Exemple #1
0
int main(int argc, char** argv)
{
  // Bonus: get the desired size of array from the command line
  int n = 2;
  if (argc > 1)
    {
      n = atoi(argv[1]);
    }

  int arr[n];
  // Method 1: write code to populate array within main(). This method works
  for (int i=0; i<n; ++i)
    arr[i] = i;

  // Method 2: try to create "range array" using a separate function. THIS WILL
  //NOT WORK! Try commenting out "Method 1" above and uncommenting the line
  //below and see what happens. You should get a "segmentation fault".
  //
  //arr = create_range_array(n);

  // print the array
  print_array(arr, n);

  // scale and print
  scale_array(2.0, arr, n);
  print_array(arr, n);
  return 0;
}
Exemple #2
0
static void tv_iter(int nx, const PetscScalar *x, PetscScalar *y){
  // deg: degree of polynomials
  // nx: some context variable from Petsc interface
  // x: vector with which matrix A is multiplied
  // y = A*x
  const int MAT_ENTRIES = pars -> get_int("MAT_ENTRIES");
  //hard coded atm, move to parameters later
  const int DEG = pars -> get_int("DEG");
  //const int DEG = 8;
  std::vector<PetscScalar> Told(MAT_ENTRIES); 
  std::vector<PetscScalar> Tcur(MAT_ENTRIES); 
  std::vector<PetscScalar> Tnew(MAT_ENTRIES);
  std::vector<PetscScalar> tmp(MAT_ENTRIES);
  // initialize chebyshev polynomials
  tv2( nx, &x[0], &Tcur[0]);
  equal_arrays(&x[0], &Told[0]);
  // if deg is 1 or less return initialised values
  if (DEG >=1){
  // else iteratively calculate chebyshev polynomials up to deg
  // T_n(B) = 2*B(T_{n-1}(B))-T_{n-2}(B)
    for (int n = 2; n <= DEG; n++){
      // store B(Tcur(Bx)) in tmp1
      tv2(nx, &Tcur[0], &tmp[0]);
      // scale tmp1
      scale_array(2., &tmp[0], &tmp[0]);
      //calculate new polynomial
      subtract_arrays(&Told[0], &tmp[0], &y[0]);
      // overwrite new variables
      equal_arrays(&Tcur[0], &Told[0]);
      equal_arrays(&y[0], &Tcur[0]);
    }
  }
}
Exemple #3
0
static void compute_residual(struct element **sel, double ****x, double ****f,
	double ****r, int var, void (*opeval) ())
{
	const int n = (*sel)->basis->ntot;
	global_opeval(sel, x, r, var, opeval);
	scale_array(***r, n * (*sel)->nel, -1.0);
	add_array(***f, ***r, n * (*sel)->nel, 1.0);
}
Exemple #4
0
image random_unit_vector_image(int w, int h, int c)
{
    image im = make_image(w, h, c);
    int i;
    for(i = 0; i < im.w*im.h*im.c; ++i){
        im.data[i] = rand_normal();
    }
    float mag = mag_array(im.data, im.w*im.h*im.c);
    scale_array(im.data, im.w*im.h*im.c, 1./mag);
    return im;
}
Exemple #5
0
void slerp(float *start, float *end, float s, int n, float *out)
{
    float omega = acos(dot_cpu(n, start, 1, end, 1));
    float so = sin(omega);
    fill_cpu(n, 0, out, 1);
    axpy_cpu(n, sin((1-s)*omega)/so, start, 1, out, 1);
    axpy_cpu(n, sin(s*omega)/so, end, 1, out, 1);

    float mag = mag_array(out, n);
    scale_array(out, n, 1./mag);
}
Exemple #6
0
int sample_array(float *a, int n)
{
    float sum = sum_array(a, n);
    scale_array(a, n, 1./sum);
    float r = rand_uniform(0, 1);
    int i;
    for(i = 0; i < n; ++i){
        r = r - a[i];
        if (r <= 0) return i;
    }
    return n-1;
}
Exemple #7
0
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch)
{
#ifdef GPU
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    char *base = basecfg(cfg);
    char *abase = basecfg(acfg);
    printf("%s\n", base);
    network *gnet = load_network(cfg, weight, clear);
    network *anet = load_network(acfg, aweight, clear);
    //float orig_rate = anet->learning_rate;

    int i, j, k;
    layer imlayer = {0};
    for (i = 0; i < gnet->n; ++i) {
        if (gnet->layers[i].out_c == 3) {
            imlayer = gnet->layers[i];
            break;
        }
    }

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay);
    int imgs = gnet->batch*gnet->subdivisions;
    i = *gnet->seen/imgs;
    data train, buffer;


    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args= get_base_args(anet);
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    args.threads=16;
    args.classes = 1;
    char *ls[2] = {"imagenet", "zzzzzzzz"};
    args.labels = ls;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;

    gnet->train = 1;
    anet->train = 1;

    int x_size = gnet->inputs*gnet->batch;
    int y_size = gnet->truths*gnet->batch;
    float *imerror = cuda_make_array(0, y_size);

    //int ay_size = anet->truths*anet->batch;

    float aloss_avg = -1;

    //data generated = copy_data(train);

    if (maxbatch == 0) maxbatch = gnet->max_batches;
    while (get_current_batch(gnet) < maxbatch) {
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;

        //translate_data_rows(train, -.5);
        //scale_data_rows(train, 2);

        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data gen = copy_data(train);
        for (j = 0; j < imgs; ++j) {
            train.y.vals[j][0] = 1;
            gen.y.vals[j][0] = 0;
        }
        time=clock();

        for(j = 0; j < gnet->subdivisions; ++j){
            get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0);
            int z;
            for(z = 0; z < x_size; ++z){
                gnet->input[z] = rand_normal();
            }
            for(z = 0; z < gnet->batch; ++z){
                float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
                scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
            }
            /*
               for(z = 0; z < 100; ++z){
               printf("%f, ", gnet->input[z]);
               }
               printf("\n");
               printf("input: %f %f\n", mean_array(gnet->input, x_size), variance_array(gnet->input, x_size));
             */

            //cuda_push_array(gnet->input_gpu, gnet->input, x_size);
            //cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
            *gnet->seen += gnet->batch;
            forward_network(gnet);

            fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
            fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
            copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
            anet->delta_gpu = imerror;
            forward_network(anet);
            backward_network(anet);

            //float genaloss = *anet->cost / anet->batch;
            //printf("%f\n", genaloss);

            scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
            scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);

            //printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
            //printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch));

            axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);

            backward_network(gnet);

            /*
               for(k = 0; k < gnet->n; ++k){
               layer l = gnet->layers[k];
               cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
               printf("%d: %f %f\n", k, mean_array(l.output, l.outputs*l.batch), variance_array(l.output, l.outputs*l.batch));
               }
             */

            for(k = 0; k < gnet->batch; ++k){
                int index = j*gnet->batch + k;
                copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1);
            }
        }
        harmless_update_network_gpu(anet);

        data merge = concat_data(train, gen);
        //randomize_data(merge);
        float aloss = train_network(anet, merge);

        //translate_image(im, 1);
        //scale_image(im, .5);
        //translate_image(im2, 1);
        //scale_image(im2, .5);
#ifdef OPENCV
        if(display){
            image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
            image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
            show_image(im, "gen", 1);
            show_image(im2, "train", 1);
            save_image(im, "gen");
            save_image(im2, "train");
        }
#endif

        /*
           if(aloss < .1){
           anet->learning_rate = 0;
           } else if (aloss > .3){
           anet->learning_rate = orig_rate;
           }
         */

        update_network_gpu(gnet);

        free_data(merge);
        free_data(train);
        free_data(gen);
        if (aloss_avg < 0) aloss_avg = aloss;
        aloss_avg = aloss_avg*.9 + aloss*.1;

        printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
        if(i%10000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(gnet, buff);
#endif
    free_network(gnet);
    free_network(anet);
}