat->pSat);
        assert( RetValue != 0 );
    }

clk = clock();
    RetValue1 = sat_solver_solve( p->pMSat->pSat, pLits, pLits + nLits, 
        (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        if ( nLits == 2 )
        {
            pLits[0] = lit_neg( pLits[0] );
            pLits[1] = lit_neg( pLits[1] );
            RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 2 );
            assert( RetValue );
/*
            if ( p->pMSat->pSat->qtail != p->pMSat->pSat->qhead )
            {
                RetValue = sat_solver_simplify(p->pMSat->pSat);
                assert( RetValue != 0 );
            }
*/
        }
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatUndec += clock() - clk;
        p->nSatFailsReal++;
        return -1;
    }

    // if the old node was constant 0, we already know the answer
    if ( pOld == Aig_ManConst1(p->pFrames) )
    {
        p->nSatProof++;
        return 1;
    }

    // solve under assumptions
    // A = 0; B = 1     OR     A = 0; B = 0 
    nLits = 2;
    pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pOld), 1 );
    pLits[1] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), pOld->fPhase ^ pNew->fPhase );
    if ( p->iOutputLit > -1 )
        pLits[nLits++] = p->iOutputLit;
    if ( p->pPars->fPolarFlip )
    {
        if ( pOld->fPhase )  pLits[0] = lit_neg( pLits[0] );
        if ( pNew->fPhase )  pLits[1] = lit_neg( pLits[1] );
    }

    if ( p->pMSat->pSat->qtail != p->pMSat->pSat->qhead )
    {
        RetValue = sat_solver_simplify(p->pMSat->pSat);
        assert( RetValue != 0 );
    }

clk = clock();
    RetValue1 = sat_solver_solve( p->pMSat->pSat, pLits, pLits + nLits, 
        (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        if ( nLits == 2 )
        {
            pLits[0] = lit_neg( pLits[0] );
            pLits[1] = lit_neg( pLits[1] );
            RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 2 );
            assert( RetValue );
/*
            if ( p->pMSat->pSat->qtail != p->pMSat->pSat->qhead )
            {
                RetValue = sat_solver_simplify(p->pMSat->pSat);
                assert( RetValue != 0 );
            }
*/
        }
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatUndec += clock() - clk;
        p->nSatFailsReal++;
        return -1;
    }
    // return SAT proof
    p->nSatProof++;
    return 1;
}
Exemple #22
0
/**Function*************************************************************

  Synopsis    [Constrains two nodes to be equivalent in the SAT solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ssw_NodesAreConstrained( Ssw_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
    int pLits[2], RetValue, fComplNew;
    Aig_Obj_t * pTemp;

    // sanity checks
    assert( Aig_Regular(pOld) != Aig_Regular(pNew) );
    assert( p->pPars->fConstrs || Aig_ObjPhaseReal(pOld) == Aig_ObjPhaseReal(pNew) );

    // move constant to the old node
    if ( Aig_Regular(pNew) == Aig_ManConst1(p->pFrames) )
    {
        assert( Aig_Regular(pOld) != Aig_ManConst1(p->pFrames) );
        pTemp = pOld;
        pOld  = pNew;
        pNew  = pTemp;
    }

    // move complement to the new node
    if ( Aig_IsComplement(pOld) )
    {
        pOld = Aig_Regular(pOld);
        pNew = Aig_Not(pNew);
    }
    assert( p->pMSat != NULL );

    // if the nodes do not have SAT variables, allocate them
    Ssw_CnfNodeAddToSolver( p->pMSat, pOld );
    Ssw_CnfNodeAddToSolver( p->pMSat, Aig_Regular(pNew) );

    // transform the new node
    fComplNew = Aig_IsComplement( pNew );
    pNew = Aig_Regular( pNew );

    // consider the constant 1 case
    if ( pOld == Aig_ManConst1(p->pFrames) )
    {
        // add constraint A = 1  ---->  A
        pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), fComplNew );
        if ( p->pPars->fPolarFlip )
        {
            if ( pNew->fPhase )  pLits[0] = lit_neg( pLits[0] );
        }
        RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 1 );
        assert( RetValue );
    }
    else
    {
        // add constraint A = B  ---->  (A v !B)(!A v B)

        // (A v !B)
        pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pOld), 0 );
        pLits[1] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), !fComplNew );
        if ( p->pPars->fPolarFlip )
        {
            if ( pOld->fPhase )  pLits[0] = lit_neg( pLits[0] );
            if ( pNew->fPhase )  pLits[1] = lit_neg( pLits[1] );
        }
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 2 );
        assert( RetValue );

        // (!A v B)
        pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pOld), 1 );
        pLits[1] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), fComplNew);
        if ( p->pPars->fPolarFlip )
        {
            if ( pOld->fPhase )  pLits[0] = lit_neg( pLits[0] );
            if ( pNew->fPhase )  pLits[1] = lit_neg( pLits[1] );
        }
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 2 );
        assert( RetValue );
    }
    return 1;
}
/**Function*************************************************************

  Synopsis    [Addes clauses to the solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Gia_ManAddClausesMux( Ssc_Man_t * p, Gia_Obj_t * pNode )
{
    Gia_Obj_t * pNodeI, * pNodeT, * pNodeE;
    int pLits[4], LitF, LitI, LitT, LitE, RetValue;
    assert( !Gia_IsComplement( pNode ) );
    assert( Gia_ObjIsMuxType( pNode ) );
    // get nodes (I = if, T = then, E = else)
    pNodeI = Gia_ObjRecognizeMux( pNode, &pNodeT, &pNodeE );
    // get the Litiable numbers
    LitF = Ssc_ObjSatLit( p, Gia_Obj2Lit(p->pFraig,pNode) );
    LitI = Ssc_ObjSatLit( p, Gia_Obj2Lit(p->pFraig,pNodeI) );
    LitT = Ssc_ObjSatLit( p, Gia_Obj2Lit(p->pFraig,pNodeT) );
    LitE = Ssc_ObjSatLit( p, Gia_Obj2Lit(p->pFraig,pNodeE) );

    // f = ITE(i, t, e)

    // i' + t' + f
    // i' + t  + f'
    // i  + e' + f
    // i  + e  + f'

    // create four clauses
    pLits[0] = Abc_LitNotCond(LitI, 1);
    pLits[1] = Abc_LitNotCond(LitT, 1);
    pLits[2] = Abc_LitNotCond(LitF, 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = Abc_LitNotCond(LitI, 1);
    pLits[1] = Abc_LitNotCond(LitT, 0);
    pLits[2] = Abc_LitNotCond(LitF, 1);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = Abc_LitNotCond(LitI, 0);
    pLits[1] = Abc_LitNotCond(LitE, 1);
    pLits[2] = Abc_LitNotCond(LitF, 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = Abc_LitNotCond(LitI, 0);
    pLits[1] = Abc_LitNotCond(LitE, 0);
    pLits[2] = Abc_LitNotCond(LitF, 1);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );

    // two additional clauses
    // t' & e' -> f'
    // t  & e  -> f

    // t  + e   + f'
    // t' + e'  + f

    if ( LitT == LitE )
    {
//        assert( fCompT == !fCompE );
        return;
    }

    pLits[0] = Abc_LitNotCond(LitT, 0);
    pLits[1] = Abc_LitNotCond(LitE, 0);
    pLits[2] = Abc_LitNotCond(LitF, 1);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = Abc_LitNotCond(LitT, 1);
    pLits[1] = Abc_LitNotCond(LitE, 1);
    pLits[2] = Abc_LitNotCond(LitF, 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
}
/**Function*************************************************************

  Synopsis    [Runs equivalence test for one node.]

  Description [Returns the fraiged node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_NodeIsConst( Fra_Man_t * p, Aig_Obj_t * pNew )
{
    int pLits[2], RetValue1, RetValue, clk;

    // make sure the nodes are not complemented
    assert( !Aig_IsComplement(pNew) );
    assert( pNew != p->pManFraig->pConst1 );
    p->nSatCalls++;

    // make sure the solver is allocated and has enough variables
    if ( p->pSat == NULL )
    {
        p->pSat = sat_solver_new();
        p->nSatVars = 1;
        sat_solver_setnvars( p->pSat, 1000 );
    }

    // if the nodes do not have SAT variables, allocate them
    Fra_NodeAddToSolver( p, NULL, pNew );

    // prepare variable activity
    if ( p->pPars->fConeBias )
        Fra_SetActivityFactors( p, NULL, pNew ); 

    // solve under assumptions
clk = clock();
    pLits[0] = toLitCond( Fra_ObjSatNum(pNew), pNew->fPhase );
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 1, 
        (sint64)p->pPars->nBTLimitMiter, (sint64)0, 
        p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 1 );
        assert( RetValue );
        // continue solving the other implication
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        if ( p->pPatWords )
            Fra_SavePattern( p );
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatFail += clock() - clk;
        // mark the node as the failed node
        pNew->fMarkB = 1;
        p->nSatFailsReal++;
        return -1;
    }

    // return SAT proof
    p->nSatProof++;
    return 1;
}
/**Function*************************************************************

  Synopsis    [Runs equivalence test for the two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_NodesAreEquiv( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
    int pLits[4], RetValue, RetValue1, nBTLimit, clk, clk2 = clock();
    int status;

    // make sure the nodes are not complemented
    assert( !Aig_IsComplement(pNew) );
    assert( !Aig_IsComplement(pOld) );
    assert( pNew != pOld );

    // if at least one of the nodes is a failed node, perform adjustments:
    // if the backtrack limit is small, simply skip this node
    // if the backtrack limit is > 10, take the quare root of the limit
    nBTLimit = p->pPars->nBTLimitNode;
    if ( !p->pPars->fSpeculate && p->pPars->nFramesK == 0 && (nBTLimit > 0 && (pOld->fMarkB || pNew->fMarkB)) )
    {
        p->nSatFails++;
        // fail immediately
//        return -1;
        if ( nBTLimit <= 10 )
            return -1;
        nBTLimit = (int)pow(nBTLimit, 0.7);
    }

    p->nSatCalls++;

    // make sure the solver is allocated and has enough variables
    if ( p->pSat == NULL )
    {
        p->pSat = sat_solver_new();
        p->nSatVars = 1;
        sat_solver_setnvars( p->pSat, 1000 );
    }

    // if the nodes do not have SAT variables, allocate them
    Fra_NodeAddToSolver( p, pOld, pNew );

    if ( p->pSat->qtail != p->pSat->qhead )
    {
        status = sat_solver_simplify(p->pSat);
        assert( status != 0 );
        assert( p->pSat->qtail == p->pSat->qhead );
    }

    // prepare variable activity
    if ( p->pPars->fConeBias )
        Fra_SetActivityFactors( p, pOld, pNew ); 

    // solve under assumptions
    // A = 1; B = 0     OR     A = 1; B = 1 
clk = clock();
    pLits[0] = toLitCond( Fra_ObjSatNum(pOld), 0 );
    pLits[1] = toLitCond( Fra_ObjSatNum(pNew), pOld->fPhase == pNew->fPhase );
//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 );
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, 
        (sint64)nBTLimit, (sint64)0, 
        p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        // continue solving the other implication
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        Fra_SavePattern( p );
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatFail += clock() - clk;
        // mark the node as the failed node
        if ( pOld != p->pManFraig->pConst1 ) 
            pOld->fMarkB = 1;
        pNew->fMarkB = 1;
        p->nSatFailsReal++;
        return -1;
    }

    // if the old node was constant 0, we already know the answer
    if ( pOld == p->pManFraig->pConst1 )
    {
        p->nSatProof++;
        return 1;
    }

    // solve under assumptions
    // A = 0; B = 1     OR     A = 0; B = 0 
clk = clock();
    pLits[0] = toLitCond( Fra_ObjSatNum(pOld), 1 );
    pLits[1] = toLitCond( Fra_ObjSatNum(pNew), pOld->fPhase ^ pNew->fPhase );
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, 
        (sint64)nBTLimit, (sint64)0, 
        p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        Fra_SavePattern( p );
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatFail += clock() - clk;
        // mark the node as the failed node
        pOld->fMarkB = 1;
        pNew->fMarkB = 1;
        p->nSatFailsReal++;
        return -1;
    }
/*
    // check BDD proof
    {
        int RetVal;
        PRT( "Sat", clock() - clk2 );
        clk2 = clock();
        RetVal = Fra_NodesAreEquivBdd( pOld, pNew );
//        printf( "%d ", RetVal );
        assert( RetVal );
        PRT( "Bdd", clock() - clk2 );
        printf( "\n" );
    }
*/
    // return SAT proof
    p->nSatProof++;
    return 1;
}
Exemple #26
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Runs equivalence test for the two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dch_NodesAreEquiv( Dch_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
    int nBTLimit = p->pPars->nBTLimit;
    int pLits[2], RetValue, RetValue1, status, clk;
    p->nSatCalls++;

    // sanity checks
    assert( !Aig_IsComplement(pNew) );
    assert( !Aig_IsComplement(pOld) );
    assert( pNew != pOld );

    p->nCallsSince++;  // experiment with this!!!
    
    // check if SAT solver needs recycling
    if ( p->pSat == NULL || 
        (p->pPars->nSatVarMax && 
         p->nSatVars > p->pPars->nSatVarMax && 
         p->nCallsSince > p->pPars->nCallsRecycle) )
        Dch_ManSatSolverRecycle( p );

    // if the nodes do not have SAT variables, allocate them
    Dch_CnfNodeAddToSolver( p, pOld );
    Dch_CnfNodeAddToSolver( p, pNew );

    // propage unit clauses
    if ( p->pSat->qtail != p->pSat->qhead )
    {
        status = sat_solver_simplify(p->pSat);
        assert( status != 0 );
        assert( p->pSat->qtail == p->pSat->qhead );
    }

    // solve under assumptions
    // A = 1; B = 0     OR     A = 1; B = 1 
    pLits[0] = toLitCond( Dch_ObjSatNum(p,pOld), 0 );
    pLits[1] = toLitCond( Dch_ObjSatNum(p,pNew), pOld->fPhase == pNew->fPhase );
    if ( p->pPars->fPolarFlip )
    {
        if ( pOld->fPhase )  pLits[0] = lit_neg( pLits[0] );
        if ( pNew->fPhase )  pLits[1] = lit_neg( pLits[1] );
    }
//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 );
clk = clock();
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, 
        (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatUndec += clock() - clk;
        p->nSatFailsReal++;
        return -1;
    }

    // if the old node was constant 0, we already know the answer
    if ( pOld == Aig_ManConst1(p->pAigFraig) )
    {
        p->nSatProof++;
        return 1;
    }

    // solve under assumptions
    // A = 0; B = 1     OR     A = 0; B = 0 
    pLits[0] = toLitCond( Dch_ObjSatNum(p,pOld), 1 );
    pLits[1] = toLitCond( Dch_ObjSatNum(p,pNew), pOld->fPhase ^ pNew->fPhase );
    if ( p->pPars->fPolarFlip )
    {
        if ( pOld->fPhase )  pLits[0] = lit_neg( pLits[0] );
        if ( pNew->fPhase )  pLits[1] = lit_neg( pLits[1] );
    }
clk = clock();
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, 
        (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatUndec += clock() - clk;
        p->nSatFailsReal++;
        return -1;
    }
    // return SAT proof
    p->nSatProof++;
    return 1;
}