Exemple #1
0
Ais27::Ais27(const char *nmea_payload, const size_t pad) {
    assert(nmea_payload);
    assert(0==pad);
    init();

    const size_t num_bits = strlen(nmea_payload) * 6 - pad;  assert(96==num_bits);

    if (96 != num_bits) { status = AIS_ERR_BAD_BIT_COUNT; return; }

    std::bitset<96> bs;
    status = aivdm_to_bits(bs, nmea_payload);
    if (had_error()) return;

    message_id = ubits(bs, 0, 6);
    if (27 != message_id) {status = AIS_ERR_WRONG_MSG_TYPE; return;}
    repeat_indicator = ubits(bs,6,2);
    mmsi = ubits(bs,8,30);

    position_accuracy = bs[38];
    raim = bs[39];
    nav_status = ubits(bs, 40, 4);
    x = sbits(bs, 44, 18) / 600.;
    y = sbits(bs, 62, 17) / 600.;
    sog = ubits(bs,79,6);
    cog = ubits(bs,85,9);
    gnss = !bs[94];
    spare = bs[95];
}
// River Information Systems ECE-TRANS-SC3-2006-10r-RIS.pdf
Ais8_200_40::Ais8_200_40(const char *nmea_payload, const size_t pad)
    : Ais8(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(dac == 200);
  assert(fi == 40);

  const size_t num_bits = strlen(nmea_payload) * 6 - pad;

  if (num_bits != 168) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<168> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  x = (float)(sbits(bs, 56, 28) / 600000.0);//Crouse:Added typecasting
  y = (float)(sbits(bs, 84, 27) / 600000.0);//Crouse:Added typecasting
  form = ubits(bs, 111, 4);
  dir = ubits(bs, 115, 9);  // degrees
  stream_dir = ubits(bs, 124, 3);
  status_raw = ubits(bs, 127, 30);
  // TODO(schwehr): status[ ] = bite me;
  spare2 = ubits(bs, 157, 11);

  status = AIS_OK;
}
Exemple #3
0
Ais8_366_22_Sector::Ais8_366_22_Sector(const std::bitset<AIS8_MAX_BITS> &bs, const size_t offset) {
    const int scale_factor = ubits(bs,offset+3,2);
    x          = sbits(bs, offset+5, 28) / 600000.;
    y          = sbits(bs, offset+5+28, 27) / 600000.;
    radius_m        = ubits(bs,offset+5+28+27,12) * scale_multipliers[scale_factor];
    left_bound_deg  = ubits(bs, offset+5+28+27+12, 9);
    right_bound_deg = ubits(bs, offset+5+28+27+12+9, 9);
}
Exemple #4
0
Ais8_366_22_Circle::Ais8_366_22_Circle(const std::bitset<AIS8_MAX_BITS> &bs, const size_t offset) {
    const int scale_factor = ubits(bs,offset+3,2);
    x         = sbits(bs, offset+5, 28) / 600000.;
    y         = sbits(bs, offset+5+28, 27) / 600000.;
    // TODO: precision? And bit counts for radius  and spare?
    radius_m  = ubits(bs,offset+5+28+27,12) * scale_multipliers[scale_factor];
    spare     = ubits(bs,offset+5+28+27+12,16);
}
Ais8_366_22_Sector::Ais8_366_22_Sector(const bitset<AIS8_MAX_BITS> &bs,
                                       const size_t offset) {
  const int scale_factor = ubits(bs, offset + 3, 2);
  x = (float)(sbits(bs, offset + 5, 28) / 600000.0);//Crouse:Added typecasting
  y = (float)(sbits(bs, offset + 33, 27) / 600000.0);//Crouse:Added typecasting
  radius_m = ubits(bs, offset + 60, 12) * scale_multipliers[scale_factor];
  left_bound_deg = ubits(bs, offset + 72, 9);
  right_bound_deg = ubits(bs, offset + 81, 9);
}
Ais8_1_26_Location::Ais8_1_26_Location(const bitset<AIS8_MAX_BITS> &bs,
                                       const size_t offset) {
  x = (float)(sbits(bs, offset, 28) / 600000.0);//Crouse:Added typecasting
  y = (float)(sbits(bs, offset + 28, 27) / 600000.0);//Crouse:Added typecasting
  z = (float)(ubits(bs, offset + 55, 11) / 10.0);//Crouse:Added typecasting
  owner = ubits(bs, offset + 66, 4);
  timeout = ubits(bs, offset + 70, 3);
  spare = ubits(bs, offset + 73, 12);
}
Exemple #7
0
Ais8_366_22_Rect::Ais8_366_22_Rect(const std::bitset<AIS8_MAX_BITS> &bs, const size_t offset) {
    const int scale_factor = ubits(bs,offset+3,2);
    x          = sbits(bs, offset+5, 28) / 600000.;
    y          = sbits(bs, offset+5+28, 27) / 600000.;
    e_dim_m    = ubits(bs, offset+5+28+27, 8) * scale_multipliers[scale_factor];
    n_dim_m    = ubits(bs, offset+5+28+27+8, 8) * scale_multipliers[scale_factor];
    orient_deg = ubits(bs, offset+5+28+27+8+8, 9);
    spare      = ubits(bs, offset+5+28+27+8+8+9, 5);
}
Exemple #8
0
Ais21::Ais21(const char *nmea_payload, const size_t pad)
    : AisMsg(nmea_payload, pad)  {
    if (status != AIS_UNINITIALIZED)
        return;

    assert(message_id == 21);

    const size_t num_bits = strlen(nmea_payload) * 6 - pad;

    // TODO(schwehr): make this more careful than 272-360
    if (num_bits < 272 || num_bits > 360) {
        status = AIS_ERR_BAD_BIT_COUNT;
        return;
    }

    bitset<360> bs;
    const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
    if (r != AIS_OK) {
        status = r;
        return;
    }

    aton_type = ubits(bs, 38, 5);
    name = ais_str(bs, 43, 120);
    position_accuracy = bs[163];
    x = sbits(bs, 164, 28) / 600000.;
    y = sbits(bs, 192, 27) / 600000.;
    dim_a = ubits(bs, 219, 9);
    dim_b = ubits(bs, 228, 9);
    dim_c = ubits(bs, 237, 6);
    dim_d = ubits(bs, 243, 6);
    fix_type = ubits(bs, 249, 4);
    timestamp = ubits(bs, 253, 6);
    off_pos = bs[259];
    aton_status = ubits(bs, 260, 8);
    raim = bs[268];
    virtual_aton = bs[269];
    assigned_mode = bs[270];
    spare = bs[271];

    const size_t extra_total_bits = num_bits - 272;
    const size_t extra_chars = extra_total_bits / 6;
    const size_t extra_char_bits = extra_chars * 6;
    const size_t extra_bits = extra_total_bits % 6;

    if (extra_chars > 0) {
        name += ais_str(bs, 272, extra_char_bits);
    }

    if (extra_bits > 0) {
        spare2 = ubits(bs, 272 + extra_char_bits, extra_bits);
    } else {
        spare2 = 0;
    }

    status = AIS_OK;
}
Ais8_366_22_Rect::Ais8_366_22_Rect(const bitset<AIS8_MAX_BITS> &bs,
                                   const size_t offset) {
  const int scale_factor = ubits(bs, offset + 3, 2);
  x = (float)(sbits(bs, offset + 5, 28) / 600000.0);//Crouse:Added typecasting
  y = (float)(sbits(bs, offset + 33, 27) / 600000.0);//Crouse:Added typecasting
  e_dim_m = ubits(bs, offset + 60, 8) * scale_multipliers[scale_factor];
  n_dim_m = ubits(bs, offset + 68, 8) * scale_multipliers[scale_factor];
  orient_deg = ubits(bs, offset + 76, 9);
  spare = ubits(bs, offset + 85, 5);
}
Exemple #10
0
Ais8_366_22_Circle::Ais8_366_22_Circle(const bitset<AIS8_MAX_BITS> &bs,
                                       const size_t offset) {
  const int scale_factor = ubits(bs, offset + 3, 2);
  x = sbits(bs, offset + 5, 28) / 600000.;
  y = sbits(bs, offset + 33, 27) / 600000.;
  // TODO(schwehr): precision? And bit counts for radius  and spare?
  // TODO(schwehr): collapse these numbers
  radius_m = ubits(bs, offset + 60, 12) * scale_multipliers[scale_factor];
  spare = ubits(bs, offset + 72, 16);
}
Exemple #11
0
Ais21::Ais21(const char *nmea_payload, const int pad) {
    assert(nmea_payload);
    init();

    const size_t num_bits = strlen(nmea_payload) * 6 - pad;

    // 272-360 - FIX: make this more careful
    if (272 > num_bits || num_bits > 360) { status = AIS_ERR_BAD_BIT_COUNT; return; }

    std::bitset<360> bs; // 360 % 6 == 0 -> 60 NMEA characters exactly
    status = aivdm_to_bits(bs, nmea_payload);
    if (had_error()) return;
    
    message_id = ubits(bs, 0, 6);
    if (message_id != 21) {status = AIS_ERR_WRONG_MSG_TYPE; return;}
    repeat_indicator = ubits(bs,6,2);
    mmsi = ubits(bs,8,30);
    aton_type = ubits(bs,38,5);
    name = ais_str(bs, 43, 120);
    position_accuracy = bs[163];
    x = sbits(bs, 164, 28) / 600000.;
    y = sbits(bs, 192, 27) / 600000.;
    dim_a = ubits(bs, 219, 9);
    dim_b = ubits(bs, 228, 9);
    dim_c = ubits(bs, 237, 6);
    dim_d = ubits(bs, 243, 6);
    fix_type = ubits(bs, 249, 4);
    timestamp = ubits(bs, 253, 6);
    off_pos = bool(bs[259]);
    aton_status = ubits(bs, 260, 8);
    raim = bool(bs[268]);
    virtual_aton = bool(bs[269]);
    assigned_mode = bool(bs[270]);
    spare = bs[271];

    const size_t extra_total_bits = num_bits - 272;
    const size_t extra_chars = extra_total_bits / 6;
    const size_t extra_char_bits = extra_chars * 6;
    const size_t extra_bits = extra_total_bits % 6;

    if (extra_chars > 0) {
        name += ais_str(bs,272,extra_char_bits);
    }

    if (extra_bits > 0) {
        spare2 = ubits(bs,272+extra_char_bits, extra_bits);
    } else {
        spare2 = 0;
    }
    
}
Ais8_1_26_Wx::Ais8_1_26_Wx(const bitset<AIS8_MAX_BITS> &bs,
                           const size_t offset) {
  air_temp = (float)(sbits(bs, offset, 11) / 10.0);//Crouse:Added typecasting
  air_temp_sensor_type = ubits(bs, offset + 11, 3);
  precip = ubits(bs, offset + 14, 2);
  horz_vis = (float)(ubits(bs, offset + 16, 8) / 10.0);//Crouse:Added typecasting
  dew_point = (float)(sbits(bs, offset + 24, 10) / 10.0);//Crouse:Added typecasting
  dew_point_type = ubits(bs, offset + 34, 3);
  air_pressure = ubits(bs, offset + 37, 9)+799;//Crouse: added the +800 to put it into hectoPascals
  air_pressure_trend = ubits(bs, offset + 46, 2);
  air_pressor_type = ubits(bs, offset + 48, 3);
  salinity = (float)(ubits(bs, offset + 51, 9) / 10.0);//Crouse:Added typecasting
  spare = ubits(bs, offset + 60, 25);
}
Exemple #13
0
// TODO: pad
Ais22::Ais22(const char *nmea_payload) {
    assert(nmea_payload);
    init();

    const int num_char = std::strlen(nmea_payload);
    if (28 != num_char) { status = AIS_ERR_BAD_BIT_COUNT; return; }

    std::bitset<168> bs;
    status = aivdm_to_bits(bs, nmea_payload);
    if (had_error()) return;

    message_id = ubits(bs, 0, 6);
    if (message_id != 22) { status = AIS_ERR_WRONG_MSG_TYPE; return; }
    repeat_indicator = ubits(bs,6,2);
    mmsi = ubits(bs,8,30);
    spare = ubits(bs,38,2);

    chan_a = ubits(bs,40,12);
    chan_b = ubits(bs,52,12);
    txrx_mode = ubits(bs, 64, 4);
    power_low = bs[68];

    // WARNING: OUT OF ORDER DECODE
    bool addressed = bs[139];

    if (not(addressed)) {
      // geographic position
      pos_valid = true;
      dest_valid = false;
      x1 = sbits(bs, 69, 28) / 600000.;
      y1 = sbits(bs, 87, 27) / 600000.;
      x2 = sbits(bs, 104, 28) / 600000.;
      y2 = sbits(bs, 122, 27) / 600000.;
    } else {
      pos_valid = false;
      dest_valid = true;
      dest_mmsi_1 = ubits(bs, 69, 30);
      // TODO: save the 5 spare bits
      dest_mmsi_2 = ubits(bs, 104, 30);
      // TODO: save the 5 spare bits
    }

    // OUT OF ORDER: addressed is before
    chan_a_bandwidth = bs[140];
    chan_b_bandwidth = bs[141];
    zone_size = ubits(bs, 142, 3);

    spare2 = ubits(bs, 145, 23);
}
Ais8_1_26_WaterLevel::Ais8_1_26_WaterLevel(const bitset<AIS8_MAX_BITS> &bs,
                                           const size_t offset) {
  type = bs[offset];
  level = (float)(sbits(bs, offset + 1, 16) / 100.0);//Crouse:Added typecasting
  trend = ubits(bs, offset + 17, 2);
  vdatum = ubits(bs, offset + 19, 5);
  sensor_type = ubits(bs, offset + 24, 3);
  forcast_type = bs[offset + 27];
  level_forcast = (float)(sbits(bs, offset + 28, 16) / 100.0);//Crouse:Added typecasting
  utc_day_forcast = ubits(bs, offset + 44, 5);
  utc_hour_forcast = ubits(bs, offset + 49, 5);
  utc_min_forcast = ubits(bs, offset + 54, 6);
  duration = ubits(bs, offset + 60, 8);
  spare = ubits(bs, offset + 68, 17);
}
// River Information Systems ECE-TRANS-SC3-2006-10r-RIS.pdf
Ais8_200_23::Ais8_200_23(const char *nmea_payload, const size_t pad)
    : Ais8(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(dac == 200);
  assert(fi == 23);

  const size_t num_bits = strlen(nmea_payload) * 6 - pad;

  if (num_bits != 256) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<256> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  utc_year_start = ubits(bs, 56, 9);
  utc_month_start = ubits(bs, 65, 4);
  utc_day_start = ubits(bs, 69, 4);  // ERROR: not enough bits to cover 1-31
  utc_year_end = ubits(bs, 73, 9);
  utc_month_end = ubits(bs, 82, 4);
  utc_day_end = ubits(bs, 86, 4);  // ERROR: not enough bits to cover 1-31

  utc_hour_start = ubits(bs, 90, 5);
  utc_min_start = ubits(bs, 95, 6);
  utc_hour_end = ubits(bs, 101, 5);
  utc_min_end = ubits(bs, 106, 6);

  x1 = (float)(sbits(bs, 112, 28) / 600000.0);//Crouse:Added typecasting
  y1 = (float)(sbits(bs, 140, 27) / 600000.0);//Crouse:Added typecasting
  x2 = (float)(sbits(bs, 167, 28) / 600000.0);//Crouse:Added typecasting
  y2 = (float)(sbits(bs, 195, 27) / 600000.0);//Crouse:Added typecasting

  type = ubits(bs, 222, 4);
  min = ubits(bs, 226, 9);
  max = ubits(bs, 235, 9);
  classification = ubits(bs, 244, 2);
  wind_dir = ubits(bs, 246, 4);
  spare2 = ubits(bs, 250, 6);

  status = AIS_OK;
}
Exemple #16
0
int
fetchrq(tchar *tp)
{
	if (ismot(tp[0]) || !isxfunc(tp[0], RQ))
		return 0;
	return sbits(tp[0]);
}
// IMO Circ 289 - Route information
// See also Circ 236
Ais8_1_27::Ais8_1_27(const char *nmea_payload, const size_t pad)
    : Ais8(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(dac == 1);
  assert(fi == 27);

  const size_t num_bits = strlen(nmea_payload) * 6 - pad;
  const size_t num_waypoints = (num_bits - 117) / 55;
  const size_t extra_bits = (num_bits - 117) % 55;

  if (extra_bits || num_waypoints > 16) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<997> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  link_id = ubits(bs, 56, 10);
  sender_type = ubits(bs, 66, 3);
  route_type = ubits(bs, 69, 5);
  utc_month = ubits(bs, 74, 4);
  utc_day = ubits(bs, 78, 5);
  utc_hour = ubits(bs, 83, 5);
  utc_min = ubits(bs, 88, 6);
  duration = ubits(bs, 94, 18);
  // TODO(schwehr): manage the case where num_waypoints does not match
  // const size_t num_waypoints_stated = ubits(bs, 112, 5);
  for (size_t waypoint_num = 0; waypoint_num < num_waypoints; waypoint_num++) {
    AisPoint pt;
    const size_t start = 117 + 55*waypoint_num;
    pt.x =  (float)(sbits(bs, start, 28) / 600000.0);//Crouse: Added typecasting
    pt.y =  (float)(sbits(bs, start + 28, 27) / 600000.0);//Crouse: Added typecasting
    waypoints.push_back(pt);
  }

  status = AIS_OK;
}
Exemple #18
0
// TODO: pad
Ais19::Ais19(const char *nmea_payload) {
    assert(nmea_payload);

    init();
    if (strlen(nmea_payload) != 52) { status = AIS_ERR_BAD_BIT_COUNT; return; }

    std::bitset<312> bs;
    status = aivdm_to_bits(bs, nmea_payload);
    if (had_error()) return;

    message_id = ubits(bs, 0, 6);
    if (19 != message_id) { status = AIS_ERR_WRONG_MSG_TYPE; return; }
    repeat_indicator = ubits(bs,6,2);
    mmsi = ubits(bs,8,30);

    spare = ubits(bs,38,8);
    sog = ubits(bs,46,10) / 10.;

    position_accuracy = bs[56];
    x = sbits(bs, 57, 28) / 600000.;
    y = sbits(bs, 85, 27) / 600000.;

    cog = ubits(bs, 112, 12) / 10.;
    true_heading = ubits(bs, 124, 9);
    timestamp = ubits(bs, 133, 6);
    spare2 = ubits(bs, 139, 4);

    name = ais_str(bs, 143, 120);

    type_and_cargo = ubits(bs, 263, 8);
    dim_a = ubits(bs, 271, 9);
    dim_b = ubits(bs, 280, 9);
    dim_c = ubits(bs, 289, 6);
    dim_d = ubits(bs, 295, 6);

    fix_type = ubits(bs, 301, 4);
    raim = bs[305];
    dte = bs[306];
    assigned_mode = bs[307];
    spare3 = ubits(bs,308,4);
}
// IMO Circ 289 - Marine traffic signal
Ais8_1_19::Ais8_1_19(const char *nmea_payload, const size_t pad)
    : Ais8(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(dac == 1);
  assert(fi == 19);

  const size_t num_bits = strlen(nmea_payload) * 6 - pad;

  // Some people transmit without the idiodic spare padding
  if (num_bits != 258 && num_bits != 360) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<360> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  link_id = ubits(bs, 56, 10);
  name = ais_str(bs, 66, 120);
  x = (float)(sbits(bs, 186, 25) / 60000.0);//Crouse: Added typecasting
  y = (float)(sbits(bs, 211, 24) / 60000.0);//Crouse: Added typecasting
  status = ubits(bs, 235, 2);
  signal = ubits(bs, 237, 5);
  utc_hour_next = ubits(bs, 242, 5);
  utc_min_next = ubits(bs, 247, 6);
  next_signal = ubits(bs, 253, 5);
  if (num_bits != 360)
    return;
  spare2[0] = ubits(bs, 258, 32);
  spare2[1] = ubits(bs, 290, 32);
  spare2[2] = ubits(bs, 322, 32);
  spare2[3] = ubits(bs, 354, 6);
  status = AIS_OK;
}
// IMO Circ 289 - VTS Generated/Synthetic Targets
// See also Circ 236
Ais8_1_17::Ais8_1_17(const char *nmea_payload, const size_t pad)
    : Ais8(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(dac == 1);
  assert(fi == 17);

  const size_t num_bits = strlen(nmea_payload) * 6 - pad;
  const size_t num_targets = (num_bits - 56) / 120;
  const size_t extra_bits = (num_bits - 56) % 120;

  if (extra_bits || num_targets > 4) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<536> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  for (size_t target_num = 0; target_num < num_targets; target_num++) {
    Ais8_1_17_Target target;
    const size_t start = 56 + (120 * target_num);
    target.type = ubits(bs, start, 2);
    target.id = ais_str(bs,  start + 2, 42);
    target.spare = ubits(bs, start + 44, 4);
    target.y = (float)(sbits(bs, start + 48, 24) / 60000.0);  // booo - lat, lon //Crouse: Added typecasting
    target.x = (float)(sbits(bs, start + 72, 25) / 60000.0);//Crouse: Added typecasting
    target.cog = ubits(bs, start + 97, 9);
    target.timestamp = ubits(bs, start + 106, 6);
    target.sog = ubits(bs, start + 112, 8);
  }
  status = AIS_OK;
}
Ais8_1_26_SeaState::Ais8_1_26_SeaState(const bitset<AIS8_MAX_BITS> &bs,
                                       const size_t offset) {
  swell_height = (float)(ubits(bs, offset, 8) / 10.0);//Crouse:Added typecasting
  swell_period = ubits(bs, offset + 8, 6);
  swell_dir = ubits(bs, offset + 14, 9);
  sea_state = ubits(bs, offset + 23, 4);
  swell_sensor_type = ubits(bs, offset + 27, 3);
  water_temp = (float)(sbits(bs, offset + 30, 10) / 10.0);//Crouse:Added typecasting
  water_temp_depth = (float)(ubits(bs, offset + 40, 7) / 10.0);//Crouse:Added typecasting
  water_sensor_type = ubits(bs, offset + 47, 3);
  wave_height = (float)(ubits(bs, offset + 50, 8) / 10.0);//Crouse:Added typecasting
  wave_period = ubits(bs, offset + 58, 6);
  wave_dir = ubits(bs, offset + 64, 9);
  wave_sensor_type = ubits(bs, offset + 73, 3);
  salinity = (float)(ubits(bs, offset + 76, 9) / 10.0);//Crouse:Added typecasting
}
Exemple #22
0
void misspack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
              unsigned char *cpack, g2int *lcpack)
/*$$$  SUBPROGRAM DOCUMENTATION BLOCK
//                .      .    .                                       .
// SUBPROGRAM:    misspack
//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2000-06-21
//
// ABSTRACT: This subroutine packs up a data field using a complex
//   packing algorithm as defined in the GRIB2 documention.  It
//   supports GRIB2 complex packing templates with or without
//   spatial differences (i.e. DRTs 5.2 and 5.3).
//   It also fills in GRIB2 Data Representation Template 5.2 or 5.3 
//   with the appropriate values.
//   This version assumes that Missing Value Management is being used and that
//   1 or 2 missing values appear in the data.
//
// PROGRAM HISTORY LOG:
// 2000-06-21  Gilbert
//
// USAGE:    misspack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
//                    unsigned char *cpack, g2int *lcpack)
//   INPUT ARGUMENT LIST:
//     fld[]    - Contains the data values to pack
//     ndpts    - The number of data values in array fld[]
//     idrsnum  - Data Representation Template number 5.N
//                Must equal 2 or 3.
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.2 or 5.3
//                [0] = Reference value - ignored on input
//                [1] = Binary Scale Factor
//                [2] = Decimal Scale Factor
//                    .
//                    .
//                [6] = Missing value management
//                [7] = Primary missing value
//                [8] = Secondary missing value
//                    .
//                    .
//               [16] = Order of Spatial Differencing  ( 1 or 2 )
//                    .
//                    .
//
//   OUTPUT ARGUMENT LIST: 
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.3
//                [0] = Reference value - set by misspack routine.
//                [1] = Binary Scale Factor - unchanged from input
//                [2] = Decimal Scale Factor - unchanged from input
//                    .
//                    .
//     cpack    - The packed data field (character*1 array)
//     *lcpack   - length of packed field cpack().
//
// REMARKS: None
//
// ATTRIBUTES:
//   LANGUAGE: C
//   MACHINE:  
//
//$$$*/
{

      g2int  *ifld, *ifldmiss, *jfld;
      g2int  *jmin, *jmax, *lbit;
      static g2int zero=0;
      g2int  *gref, *gwidth, *glen;
      g2int  glength, grpwidth;
      g2int  i, n, iofst, imin, ival1, ival2, isd, minsd, nbitsd;
      g2int  nbitsgref, left, iwmax, ngwidthref, nbitsgwidth, ilmax;
      g2int  nglenref, nglenlast, nbitsglen, ij;
      g2int  j, missopt, nonmiss, itemp, maxorig, nbitorig, miss1, miss2;
      g2int  ngroups, ng, num0, num1, num2;
      g2int  imax, lg, mtemp, ier, igmax;
      g2int  kfildo, minpk, inc, maxgrps, ibit, jbit, kbit, novref, lbitref;
      g2float  rmissp, rmisss, bscale, dscale, rmin, temp;
      static g2int simple_alg = 0;
      static g2float alog2=0.69314718;       /*  ln(2.0) */
      static g2int one=1;
      
      bscale=int_power(2.0,-idrstmpl[1]);
      dscale=int_power(10.0,idrstmpl[2]);
      missopt=idrstmpl[6];
      if ( missopt != 1 && missopt != 2 ) {
         printf("misspack: Unrecognized option.\n");
         *lcpack=-1;
         return;
      }
      else {    /*  Get missing values */
         g2_rdieee(idrstmpl+7,&rmissp,1);
         if (missopt == 2) g2_rdieee(idrstmpl+8,&rmisss,1);
      }
/*
//  Find min value of non-missing values in the data,
//  AND set up missing value mapping of the field.
*/
      ifldmiss = calloc(ndpts,sizeof(g2int));
      rmin=1E+37;
      if ( missopt ==  1 ) {        /* Primary missing value only */
         for ( j=0; j<ndpts; j++) {
           if (fld[j] == rmissp) {
              ifldmiss[j]=1;
           }
           else {
              ifldmiss[j]=0;
              if (fld[j] < rmin) rmin=fld[j];
           }
         }
      }
      if ( missopt ==  2 ) {        /* Primary and secondary missing values */
         for ( j=0; j<ndpts; j++ ) {
           if (fld[j] == rmissp) {
              ifldmiss[j]=1;
           }
           else if (fld[j] == rmisss) {
              ifldmiss[j]=2;
           }
           else {
              ifldmiss[j]=0;
              if (fld[j] < rmin) rmin=fld[j];
           }
         }
      }
/*
//  Allocate work arrays:
//  Note: -ifldmiss[j],j=0,ndpts-1 is a map of original field indicating 
//         which of the original data values
//         are primary missing (1), sencondary missing (2) or non-missing (0).
//        -jfld[j],j=0,nonmiss-1 is a subarray of just the non-missing values 
//         from the original field.
*/
      /*if (rmin != rmax) { */
        iofst=0;
        ifld = calloc(ndpts,sizeof(g2int));
        jfld = calloc(ndpts,sizeof(g2int));
        gref = calloc(ndpts,sizeof(g2int));
        gwidth = calloc(ndpts,sizeof(g2int));
        glen = calloc(ndpts,sizeof(g2int));
        /*
        //  Scale original data
        */
        nonmiss=0;
        if (idrstmpl[1] == 0) {        /*  No binary scaling */
           imin=(g2int)rint(rmin*dscale);
           /*imax=(g2int)rint(rmax*dscale); */
           rmin=(g2float)imin;
           for ( j=0; j<ndpts; j++) {
              if (ifldmiss[j] == 0) {
                jfld[nonmiss]=(g2int)rint(fld[j]*dscale)-imin;
                nonmiss++;
              }
           }
        }
        else {                             /*  Use binary scaling factor */
           rmin=rmin*dscale;
           /*rmax=rmax*dscale; */
           for ( j=0; j<ndpts; j++ ) {
              if (ifldmiss[j] == 0) {
                jfld[nonmiss]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
                nonmiss++;
              }
           }
        }
        /*
        //  Calculate Spatial differences, if using DRS Template 5.3
        */
        if (idrsnum == 3) {        /* spatial differences */
           if (idrstmpl[16]!=1 && idrstmpl[16]!=2) idrstmpl[16]=2;
           if (idrstmpl[16] == 1) {      /* first order */
              ival1=jfld[0];
              for ( j=nonmiss-1; j>0; j--)
                 jfld[j]=jfld[j]-jfld[j-1];
              jfld[0]=0;
           }
           else if (idrstmpl[16] == 2) {      /* second order */
              ival1=jfld[0];
              ival2=jfld[1];
              for ( j=nonmiss-1; j>1; j--)
                 jfld[j]=jfld[j]-(2*jfld[j-1])+jfld[j-2];
              jfld[0]=0;
              jfld[1]=0;
           }
           /*
           //  subtract min value from spatial diff field
           */
           isd=idrstmpl[16];
           minsd=jfld[isd];
           for ( j=isd; j<nonmiss; j++ ) if ( jfld[j] < minsd ) minsd=jfld[j];
           for ( j=isd; j<nonmiss; j++ ) jfld[j]=jfld[j]-minsd;
           /*
           //   find num of bits need to store minsd and add 1 extra bit
           //   to indicate sign
           */
           temp=log((double)(abs(minsd)+1))/alog2;
           nbitsd=(g2int)ceil(temp)+1;
           /*
           //   find num of bits need to store ifld[0] ( and ifld[1]
           //   if using 2nd order differencing )
           */
           maxorig=ival1;
           if (idrstmpl[16]==2 && ival2>ival1) maxorig=ival2;
           temp=log((double)(maxorig+1))/alog2;
           nbitorig=(g2int)ceil(temp)+1;
           if (nbitorig > nbitsd) nbitsd=nbitorig;
           /*   increase number of bits to even multiple of 8 ( octet ) */
           if ( (nbitsd%8) != 0) nbitsd=nbitsd+(8-(nbitsd%8));
           /*
           //  Store extra spatial differencing info into the packed
           //  data section.
           */
           if (nbitsd != 0) {
              /*   pack first original value */
              if (ival1 >= 0) {
                 sbit(cpack,&ival1,iofst,nbitsd);
                 iofst=iofst+nbitsd;
              }
              else {
                 sbit(cpack,&one,iofst,1);
                 iofst=iofst+1;
                 itemp=abs(ival1);
                 sbit(cpack,&itemp,iofst,nbitsd-1);
                 iofst=iofst+nbitsd-1;
              }
              if (idrstmpl[16] == 2) {
               /*  pack second original value */
                 if (ival2 >= 0) {
                    sbit(cpack,&ival2,iofst,nbitsd);
                    iofst=iofst+nbitsd;
                 }
                 else {
                    sbit(cpack,&one,iofst,1);
                    iofst=iofst+1;
                    itemp=abs(ival2);
                    sbit(cpack,&itemp,iofst,nbitsd-1);
                    iofst=iofst+nbitsd-1;
                 }
              }
              /*  pack overall min of spatial differences */
              if (minsd >= 0) {
                 sbit(cpack,&minsd,iofst,nbitsd);
                 iofst=iofst+nbitsd;
              }
              else {
                 sbit(cpack,&one,iofst,1);
                 iofst=iofst+1;
                 itemp=abs(minsd);
                 sbit(cpack,&itemp,iofst,nbitsd-1);
                 iofst=iofst+nbitsd-1;
              }
           }
         /*print *,'SDp ',ival1,ival2,minsd,nbitsd*/
        }       /*  end of spatial diff section */
        /*
        //  Expand non-missing data values to original grid.
        */
        miss1=jfld[0];
        for ( j=0; j<nonmiss; j++) if (jfld[j] < miss1) miss1 = jfld[j];
        miss1--;
        miss2=miss1-1;
        n=0;
        for ( j=0; j<ndpts; j++) {
           if ( ifldmiss[j] == 0 ) {
              ifld[j]=jfld[n];
              n++;
           }
           else if ( ifldmiss[j] == 1 ) {
              ifld[j]=miss1;
           }
           else if ( ifldmiss[j] == 2 ) {
              ifld[j]=miss2;
           }
        }
        /*
        //   Determine Groups to be used.
        */
        if ( simple_alg == 1 ) {
           /*  set group length to 10 :  calculate number of groups */
           /*  and length of last group */
           ngroups=ndpts/10;
           for (j=0;j<ngroups;j++) glen[j]=10;
           itemp=ndpts%10;
           if (itemp != 0) {
              ngroups++;
              glen[ngroups-1]=itemp;
           }
        }
        else {
           /* Use Dr. Glahn's algorithm for determining grouping.
           */
           kfildo=6;
           minpk=10;
           inc=1;
           maxgrps=(ndpts/minpk)+1;
           jmin = calloc(maxgrps,sizeof(g2int));
           jmax = calloc(maxgrps,sizeof(g2int));
           lbit = calloc(maxgrps,sizeof(g2int));
           g2_pack_gp(&kfildo,ifld,&ndpts,&missopt,&minpk,&inc,&miss1,&miss2,
                        jmin,jmax,lbit,glen,&maxgrps,&ngroups,&ibit,&jbit,
                        &kbit,&novref,&lbitref,&ier);
           /*printf("SAGier = %d %d %d %d %d %d\n",ier,ibit,jbit,kbit,novref,lbitref);*/
           for ( ng=0; ng<ngroups; ng++) glen[ng]=glen[ng]+novref;
           free(jmin);
           free(jmax);
           free(lbit);
        }
        /*  
        //  For each group, find the group's reference value (min)
        //  and the number of bits needed to hold the remaining values
        */
        n=0;
        for ( ng=0; ng<ngroups; ng++) {
           /*  how many of each type? */
           num0=num1=num2=0;
           for (j=n; j<n+glen[ng]; j++) {
               if (ifldmiss[j] == 0 ) num0++;
               if (ifldmiss[j] == 1 ) num1++;
               if (ifldmiss[j] == 2 ) num2++;
           }
           if ( num0 == 0 ) {      /* all missing values */
              if ( num1 == 0 ) {       /* all secondary missing */
                gref[ng]=-2;
                gwidth[ng]=0;
              }
              else if ( num2 == 0 ) {       /* all primary missing */
                gref[ng]=-1;
                gwidth[ng]=0;
              }
              else {                          /* both primary and secondary */
                gref[ng]=0;
                gwidth[ng]=1;
              }
           }
           else {                      /* contains some non-missing data */
             /*    find max and min values of group */
             gref[ng]=2147483647;
             imax=-2147483647;
             j=n;
             for ( lg=0; lg<glen[ng]; lg++ ) {
                if ( ifldmiss[j] == 0 ) {
                  if (ifld[j] < gref[ng]) gref[ng]=ifld[j];
                  if (ifld[j] > imax) imax=ifld[j]; 
                }
                j++;
             }
             if (missopt == 1) imax=imax+1;
             if (missopt == 2) imax=imax+2;
             /*   calc num of bits needed to hold data */
             if ( gref[ng] != imax ) {
                temp=log((double)(imax-gref[ng]+1))/alog2;
                gwidth[ng]=(g2int)ceil(temp);
             }
             else {
                gwidth[ng]=0;
             }
           }
           /*   Subtract min from data */
           j=n;
           mtemp=(g2int)int_power(2.,gwidth[ng]);
           for ( lg=0; lg<glen[ng]; lg++ ) {
              if (ifldmiss[j] == 0)            /* non-missing */
                 ifld[j]=ifld[j]-gref[ng];
              else if (ifldmiss[j] == 1)         /* primary missing */
                 ifld[j]=mtemp-1;
              else if (ifldmiss[j] == 2)         /* secondary missing */
                 ifld[j]=mtemp-2;
              
              j++;
           }
           /*   increment fld array counter */
           n=n+glen[ng];
        }
        /*  
        //  Find max of the group references and calc num of bits needed 
        //  to pack each groups reference value, then
        //  pack up group reference values
        */
        /*printf(" GREFS: "); */
        /*for (j=0;j<ngroups;j++) printf(" %d",gref[j]); printf("\n"); */
        igmax=gref[0];
        for (j=1;j<ngroups;j++) if (gref[j] > igmax) igmax=gref[j];
        if (missopt == 1) igmax=igmax+1;
        if (missopt == 2) igmax=igmax+2;
        if (igmax != 0) {
           temp=log((double)(igmax+1))/alog2;
           nbitsgref=(g2int)ceil(temp);
           /* reset the ref values of any "missing only" groups. */
           mtemp=(g2int)int_power(2.,nbitsgref);
           for ( j=0; j<ngroups; j++ ) {
               if (gref[j] == -1) gref[j]=mtemp-1;
               if (gref[j] == -2) gref[j]=mtemp-2;
           }
           sbits(cpack,gref,iofst,nbitsgref,0,ngroups);
           itemp=nbitsgref*ngroups;
           iofst=iofst+itemp;
           /*         Pad last octet with Zeros, if necessary, */
           if ( (itemp%8) != 0) {
              left=8-(itemp%8);
              sbit(cpack,&zero,iofst,left);
              iofst=iofst+left;
           }
        }
        else {
           nbitsgref=0;
        }
        /*
        //  Find max/min of the group widths and calc num of bits needed
        //  to pack each groups width value, then
        //  pack up group width values
        */
        /*write(77,*)'GWIDTHS: ',(gwidth(j),j=1,ngroups)*/
        iwmax=gwidth[0];
        ngwidthref=gwidth[0];
        for (j=1;j<ngroups;j++) {
           if (gwidth[j] > iwmax) iwmax=gwidth[j];
           if (gwidth[j] < ngwidthref) ngwidthref=gwidth[j];
        }
        if (iwmax != ngwidthref) {
           temp=log((double)(iwmax-ngwidthref+1))/alog2;
           nbitsgwidth=(g2int)ceil(temp);
           for ( i=0; i<ngroups; i++) gwidth[i]=gwidth[i]-ngwidthref;
           sbits(cpack,gwidth,iofst,nbitsgwidth,0,ngroups);
           itemp=nbitsgwidth*ngroups;
           iofst=iofst+itemp;
           /*         Pad last octet with Zeros, if necessary,*/
           if ( (itemp%8) != 0) {
              left=8-(itemp%8);
              sbit(cpack,&zero,iofst,left);
              iofst=iofst+left;
           }
        }
        else {
           nbitsgwidth=0;
           for (i=0;i<ngroups;i++) gwidth[i]=0;
        }
        /*
        //  Find max/min of the group lengths and calc num of bits needed
        //  to pack each groups length value, then
        //  pack up group length values
        */
        /*printf(" GLENS: ");*/
        /*for (j=0;j<ngroups;j++) printf(" %d",glen[j]); printf("\n");*/
        ilmax=glen[0];
        nglenref=glen[0];
        for (j=1;j<ngroups-1;j++) {
           if (glen[j] > ilmax) ilmax=glen[j];
           if (glen[j] < nglenref) nglenref=glen[j];
        }
        nglenlast=glen[ngroups-1];
        if (ilmax != nglenref) {
           temp=log((double)(ilmax-nglenref+1))/alog2;
           nbitsglen=(g2int)ceil(temp);
           for ( i=0; i<ngroups-1; i++) glen[i]=glen[i]-nglenref;
           sbits(cpack,glen,iofst,nbitsglen,0,ngroups);
           itemp=nbitsglen*ngroups;
           iofst=iofst+itemp;
           /*         Pad last octet with Zeros, if necessary,*/
           if ( (itemp%8) != 0) {
              left=8-(itemp%8);
              sbit(cpack,&zero,iofst,left);
              iofst=iofst+left;
           }
        }
        else {
           nbitsglen=0;
           for (i=0;i<ngroups;i++) glen[i]=0;
        }
        /*
        //  For each group, pack data values
        */
        /*write(77,*)'IFLDS: ',(ifld(j),j=1,ndpts)*/
        n=0;
        ij=0;
        for ( ng=0; ng<ngroups; ng++) {
           glength=glen[ng]+nglenref;
           if (ng == (ngroups-1) ) glength=nglenlast;
           grpwidth=gwidth[ng]+ngwidthref;
       /*write(77,*)'NGP ',ng,grpwidth,glength,gref(ng)*/
           if ( grpwidth != 0 ) {
              sbits(cpack,ifld+n,iofst,grpwidth,0,glength);
              iofst=iofst+(grpwidth*glength);
           }
       /*  do kk=1,glength*/
       /*     ij=ij+1*/
       /*write(77,*)'SAG ',ij,fld(ij),ifld(ij),gref(ng),bscale,rmin,dscale*/
       /*  enddo*/
           n=n+glength;
        }
        /*         Pad last octet with Zeros, if necessary,*/
        if ( (iofst%8) != 0) {
           left=8-(iofst%8);
           sbit(cpack,&zero,iofst,left);
           iofst=iofst+left;
        }
        *lcpack=iofst/8;

        if ( ifld != 0 ) free(ifld);
        free(jfld);
        if ( ifldmiss != 0 ) free(ifldmiss);
        free(gref);
        free(gwidth);
        free(glen);
      /*}
      //else {          //   Constant field ( max = min )
      //  nbits=0;
      //  *lcpack=0;
      //  nbitsgref=0;
      //  ngroups=0;
      }*/

/*
//  Fill in ref value and number of bits in Template 5.2
*/
      mkieee(&rmin,idrstmpl+0,1);   /* ensure reference value is IEEE format*/
      idrstmpl[3]=nbitsgref;
      idrstmpl[4]=0;         /* original data were reals*/
      idrstmpl[5]=1;         /* general group splitting*/
      idrstmpl[9]=ngroups;          /* Number of groups*/
      idrstmpl[10]=ngwidthref;       /* reference for group widths*/
      idrstmpl[11]=nbitsgwidth;      /* num bits used for group widths*/
      idrstmpl[12]=nglenref;         /* Reference for group lengths*/
      idrstmpl[13]=1;                /* length increment for group lengths*/
      idrstmpl[14]=nglenlast;        /* True length of last group*/
      idrstmpl[15]=nbitsglen;        /* num bits used for group lengths*/
      if (idrsnum == 3) {
         idrstmpl[17]=nbitsd/8;      /* num bits used for extra spatial*/
                                     /* differencing values*/
      }

}
Exemple #23
0
Ais18::Ais18(const char *nmea_payload) {
    assert(nmea_payload);

    init();

    if (strlen(nmea_payload) != 168/6) {
        status = AIS_ERR_BAD_BIT_COUNT;
        return;
    }

    std::bitset<168> bs; // 1 slot
    status = aivdm_to_bits(bs, nmea_payload);
    if (had_error()) return;

    message_id = ubits(bs, 0, 6);
    if (18 != message_id) { status = AIS_ERR_WRONG_MSG_TYPE; return; }
    repeat_indicator = ubits(bs,6,2);
    mmsi = ubits(bs,8,30);

    spare = ubits(bs,38,8);
    sog = ubits(bs,46,10) / 10.;

    position_accuracy = ubits(bs,56,1);
    x = sbits(bs, 57, 28) / 600000.;
    y = sbits(bs, 85, 27) / 600000.;

    cog = ubits(bs, 112, 12) / 10.;
    true_heading = ubits(bs, 124, 9);
    timestamp = ubits(bs, 133, 6);
    spare2 = ubits(bs, 139, 2);
    unit_flag = bs[141];
    display_flag = bs[142];
    dsc_flag = bs[143];
    band_flag = bs[144];
    m22_flag = bs[145];
    mode_flag = bs[146];
    raim = bool(bs[147]);
    commstate_flag = bs[148];  // 0 SOTDMA, 1 ITDMA

    // FIX: set all to -1 and set valids to NOT!

    if (1 == unit_flag) {
        // CS - carrier sense - fixed commstate payload of 1100000000000000110
        int commstate = ubits(bs,149, 19);
        //std::cout << "\tcs commstate: " << commstate << std::endl;
        if (393222 != commstate) {
            // FIX: is this the right value?
            // FIX: return an error?
        }
    } else {
        sync_state = ubits(bs, 149, 2);
        if (0 == commstate_flag) {
            // SOTDMA
            slot_timeout = ubits(bs,151,3);

            switch (slot_timeout) {
            case 0:
                slot_offset = ubits(bs, 154, 14);
                slot_offset_valid = true;
                break;
            case 1:
                utc_hour = ubits(bs, 154, 5); 
                utc_min = ubits(bs, 159, 7);
                utc_spare = ubits(bs, 166, 2);
                utc_valid = true;
                break;
            case 2: // FALLTHROUGH
            case 4: // FALLTHROUGH
            case 6:
                slot_number = ubits(bs, 154, 14);
                slot_number_valid = true;
                break;
            case 3: // FALLTHROUGH
            case 5: // FALLTHROUGH
            case 7:
                received_stations = ubits(bs, 154, 14);
                received_stations_valid = true;
                break;
            default:
                assert (false);
            }

        } else {
            // ITDMA
            slot_increment = ubits(bs, 151, 13);
            slot_increment_valid = true;

            slots_to_allocate = ubits(bs, 164, 3);
            slots_to_allocate_valid = true;

            keep_flag = bool(bs[167]);
            keep_flag_valid = true;
        }
    }
}
Exemple #24
0
void compack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
             unsigned char *cpack,g2int *lcpack)
//$$$  SUBPROGRAM DOCUMENTATION BLOCK
//                .      .    .                                       .
// SUBPROGRAM:    compack
//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-11-07
//
// ABSTRACT: This subroutine packs up a data field using a complex
//   packing algorithm as defined in the GRIB2 documentation.  It
//   supports GRIB2 complex packing templates with or without
//   spatial differences (i.e. DRTs 5.2 and 5.3).
//   It also fills in GRIB2 Data Representation Template 5.2 or 5.3 
//   with the appropriate values.
//
// PROGRAM HISTORY LOG:
// 2002-11-07  Gilbert
//
// USAGE:    void compack(g2float *fld,g2int ndpts,g2int idrsnum,
//                g2int *idrstmpl,unsigned char *cpack,g2int *lcpack)
//
//   INPUT ARGUMENTS:
//     fld[]    - Contains the data values to pack
//     ndpts    - The number of data values in array fld[]
//     idrsnum  - Data Representation Template number 5.N
//                Must equal 2 or 3.
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.2 or 5.3
//                [0] = Reference value - ignored on input
//                [1] = Binary Scale Factor
//                [2] = Decimal Scale Factor
//                    .
//                    .
//                [6] = Missing value management
//                [7] = Primary missing value
//                [8] = Secondary missing value
//                    .
//                    .
//               [16] = Order of Spatial Differencing  ( 1 or 2 )
//                    .
//                    .
//
//   OUTPUT ARGUMENTS: 
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.3
//                [0] = Reference value - set by compack routine.
//                [1] = Binary Scale Factor - unchanged from input
//                [2] = Decimal Scale Factor - unchanged from input
//                    .
//                    .
//     cpack    - The packed data field
//     lcpack   - length of packed field cpack.
//
// REMARKS: None
//
// ATTRIBUTES:
//   LANGUAGE: C
//   MACHINE:
//
//$$$
{

      const g2int zero=0;
      g2int  *ifld,*gref,*glen,*gwidth;
      g2int  *jmin, *jmax, *lbit;
      g2int  i,j,n, /* nbits, */ imin,imax,left;
      g2int  isd,itemp,ilmax,ngwidthref=0,nbitsgwidth=0;
      g2int  nglenref=0,nglenlast=0,iofst,ival1,ival2;
      g2int  minsd,nbitsd=0,maxorig,nbitorig,ngroups;
      g2int  lg,ng,igmax,iwmax,nbitsgref;
      g2int  glength,grpwidth,nbitsglen=0;
      g2int  kfildo, minpk, inc, maxgrps, ibit, jbit, kbit, novref, lbitref;
      g2int  missopt, miss1, miss2, ier;
      g2float  bscale,dscale,rmax,rmin,temp;
      const g2int simple_alg = 0;
      const g2float alog2=0.69314718f;       //  ln(2.0)
      const g2int one=1;

      bscale=(float)int_power(2.0,-idrstmpl[1]);
      dscale=(float)int_power(10.0,idrstmpl[2]);
//
//  Find max and min values in the data
//
      rmax=fld[0];
      rmin=fld[0];
      for (j=1;j<ndpts;j++) {
        if (fld[j] > rmax) rmax=fld[j];
        if (fld[j] < rmin) rmin=fld[j];
      }

//
//  If max and min values are not equal, pack up field.
//  If they are equal, we have a constant field, and the reference
//  value (rmin) is the value for each point in the field and
//  set nbits to 0.
//
      if (rmin != rmax) {
        iofst=0;
        ifld=calloc(ndpts,sizeof(g2int));
        gref=calloc(ndpts,sizeof(g2int));
        gwidth=calloc(ndpts,sizeof(g2int));
        glen=calloc(ndpts,sizeof(g2int));
        //
        //  Scale original data
        //
        if (idrstmpl[1] == 0) {        //  No binary scaling
           imin=(g2int)RINT(rmin*dscale);
           //imax=(g2int)rint(rmax*dscale);
           rmin=(g2float)imin;
           for (j=0;j<ndpts;j++) 
              ifld[j]=(g2int)RINT(fld[j]*dscale)-imin;
        }
        else {                             //  Use binary scaling factor
           rmin=rmin*dscale;
           //rmax=rmax*dscale;
           for (j=0;j<ndpts;j++) 
             ifld[j]=(g2int)RINT(((fld[j]*dscale)-rmin)*bscale);
        }
        //
        //  Calculate spatial differences, if using DRS Template 5.3.
        //
        if (idrsnum == 3) {        // spatial differences
           if (idrstmpl[16]!=1 && idrstmpl[16]!=2) idrstmpl[16]=1;
           if (idrstmpl[16] == 1) {      // first order
              ival1=ifld[0];
              for (j=ndpts-1;j>0;j--) 
                 ifld[j]=ifld[j]-ifld[j-1];
              ifld[0]=0;
           }
           else if (idrstmpl[16] == 2) {      // second order
              ival1=ifld[0];
              ival2=ifld[1];
              for (j=ndpts-1;j>1;j--) 
                 ifld[j]=ifld[j]-(2*ifld[j-1])+ifld[j-2];
              ifld[0]=0;
              ifld[1]=0;
           }
           //
           //  subtract min value from spatial diff field
           //
           isd=idrstmpl[16];
           minsd=ifld[isd];
           for (j=isd;j<ndpts;j++)  if ( ifld[j] < minsd ) minsd=ifld[j];
           for (j=isd;j<ndpts;j++)  ifld[j]=ifld[j]-minsd;
           //
           //   find num of bits need to store minsd and add 1 extra bit
           //   to indicate sign
           //
           temp=(float)(log((double)(abs(minsd)+1))/alog2);
           nbitsd=(g2int)ceil(temp)+1;
           //
           //   find num of bits need to store ifld[0] ( and ifld[1]
           //   if using 2nd order differencing )
           //
           maxorig=ival1;
           if (idrstmpl[16]==2 && ival2>ival1) maxorig=ival2;
           temp=(float)(log((double)(maxorig+1))/alog2);
           nbitorig=(g2int)ceil(temp)+1;
           if (nbitorig > nbitsd) nbitsd=nbitorig;
           //   increase number of bits to even multiple of 8 ( octet )
           if ( (nbitsd%8) != 0) nbitsd=nbitsd+(8-(nbitsd%8));
           //
           //  Store extra spatial differencing info into the packed
           //  data section.
           //
           if (nbitsd != 0) {
              //   pack first original value
              if (ival1 >= 0) {
                 sbit(cpack,&ival1,iofst,nbitsd);
                 iofst=iofst+nbitsd;
              }
              else {
                 sbit(cpack,&one,iofst,1);
                 iofst=iofst+1;
                 itemp=abs(ival1);
                 sbit(cpack,&itemp,iofst,nbitsd-1);
                 iofst=iofst+nbitsd-1;
              }
              if (idrstmpl[16] == 2) {
               //  pack second original value
                 if (ival2 >= 0) {
                    sbit(cpack,&ival2,iofst,nbitsd);
                    iofst=iofst+nbitsd;
                 }
                 else {
                    sbit(cpack,&one,iofst,1);
                    iofst=iofst+1;
                    itemp=abs(ival2);
                    sbit(cpack,&itemp,iofst,nbitsd-1);
                    iofst=iofst+nbitsd-1;
                 }
              }
              //  pack overall min of spatial differences
              if (minsd >= 0) {
                 sbit(cpack,&minsd,iofst,nbitsd);
                 iofst=iofst+nbitsd;
              }
              else {
                 sbit(cpack,&one,iofst,1);
                 iofst=iofst+1;
                 itemp=abs(minsd);
                 sbit(cpack,&itemp,iofst,nbitsd-1);
                 iofst=iofst+nbitsd-1;
              }
           }
           //printf("SDp %ld %ld %ld %ld\n",ival1,ival2,minsd,nbitsd);
        }     //  end of spatial diff section
        //
        //   Determine Groups to be used.
        //
        if ( simple_alg == 1 ) {
           //  set group length to 10;  calculate number of groups
           //  and length of last group
           ngroups=ndpts/10;
           for (j=0;j<ngroups;j++) glen[j]=10;
           itemp=ndpts%10;
           if (itemp != 0) {
              ngroups=ngroups+1;
              glen[ngroups-1]=itemp;
           }
        }
        else {
           // Use Dr. Glahn's algorithm for determining grouping.
           //
           kfildo=6;
           minpk=10;
           inc=1;
           maxgrps=(ndpts/minpk)+1;
           jmin = calloc(maxgrps,sizeof(g2int));
           jmax = calloc(maxgrps,sizeof(g2int));
           lbit = calloc(maxgrps,sizeof(g2int));
           missopt=0;
           pack_gp(&kfildo,ifld,&ndpts,&missopt,&minpk,&inc,&miss1,&miss2,
                        jmin,jmax,lbit,glen,&maxgrps,&ngroups,&ibit,&jbit,
                        &kbit,&novref,&lbitref,&ier);
           //print *,'SAGier = ',ier,ibit,jbit,kbit,novref,lbitref
           for ( ng=0; ng<ngroups; ng++) glen[ng]=glen[ng]+novref;
           free(jmin);
           free(jmax);
           free(lbit);
        }
        //  
        //  For each group, find the group's reference value
        //  and the number of bits needed to hold the remaining values
        //
        n=0;
        for (ng=0;ng<ngroups;ng++) {
           //    find max and min values of group
           gref[ng]=ifld[n];
           imax=ifld[n];
           j=n+1;
           for (lg=1;lg<glen[ng];lg++) {
              if (ifld[j] < gref[ng]) gref[ng]=ifld[j]; 
              if (ifld[j] > imax) imax=ifld[j];
              j++;
           }
           //   calc num of bits needed to hold data
           if ( gref[ng] != imax ) {
              temp=(float)(log((double)(imax-gref[ng]+1))/alog2);
              gwidth[ng]=(g2int)ceil(temp);
           }
           else 
              gwidth[ng]=0;
           //   Subtract min from data
           j=n;
           for (lg=0;lg<glen[ng];lg++) {
              ifld[j]=ifld[j]-gref[ng];
              j++;
           }
           //   increment fld array counter
           n=n+glen[ng];
        }
        //  
        //  Find max of the group references and calc num of bits needed 
        //  to pack each groups reference value, then
        //  pack up group reference values
        //
        igmax=gref[0];
        for (j=1;j<ngroups;j++) if (gref[j] > igmax) igmax=gref[j];
        if (igmax != 0) {
           temp=(float)(log((double)(igmax+1))/alog2);
           nbitsgref=(g2int)ceil(temp);
           sbits(cpack,gref,iofst,nbitsgref,0,ngroups);
           itemp=nbitsgref*ngroups;
           iofst=iofst+itemp;
           //         Pad last octet with Zeros, if necessary,
           if ( (itemp%8) != 0) {
              left=8-(itemp%8);
              sbit(cpack,&zero,iofst,left);
              iofst=iofst+left;
           }
        }
        else
           nbitsgref=0;
        //
        //  Find max/min of the group widths and calc num of bits needed
        //  to pack each groups width value, then
        //  pack up group width values
        //
        iwmax=gwidth[0];
        ngwidthref=gwidth[0];
        for (j=1;j<ngroups;j++) {
           if (gwidth[j] > iwmax) iwmax=gwidth[j];
           if (gwidth[j] < ngwidthref) ngwidthref=gwidth[j];
        }
        if (iwmax != ngwidthref) {
           temp=(float)(log((double)(iwmax-ngwidthref+1))/alog2);
           nbitsgwidth=(g2int)ceil(temp);
           for (i=0;i<ngroups;i++) 
              gwidth[i]=gwidth[i]-ngwidthref;
           sbits(cpack,gwidth,iofst,nbitsgwidth,0,ngroups);
           itemp=nbitsgwidth*ngroups;
           iofst=iofst+itemp;
           //         Pad last octet with Zeros, if necessary,
           if ( (itemp%8) != 0) {
              left=8-(itemp%8);
              sbit(cpack,&zero,iofst,left);
              iofst=iofst+left;
           }
        }
        else {
           nbitsgwidth=0;
           for (i=0;i<ngroups;i++) gwidth[i]=0;
        }
        //
        //  Find max/min of the group lengths and calc num of bits needed
        //  to pack each groups length value, then
        //  pack up group length values
        //
        //write(77,*)'GLENS: ',(glen(j),j=1,ngroups)
        ilmax=glen[0];
        nglenref=glen[0];
        for (j=1;j<ngroups-1;j++) {
           if (glen[j] > ilmax) ilmax=glen[j];
           if (glen[j] < nglenref) nglenref=glen[j];
        }
        nglenlast=glen[ngroups-1];
        if (ilmax != nglenref) {
           temp=(float)(log((double)(ilmax-nglenref+1))/alog2);
           nbitsglen=(g2int)ceil(temp);
           for (i=0;i<ngroups-1;i++)  glen[i]=glen[i]-nglenref;
           sbits(cpack,glen,iofst,nbitsglen,0,ngroups);
           itemp=nbitsglen*ngroups;
           iofst=iofst+itemp;
           //         Pad last octet with Zeros, if necessary,
           if ( (itemp%8) != 0) {
              left=8-(itemp%8);
              sbit(cpack,&zero,iofst,left);
              iofst=iofst+left;
           }
        }
        else {
           nbitsglen=0;
           for (i=0;i<ngroups;i++) glen[i]=0;
        }
        //
        //  For each group, pack data values
        //
        n=0;
        for (ng=0;ng<ngroups;ng++) {
           glength=glen[ng]+nglenref;
           if (ng == (ngroups-1) ) glength=nglenlast;
           grpwidth=gwidth[ng]+ngwidthref;
           if ( grpwidth != 0 ) {
              sbits(cpack,ifld+n,iofst,grpwidth,0,glength);
              iofst=iofst+(grpwidth*glength);
           }
           n=n+glength;
        }
        //         Pad last octet with Zeros, if necessary,
        if ( (iofst%8) != 0) {
           left=8-(iofst%8);
           sbit(cpack,&zero,iofst,left);
           iofst=iofst+left;
        }
        *lcpack=iofst/8;
        //
        if ( ifld!=0 ) free(ifld);
        if ( gref!=0 ) free(gref);
        if ( gwidth!=0 ) free(gwidth);
        if ( glen!=0 ) free(glen);
      }
      else {          //   Constant field ( max = min )
        /* nbits=0; */
        *lcpack=0;
        nbitsgref=0;
        ngroups=0;
      }

//
//  Fill in ref value and number of bits in Template 5.2
//
      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
      idrstmpl[3]=nbitsgref;
      idrstmpl[4]=0;         // original data were reals
      idrstmpl[5]=1;         // general group splitting
      idrstmpl[6]=0;         // No internal missing values
      idrstmpl[7]=0;         // Primary missing value
      idrstmpl[8]=0;         // secondary missing value
      idrstmpl[9]=ngroups;          // Number of groups
      idrstmpl[10]=ngwidthref;       // reference for group widths
      idrstmpl[11]=nbitsgwidth;      // num bits used for group widths
      idrstmpl[12]=nglenref;         // Reference for group lengths
      idrstmpl[13]=1;                // length increment for group lengths
      idrstmpl[14]=nglenlast;        // True length of last group
      idrstmpl[15]=nbitsglen;        // num bits used for group lengths
      if (idrsnum == 3) {
         idrstmpl[17]=nbitsd/8;      // num bits used for extra spatial
                                     // differencing values
      }

}
Exemple #25
0
void simpack(g2float *fld,g2int ndpts,g2int *idrstmpl,unsigned char *cpack,g2int *lcpack)
//$$$  SUBPROGRAM DOCUMENTATION BLOCK
//                .      .    .                                       .
// SUBPROGRAM:    simpack
//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-11-06
//
// ABSTRACT: This subroutine packs up a data field using the simple
//   packing algorithm as defined in the GRIB2 documentation.  It
//   also fills in GRIB2 Data Representation Template 5.0 with the
//   appropriate values.
//
// PROGRAM HISTORY LOG:
// 2002-11-06  Gilbert
//
// USAGE:    CALL simpack(fld,ndpts,idrstmpl,cpack,lcpack)
//   INPUT ARGUMENT LIST:
//     fld[]    - Contains the data values to pack
//     ndpts    - The number of data values in array fld[]
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.0
//                [0] = Reference value - ignored on input
//                [1] = Binary Scale Factor
//                [2] = Decimal Scale Factor
//                [3] = Number of bits used to pack data, if value is
//                      > 0 and  <= 31.
//                      If this input value is 0 or outside above range
//                      then the num of bits is calculated based on given 
//                      data and scale factors.
//                [4] = Original field type - currently ignored on input
//                      Data values assumed to be reals.
//
//   OUTPUT ARGUMENT LIST: 
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.0
//                [0] = Reference value - set by simpack routine.
//                [1] = Binary Scale Factor - unchanged from input
//                [2] = Decimal Scale Factor - unchanged from input
//                [3] = Number of bits used to pack data, unchanged from 
//                      input if value is between 0 and 31.
//                      If this input value is 0 or outside above range
//                      then the num of bits is calculated based on given 
//                      data and scale factors.
//                [4] = Original field type - currently set = 0 on output.
//                      Data values assumed to be reals.
//     cpack    - The packed data field
//     lcpack   - length of packed field starting at cpack.
//
// REMARKS: None
//
// ATTRIBUTES:
//   LANGUAGE: C
//   MACHINE:  
//
//$$$
{

      const g2int zero=0;
      g2int  *ifld;
      g2int  j,nbits,imin,imax,maxdif,nbittot,left;
      g2float  bscale,dscale,rmax,rmin,temp;
      double maxnum;
      const g2float alog2=0.69314718f;       //  ln(2.0)
      
      bscale=(float)int_power(2.0,-idrstmpl[1]);
      dscale=(float)int_power(10.0,idrstmpl[2]);
      if (idrstmpl[3] <= 0 || idrstmpl[3] > 31)
         nbits=0;
      else
         nbits=idrstmpl[3];
//
//  Find max and min values in the data
//
      rmax=fld[0];
      rmin=fld[0];
      for (j=1;j<ndpts;j++) {
        if (fld[j] > rmax) rmax=fld[j];
        if (fld[j] < rmin) rmin=fld[j];
      }
     
      ifld=calloc(ndpts,sizeof(g2int));
//
//  If max and min values are not equal, pack up field.
//  If they are equal, we have a constant field, and the reference
//  value (rmin) is the value for each point in the field and
//  set nbits to 0.
//
      if (rmin != rmax) {
        //
        //  Determine which algorithm to use based on user-supplied 
        //  binary scale factor and number of bits.
        //
        if (nbits==0 && idrstmpl[1]==0) {
           //
           //  No binary scaling and calculate minimum number of 
           //  bits in which the data will fit.
           //
           imin=(g2int)RINT(rmin*dscale);
           imax=(g2int)RINT(rmax*dscale);
           maxdif=imax-imin;
           temp=(float)(log((double)(maxdif+1))/alog2);
           nbits=(g2int)ceil(temp);
           rmin=(g2float)imin;
           //   scale data
           for(j=0;j<ndpts;j++)
             ifld[j]=(g2int)RINT(fld[j]*dscale)-imin;
        }
        else if (nbits!=0 && idrstmpl[1]==0) {
           //
           //  Use minimum number of bits specified by user and
           //  adjust binary scaling factor to accommodate data.
           //
           rmin=rmin*dscale;
           rmax=rmax*dscale;
           maxnum=int_power(2.0,nbits)-1;
           temp=(float)(log(maxnum/(rmax-rmin))/alog2);
           idrstmpl[1]=(g2int)ceil(-1.0*temp);
           bscale=(float)int_power(2.0,-idrstmpl[1]);
           //   scale data
           for (j=0;j<ndpts;j++)
             ifld[j]=(g2int)RINT(((fld[j]*dscale)-rmin)*bscale);
        }
        else if (nbits==0 && idrstmpl[1]!=0) {
           //
           //  Use binary scaling factor and calculate minimum number of 
           //  bits in which the data will fit.
           //
           rmin=rmin*dscale;
           rmax=rmax*dscale;
           maxdif=(g2int)RINT((rmax-rmin)*bscale);
           temp=(float)(log((double)(maxdif+1))/alog2);
           nbits=(g2int)ceil(temp);
           //   scale data
           for (j=0;j<ndpts;j++)
             ifld[j]=(g2int)RINT(((fld[j]*dscale)-rmin)*bscale);
        }
        else if (nbits!=0 && idrstmpl[1]!=0) {
           //
           //  Use binary scaling factor and use minimum number of 
           //  bits specified by user.   Dangerous - may loose
           //  information if binary scale factor and nbits not set
           //  properly by user.
           //
           rmin=rmin*dscale;
           //   scale data
           for (j=0;j<ndpts;j++)
             ifld[j]=(g2int)RINT(((fld[j]*dscale)-rmin)*bscale);
        }
        //
        //  Pack data, Pad last octet with Zeros, if necessary,
        //  and calculate the length of the packed data in bytes
        //
        sbits(cpack,ifld+0,0,nbits,0,ndpts);
        nbittot=nbits*ndpts;
        left=8-(nbittot%8);
        if (left != 8) {
          sbit(cpack,&zero,nbittot,left);   // Pad with zeros to fill Octet
          nbittot=nbittot+left;
        }
        *lcpack=nbittot/8;
      }
      else {
        nbits=0;
        *lcpack=0;
      }

//
//  Fill in ref value and number of bits in Template 5.0
//
      //printf("SAGmkieee %f\n",rmin);
      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
      //printf("SAGmkieee %ld\n",idrstmpl[0]);
      idrstmpl[3]=nbits;
      idrstmpl[4]=0;         // original data were reals

      free(ifld);
}
Exemple #26
0
g2int g2_addgrid(unsigned char *cgrib,g2int *igds,g2int *igdstmpl,g2int *ideflist,g2int idefnum)
//$$$  SUBPROGRAM DOCUMENTATION BLOCK
//                .      .    .                                       .
// SUBPROGRAM:    g2_addgrid 
//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-11-01
//
// ABSTRACT: This routine packs up a Grid Definition Section (Section 3) 
//   and adds it to a GRIB2 message.  It is used with routines "g2_create",
//   "g2_addlocal", "g2_addfield",
//   and "g2_gribend" to create a complete GRIB2 message.
//   g2_create must be called first to initialize a new GRIB2 message.
//
// PROGRAM HISTORY LOG:
// 2002-11-01  Gilbert
// 2009-01-14  Vuong     Changed structure name template to gtemplate
//
// USAGE:    int g2_addgrid(unsigned char *cgrib,g2int *igds,g2int *igdstmpl,
//                          g2int *ideflist,g2int idefnum)
//   INPUT ARGUMENTS:
//     cgrib    - Char array that contains the GRIB2 message to which
//                section should be added.
//     igds     - Contains information needed for GRIB Grid Definition Section 3
//                Must be dimensioned >= 5.
//                igds[0]=Source of grid definition (see Code Table 3.0)
//                igds[1]=Number of grid points in the defined grid.
//                igds[2]=Number of octets needed for each 
//                            additional grid points definition.  
//                            Used to define number of
//                            points in each row ( or column ) for
//                            non-regular grids.  
//                            = 0, if using regular grid.
//                igds[3]=Interpretation of list for optional points 
//                            definition.  (Code Table 3.11)
//                igds[4]=Grid Definition Template Number (Code Table 3.1)
//     igdstmpl - Contains the data values for the specified Grid Definition
//                Template ( NN=igds[4] ).  Each element of this integer 
//                array contains an entry (in the order specified) of Grid
//                Defintion Template 3.NN
//     ideflist - (Used if igds[2] != 0)  This array contains the
//                number of grid points contained in each row ( or column )
//      idefnum - (Used if igds[2] != 0)  The number of entries
//                in array ideflist.  i.e. number of rows ( or columns )
//                for which optional grid points are defined.
//
//   OUTPUT ARGUMENTS:      
//     cgrib    - Char array to contain the updated GRIB2 message.
//                Must be allocated large enough to store the entire
//                GRIB2 message.
//
//   RETURN VALUES:
//     ierr     - Return code.
//              > 0 = Current size of updated GRIB2 message
//               -1 = GRIB message was not initialized.  Need to call
//                    routine gribcreate first.
//               -2 = GRIB message already complete.  Cannot add new section.
//               -3 = Sum of Section byte counts doesn't add to total byte count
//               -4 = Previous Section was not 1, 2 or 7.
//               -5 = Could not find requested Grid Definition Template.
//
// REMARKS: Note that the Grid Def Section ( Section 3 ) can only follow
//          Section 1, 2 or Section 7 in a GRIB2 message.
//
// ATTRIBUTES:
//   LANGUAGE: C
//   MACHINE:  
//
//$$$
{

      g2int ierr;
      static unsigned char G=0x47;       // 'G'
      static unsigned char R=0x52;       // 'R'
      static unsigned char I=0x49;       // 'I'
      static unsigned char B=0x42;       // 'B'
      static unsigned char seven=0x37;   // '7'

      static g2int one=1,three=3,miss=65535;
      g2int   lensec3,iofst,ibeg,lencurr,len;
      g2int   i,j,temp,ilen,isecnum,nbits;
      gtemplate *mapgrid=0;
 
      ierr=0;
//
//  Check to see if beginning of GRIB message exists
//
      if ( cgrib[0]!=G || cgrib[1]!=R || cgrib[2]!=I || cgrib[3]!=B ) {
        // printf("g2_addgrid: GRIB not found in given message.\n");
        // printf("g2_addgrid: Call to routine gribcreate required to initialize GRIB messge.\n");
        ierr=-1;
        return(ierr);
      }
//
//  Get current length of GRIB message
//  
      gbit(cgrib,&lencurr,96,32);
//
//  Check to see if GRIB message is already complete
//  
      if ( cgrib[lencurr-4]==seven && cgrib[lencurr-3]==seven &&
           cgrib[lencurr-2]==seven && cgrib[lencurr-1]==seven ) {
        // printf("g2_addgrid: GRIB message already complete.  Cannot add new section.\n");
        ierr=-2;
        return(ierr);
      }
//
//  Loop through all current sections of the GRIB message to
//  find the last section number.
//
      len=16;    // length of Section 0
      for (;;) { 
      //    Get section number and length of next section
        iofst=len*8;
        gbit(cgrib,&ilen,iofst,32);
        iofst=iofst+32;
        gbit(cgrib,&isecnum,iofst,8);
        len=len+ilen;
      //    Exit loop if last section reached
        if ( len == lencurr ) break;
      //    If byte count for each section doesn't match current
      //    total length, then there is a problem.
        if ( len > lencurr ) {
          // printf("g2_addgrid: Section byte counts don''t add to total.\n");
          // printf("g2_addgrid: Sum of section byte counts = %ld\n",len);
          // printf("g2_addgrid: Total byte count in Section 0 = %ld\n",lencurr);
          ierr=-3;
          return(ierr);
        }
      }
//
//  Section 3 can only be added after sections 1, 2 and 7.
//
      if ( (isecnum!=1) && (isecnum!=2) && (isecnum!=7) ) {
        // printf("g2_addgrid: Section 3 can only be added after Section 1, 2 or 7.\n");
        // printf("g2_addgrid: Section ',isecnum,' was the last found in given GRIB message.\n");
        ierr=-4;
        return(ierr);
      }
//
//  Add Section 3  - Grid Definition Section
//
      ibeg=lencurr*8;        //   Calculate offset for beginning of section 3
      iofst=ibeg+32;         //   leave space for length of section
      sbit(cgrib,&three,iofst,8);     // Store section number ( 3 )
      iofst=iofst+8;
      sbit(cgrib,igds+0,iofst,8);     // Store source of Grid def.
      iofst=iofst+8;
      sbit(cgrib,igds+1,iofst,32);    // Store number of data pts.
      iofst=iofst+32;
      sbit(cgrib,igds+2,iofst,8);     // Store number of extra octets.
      iofst=iofst+8;
      sbit(cgrib,igds+3,iofst,8);     // Store interp. of extra octets.
      iofst=iofst+8;
      //   if Octet 6 is not equal to zero, Grid Definition Template may
      //   not be supplied.
      if ( igds[0] == 0 )
        sbit(cgrib,igds+4,iofst,16);  // Store Grid Def Template num.
      else
        sbit(cgrib,&miss,iofst,16);   // Store missing value as Grid Def Template num.
      iofst=iofst+16;
      //
      //   Get Grid Definition Template
      //
      if (igds[0] == 0) {
        mapgrid=getgridtemplate(igds[4]);
        if (mapgrid == 0) {       // undefined template
          ierr=-5;
          return(ierr);
        }
        //
        //   Extend the Grid Definition Template, if necessary.
        //   The number of values in a specific template may vary
        //   depending on data specified in the "static" part of the
        //   template.
        //
        if ( mapgrid->needext ) {
          free(mapgrid);
          mapgrid=extgridtemplate(igds[4],igdstmpl);
        }
      }
      //
      //   Pack up each input value in array igdstmpl into the
      //   the appropriate number of octets, which are specified in
      //   corresponding entries in array mapgrid.
      //
      for (i=0;i<mapgrid->maplen;i++) {
        nbits=abs(mapgrid->map[i])*8;
        if ( (mapgrid->map[i] >= 0) || (igdstmpl[i] >= 0) )
          sbit(cgrib,igdstmpl+i,iofst,nbits);
        else {
          sbit(cgrib,&one,iofst,1);
          temp=abs(igdstmpl[i]);
          sbit(cgrib,&temp,iofst+1,nbits-1);
        }
        iofst=iofst+nbits;
      }
      //  Pack template extension, if appropriate
      j=mapgrid->maplen;
      if ( mapgrid->needext && (mapgrid->extlen > 0) ) {
         for (i=0;i<mapgrid->extlen;i++) {
           nbits=abs(mapgrid->ext[i])*8;
           if ( (mapgrid->ext[i] >= 0) || (igdstmpl[j] >= 0) )
             sbit(cgrib,igdstmpl+j,iofst,nbits);
           else {
             sbit(cgrib,&one,iofst,1);
             temp=abs(igdstmpl[j]);
             sbit(cgrib,&temp,iofst+1,nbits-1);
           }
           iofst=iofst+nbits;
           j++;
         }
      }
      free(mapgrid);
      //
      //   If requested,
      //   Insert optional list of numbers defining number of points
      //   in each row or column.  This is used for non regular
      //   grids.
      //
      if ( igds[2] != 0 ) {
         nbits=igds[2]*8;
         sbits(cgrib,ideflist,iofst,nbits,0,idefnum);
         iofst=iofst+(nbits*idefnum);
      }
      //
      //   Calculate length of section 3 and store it in octets
      //   1-4 of section 3.
      //
      lensec3=(iofst-ibeg)/8;
      sbit(cgrib,&lensec3,ibeg,32);

//
//  Update current byte total of message in Section 0
//
      lencurr+=lensec3;
      sbit(cgrib,&lencurr,96,32);

      return(lencurr);

}
Exemple #27
0
void pngpack(g2float *fld,g2int width,g2int height,g2int *idrstmpl,
             unsigned char *cpack,g2int *lcpack)
//$$$  SUBPROGRAM DOCUMENTATION BLOCK
//                .      .    .                                       .
// SUBPROGRAM:    pngpack
//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2003-08-27
//
// ABSTRACT: This subroutine packs up a data field into PNG image format.
//   After the data field is scaled, and the reference value is subtracted out,
//   it is treated as a grayscale image and passed to a PNG encoder.
//   It also fills in GRIB2 Data Representation Template 5.41 or 5.40010 with
//   the appropriate values.
//
// PROGRAM HISTORY LOG:
// 2003-08-27  Gilbert
//
// USAGE:    pngpack(g2float *fld,g2int width,g2int height,g2int *idrstmpl,
//                   unsigned char *cpack,g2int *lcpack);
//   INPUT ARGUMENT LIST:
//     fld[]    - Contains the data values to pack
//     width    - number of points in the x direction
//     height   - number of points in the y direction
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.41 or 5.40010
//                [0] = Reference value - ignored on input
//                [1] = Binary Scale Factor
//                [2] = Decimal Scale Factor
//                [3] = number of bits for each data value - ignored on input
//                [4] = Original field type - currently ignored on input
//                      Data values assumed to be reals.
//
//   OUTPUT ARGUMENT LIST:
//     idrstmpl - Contains the array of values for Data Representation
//                Template 5.41 or 5.40010
//                [0] = Reference value - set by pngpack routine.
//                [1] = Binary Scale Factor - unchanged from input
//                [2] = Decimal Scale Factor - unchanged from input
//                [3] = Number of bits containing each grayscale pixel value
//                [4] = Original field type - currently set = 0 on output.
//                      Data values assumed to be reals.
//     cpack    - The packed data field
//     lcpack   - length of packed field cpack.
//
// REMARKS: None
//
// ATTRIBUTES:
//   LANGUAGE: C
//   MACHINE:  IBM SP
//
//$$$
{
      g2int  *ifld;
      const g2float alog2=0.69314718f;       //  ln(2.0)
      g2int  j,nbits,imin,imax,maxdif;
      g2int  ndpts,nbytes;
      g2float  bscale,dscale,rmax,rmin,temp;
      unsigned char *ctemp;

      ifld=0;
      ndpts=width*height;
      bscale=(g2float)int_power(2.0,-idrstmpl[1]);
      dscale=(g2float)int_power(10.0,idrstmpl[2]);
//
//  Find max and min values in the data
//
      rmax=fld[0];
      rmin=fld[0];
      for (j=1;j<ndpts;j++) {
        if (fld[j] > rmax) rmax=fld[j];
        if (fld[j] < rmin) rmin=fld[j];
      }
      maxdif = (g2int)RINT( (rmax-rmin)*dscale*bscale );
//
//  If max and min values are not equal, pack up field.
//  If they are equal, we have a constant field, and the reference
//  value (rmin) is the value for each point in the field and
//  set nbits to 0.
//
      if (rmin != rmax  &&  maxdif != 0 ) {
        ifld=(g2int *)malloc(ndpts*sizeof(g2int));
        //
        //  Determine which algorithm to use based on user-supplied
        //  binary scale factor and number of bits.
        //
        if (idrstmpl[1] == 0) {
           //
           //  No binary scaling and calculate minimum number of
           //  bits in which the data will fit.
           //
           imin=(g2int)RINT(rmin*dscale);
           imax=(g2int)RINT(rmax*dscale);
           maxdif=imax-imin;
           temp=(g2float)log((double)(maxdif+1))/alog2;
           nbits=(g2int)ceil(temp);
           rmin=(g2float)imin;
           //   scale data
           for(j=0;j<ndpts;j++)
             ifld[j]=(g2int)RINT(fld[j]*dscale)-imin;
        }
        else {
           //
           //  Use binary scaling factor and calculate minimum number of
           //  bits in which the data will fit.
           //
           rmin=rmin*dscale;
           rmax=rmax*dscale;
           maxdif=(g2int)RINT((rmax-rmin)*bscale);
           temp=(g2float)log((double)(maxdif+1))/alog2;
           nbits=(g2int)ceil(temp);
           //   scale data
           for (j=0;j<ndpts;j++)
             ifld[j]=(g2int)RINT(((fld[j]*dscale)-rmin)*bscale);
        }
        //
        //  Pack data into full octets, then do PNG encode.
        //  and calculate the length of the packed data in bytes
        //
        if (nbits <= 8) {
            nbits=8;
        }
        else if (nbits <= 16) {
            nbits=16;
        }
        else if (nbits <= 24) {
            nbits=24;
        }
        else {
            nbits=32;
        }
        nbytes=(nbits/8)*ndpts;
        ctemp=calloc(nbytes,1);
        sbits(ctemp,ifld,0,nbits,0,ndpts);
        //
        //  Encode data into PNG Format.
        //
        *lcpack=(g2int)enc_png((char *)ctemp,width,height,nbits,(char *)cpack);
        if (*lcpack <= 0) {
           printf("pngpack: ERROR Packing PNG = %d\n",(int)*lcpack);
        }
        free(ctemp);

      }
      else {
        nbits=0;
        *lcpack=0;
      }

//
//  Fill in ref value and number of bits in Template 5.0
//
      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
      idrstmpl[3]=nbits;
      idrstmpl[4]=0;         // original data were reals
      if (ifld != 0) free(ifld);

}
Ais9::Ais9(const char *nmea_payload, const size_t pad)
    : AisMsg(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(message_id == 9);

  if (pad != 0 || strlen(nmea_payload) != 28) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<168> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  alt = ubits(bs, 38, 12);
  sog = (float)(ubits(bs, 50, 10) / 10.0);//Crouse:Added typecasting

  position_accuracy = bs[60];
  x = (float)(sbits(bs, 61, 28) / 600000.0);//Crouse:Added typecasting
  y = (float)(sbits(bs, 89, 27) / 600000.0);//Crouse:Added typecasting

  cog = (float)(ubits(bs, 116, 12) / 10.0);//Crouse:Added typecasting
  timestamp = ubits(bs, 128, 6);
  alt_sensor = bs[134];
  spare = ubits(bs, 135, 7);
  dte = bs[142];
  spare2 = ubits(bs, 143, 3);
  assigned_mode = bs[146];
  raim = bs[147];
  commstate_flag = bs[148];  // 0 SOTDMA, 1 ITDMA

  sync_state = ubits(bs, 149, 2);

#ifndef NDEBUG
  slot_timeout = -1;
  received_stations = slot_number = utc_hour = utc_min = utc_spare -1;
  slot_offset = slot_increment = slots_to_allocate = -1;
  keep_flag = false;
#endif

  slot_timeout_valid = false;
  received_stations_valid = false;
  slot_number_valid = false;
  utc_valid = false;
  slot_offset_valid = false;
  slot_increment_valid = false;
  slots_to_allocate_valid = false;
  keep_flag_valid = false;

  if (0 == commstate_flag) {
    // SOTDMA
    slot_timeout = ubits(bs, 151, 3);
    slot_timeout_valid = true;

    switch (slot_timeout) {
    case 0:
      slot_offset = ubits(bs, 154, 14);
      slot_offset_valid = true;
      break;
    case 1:
      utc_hour = ubits(bs, 154, 5);
      utc_min = ubits(bs, 159, 7);
      utc_spare = ubits(bs, 166, 2);
      utc_valid = true;
      break;
    case 2:  // FALLTHROUGH
    case 4:  // FALLTHROUGH
    case 6:
      slot_number = ubits(bs, 154, 14);
      slot_number_valid = true;
      break;
    case 3:  // FALLTHROUGH
    case 5:  // FALLTHROUGH
    case 7:
      received_stations = ubits(bs, 154, 14);
      received_stations_valid = true;
      break;
    default:
      assert(false);
    }
  } else {
    // ITDMA
    slot_increment = ubits(bs, 151, 13);
    slot_increment_valid = true;

    slots_to_allocate = ubits(bs, 164, 3);
    slots_to_allocate_valid = true;

    keep_flag = bs[167];
    keep_flag_valid = true;
  }

  status = AIS_OK;
}
Exemple #29
0
Ais18::Ais18(const char *nmea_payload, const size_t pad)
    : AisMsg(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(message_id == 18);

  if (pad != 0 || std::strlen(nmea_payload) != 28) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<168> bs;
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  spare = ubits(bs, 38, 8);
  sog = ubits(bs, 46, 10) / 10.;

  position_accuracy = bs[56];
  x = sbits(bs, 57, 28) / 600000.;
  y = sbits(bs, 85, 27) / 600000.;

  cog = ubits(bs, 112, 12) / 10.;
  true_heading = ubits(bs, 124, 9);
  timestamp = ubits(bs, 133, 6);
  spare2 = ubits(bs, 139, 2);
  unit_flag = bs[141];
  display_flag = bs[142];
  dsc_flag = bs[143];
  band_flag = bs[144];
  m22_flag = bs[145];
  mode_flag = bs[146];
  raim = bs[147];
  commstate_flag = bs[148];  // 0 SOTDMA, 1 ITDMA

  received_stations_valid = slot_number_valid = utc_valid = false;
  slot_offset_valid = slot_increment_valid = slots_to_allocate_valid = false;
  keep_flag = false;

  // if unit_flag is 1:
  // CS - carrier sense - fixed commstate payload of 1100000000000000110
  // TODO(schwehr): What if commstate is not 393222?
  // commstate = ubits(bs, 149, 19);
  if (unit_flag == 1) {
    status = AIS_OK;
    return;
  }

  // unit_flag is 0
  sync_state = ubits(bs, 149, 2);
  if (0 == commstate_flag) {
    // SOTDMA
    slot_timeout = ubits(bs, 151, 3);

    switch (slot_timeout) {
    case 0:
      slot_offset = ubits(bs, 154, 14);
      slot_offset_valid = true;
      break;
    case 1:
      utc_hour = ubits(bs, 154, 5);
      utc_min = ubits(bs, 159, 7);
      utc_spare = ubits(bs, 166, 2);
      utc_valid = true;
      break;
    case 2:  // FALLTHROUGH
    case 4:  // FALLTHROUGH
    case 6:
      slot_number = ubits(bs, 154, 14);
      slot_number_valid = true;
      break;
    case 3:  // FALLTHROUGH
    case 5:  // FALLTHROUGH
    case 7:
      received_stations = ubits(bs, 154, 14);
      received_stations_valid = true;
      break;
    default:
      assert(false);
    }

  } else {
    // ITDMA
    slot_increment = ubits(bs, 151, 13);
    slot_increment_valid = true;

    slots_to_allocate = ubits(bs, 164, 3);
    slots_to_allocate_valid = true;

    keep_flag = bs[167];
    keep_flag_valid = true;
  }

  status = AIS_OK;
}
Ais8_1_11::Ais8_1_11(const char *nmea_payload, const size_t pad)
    : Ais8(nmea_payload, pad) {
  if (status != AIS_UNINITIALIZED)
    return;

  assert(dac == 1);
  assert(fi == 11);

  if (strlen(nmea_payload) != 59) {
    status = AIS_ERR_BAD_BIT_COUNT;
    return;
  }

  bitset<354> bs;  // 352 + 2 spares to be 6 bit aligned
  const AIS_STATUS r = aivdm_to_bits(bs, nmea_payload);
  if (r != AIS_OK) {
    status = r;
    return;
  }

  y = (float)(sbits(bs, 56, 24) / 60000.0);//Crouse: Added typecasting
  x = (float)(sbits(bs, 80, 25) / 60000.0);//Crouse: Added typecasting
  day = ubits(bs, 105, 5);
  hour = ubits(bs, 110, 5);
  minute = ubits(bs, 115, 6);
  wind_ave = ubits(bs, 121, 7);
  wind_gust = ubits(bs, 128, 7);
  wind_dir = ubits(bs, 135, 9);
  wind_gust_dir = ubits(bs, 144, 9);
  air_temp = (float)(ubits(bs, 153, 11) / 10.0 - 60);//Crouse: Added typecasting
  rel_humid = ubits(bs, 164, 7);
  dew_point = (float)(ubits(bs, 171, 10) / 10.0 - 20);  // TODO(schwehr): verify //Crouse: Added typecasting
  air_pres = (float)ubits(bs, 181, 9) + (float)800.0;
  air_pres_trend = ubits(bs, 190, 2);
  horz_vis = (float)(ubits(bs, 192, 8) / 10.0);//Crouse: Added typecasting
  // TODO(schwehr): verify for -10.0 to 30.0
  water_level = (float)(ubits(bs, 200, 9) / 10.0 - 10);//Crouse: Added typecasting
  water_level_trend = ubits(bs, 209, 2);
  surf_cur_speed = (float)(ubits(bs, 211, 8) / 10.0);//Crouse: Added typecasting
  surf_cur_dir = ubits(bs, 219, 9);
  cur_speed_2 = (float)(ubits(bs, 228, 8) / 10.0);//Crouse: Added typecasting
  cur_dir_2 = ubits(bs, 236, 9);
  cur_depth_2 = ubits(bs, 245, 5);
  cur_speed_3 = (float)(ubits(bs, 250, 8) / 10.0);//Crouse: Added typecasting
  cur_dir_3 = ubits(bs, 258, 9);
  cur_depth_3 = ubits(bs, 267, 5);

  wave_height = (float)(ubits(bs, 272, 8) / 10.0);//Crouse: Added typecasting
  wave_period = ubits(bs, 280, 6);
  wave_dir = ubits(bs, 286, 9);
  swell_height = (float)(ubits(bs, 295, 8) / 10.0);//Crouse: Added typecasting
  swell_period = ubits(bs, 303, 6);
  swell_dir = ubits(bs, 309, 9);

  sea_state = ubits(bs, 318, 4);
  // TODO(schwehr): verify for -10.0 to +50.0
  water_temp = (float)(ubits(bs, 322, 10) / 10.0 - 10);//Crouse: Added typecasting
  precip_type = ubits(bs, 332, 3);
  salinity = (float)(ubits(bs, 335, 9)/10.0);//Crouse: Corrected to divide by 10.0 and added typecasting
  ice = ubits(bs, 344, 2);
  // There is no way to know which meaning to attach to the following 6 bits
  // TODO(schwehr): how to treat this spare vrs water level?
  spare2 = ubits(bs, 346, 6);
  extended_water_level = ubits(bs, 346, 6);

  status = AIS_OK;
}