Exemple #1
0
static void print_chip_power(const sensors_chip_name *name,
			     const sensors_feature *feature,
			     int label_size)
{
	double val;
	const sensors_subfeature *sf;
	struct sensor_subfeature_data sensors[6];
	struct sensor_subfeature_data alarms[3];
	int sensor_count, alarm_count;
	char *label;
	const char *unit;
	int i;

	if (!(label = sensors_get_label(name, feature))) {
		fprintf(stderr, "ERROR: Can't get label of feature %s!\n",
			feature->name);
		return;
	}
	print_label(label, label_size);
	free(label);

	sensor_count = alarm_count = 0;

	/* Power sensors come in 2 flavors: instantaneous and averaged.
	   To keep things simple, we assume that each sensor only implements
	   one flavor. */
	sf = sensors_get_subfeature(name, feature,
				    SENSORS_SUBFEATURE_POWER_INPUT);
	get_sensor_limit_data(name, feature,
			      sf ? power_inst_sensors : power_avg_sensors,
			      sensors, ARRAY_SIZE(sensors), &sensor_count,
			      alarms, ARRAY_SIZE(alarms), &alarm_count);
	/* Add sensors common to both flavors. */
	get_sensor_limit_data(name, feature,
			      power_common_sensors,
			      sensors, ARRAY_SIZE(sensors), &sensor_count,
			      alarms, ARRAY_SIZE(alarms), &alarm_count);
	if (!sf)
		sf = sensors_get_subfeature(name, feature,
					    SENSORS_SUBFEATURE_POWER_AVERAGE);

	if (sf && get_input_value(name, sf, &val) == 0) {
		scale_value(&val, &unit);
		printf("%6.2f %sW  ", val, unit);
	} else
		printf("     N/A  ");

	for (i = 0; i < sensor_count; i++)
		scale_value(&sensors[i].value, &sensors[i].unit);

	print_limits(sensors, sensor_count, alarms, alarm_count,
		     label_size, "%s = %6.2f %sW");

	printf("\n");
}
Exemple #2
0
static void print_chip_energy(const sensors_chip_name *name,
			      const sensors_feature *feature,
			      int label_size)
{
	double val;
	const sensors_subfeature *sf;
	char *label;
	const char *unit;

	if (!(label = sensors_get_label(name, feature))) {
		fprintf(stderr, "ERROR: Can't get label of feature %s!\n",
			feature->name);
		return;
	}
	print_label(label, label_size);
	free(label);

	sf = sensors_get_subfeature(name, feature,
				    SENSORS_SUBFEATURE_ENERGY_INPUT);
	if (sf && get_input_value(name, sf, &val) == 0) {
		scale_value(&val, &unit);
		printf("%6.2f %sJ", val, unit);
	} else
		printf("     N/A");

	printf("\n");
}
Exemple #3
0
void read_socket() {
    char buf[5];
    int r,g,b;
    int rval;
    msgsock = accept(sock, 0, 0);
    if (msgsock != -1) {
        while (1) {
            bzero(buf, sizeof(buf));
            rval = read(msgsock, buf, 5);
            if (rval < 0) {
                perror("picolor: Error reading stream message");
                break;
            } else if (rval == 0) {
                break;
            } else if (buf[0] != 0) {
                r = (int)buf[1];
                g = (int)buf[2];
                b = (int)buf[3];
                delay_time = (int)buf[4];
                // Scale the values between the min and max
                r = scale_value(r, RED_MIN, RED_MAX);
                g = scale_value(g, GREEN_MIN, GREEN_MAX);
                b = scale_value(b, BLUE_MIN, BLUE_MAX);

                if (buf[0] == '\x42') {
                    set_target_color(r,g,b);
                } else if (buf[0] == '\x68') {
                    buf[0] = (char)red;
                    buf[1] = (char)green;
                    buf[2] = (char)blue;
                    buf[3] = 0;
                    write(msgsock, buf, 4);
                } else {
                    set_color(r,g,b);
                }
            }
        }
    }
    close(msgsock);
}
Exemple #4
0
static void print_chip_power(const sensors_chip_name *name,
			     const sensors_feature *feature,
			     int label_size)
{
	double val;
	const sensors_subfeature *sf;
	struct sensor_subfeature_data sensors[NUM_POWER_SENSORS];
	struct sensor_subfeature_data alarms[NUM_POWER_ALARMS];
	int sensor_count, alarm_count;
	char *label;
	const char *unit;
	int i;

	if (!(label = sensors_get_label(name, feature))) {
		fprintf(stderr, "ERROR: Can't get label of feature %s!\n",
			feature->name);
		return;
	}
	print_label(label, label_size);
	free(label);

	sensor_count = alarm_count = 0;

	/*
	 * Power sensors come in 2 flavors: instantaneous and averaged.
	 * Most devices only support one flavor, so we try to display the
	 * average power if the instantaneous power attribute does not exist.
	 * If both instantaneous power and average power are supported,
	 * average power is displayed as limit.
	 */
	sf = sensors_get_subfeature(name, feature,
				    SENSORS_SUBFEATURE_POWER_INPUT);
	get_sensor_limit_data(name, feature,
			      sf ? power_inst_sensors : power_avg_sensors,
			      sensors, &sensor_count, alarms, &alarm_count);
	/* Add sensors common to both flavors. */
	get_sensor_limit_data(name, feature, power_common_sensors,
			      sensors, &sensor_count, alarms, &alarm_count);
	if (!sf)
		sf = sensors_get_subfeature(name, feature,
					    SENSORS_SUBFEATURE_POWER_AVERAGE);

	if (sf && get_input_value(name, sf, &val) == 0) {
		scale_value(&val, &unit);
		printf("%6.2f %sW%*s", val, unit, 2 - (int)strlen(unit), "");
	} else
		printf("     N/A  ");

	for (i = 0; i < sensor_count; i++) {
		/*
		 * Unit is W and needs to be scaled for all attributes except
		 * interval, which does not need to be scaled and is reported in
		 * seconds.
		 */
		if (strcmp(sensors[i].name, "interval")) {
			char *tmpstr;

			tmpstr = alloca(4);
			scale_value(&sensors[i].value, &unit);
			snprintf(tmpstr, 4, "%sW", unit);
			sensors[i].unit = tmpstr;
		} else {
			sensors[i].unit = "s";
		}
	}
	print_limits(sensors, sensor_count, alarms, alarm_count,
		     label_size, "%s = %6.2f %s");

	printf("\n");
}
Exemple #5
0
int
uct_playout(struct uct *u, struct board *b, enum stone player_color, struct tree *t)
{
	struct board b2;
	board_copy(&b2, b);

	struct playout_amafmap amaf;
	amaf.gamelen = amaf.game_baselen = 0;

	/* Walk the tree until we find a leaf, then expand it and do
	 * a random playout. */
	struct tree_node *n = t->root;
	enum stone node_color = stone_other(player_color);
	assert(node_color == t->root_color);

	/* Make sure the root node is expanded. */
	if (tree_leaf_node(n) && !__sync_lock_test_and_set(&n->is_expanded, 1))
		tree_expand_node(t, n, &b2, player_color, u, 1);

	/* Tree descent history. */
	/* XXX: This is somewhat messy since @n and descent[dlen-1].node are
	 * redundant. */
	struct uct_descent descent[DESCENT_DLEN];
	descent[0].node = n; descent[0].lnode = NULL;
	int dlen = 1;
	/* Total value of the sequence. */
	struct move_stats seq_value = { .playouts = 0 };
	/* The last "significant" node along the descent (i.e. node
	 * with higher than configured number of playouts). For black
	 * and white. */
	struct tree_node *significant[2] = { NULL, NULL };
	if (n->u.playouts >= u->significant_threshold)
		significant[node_color - 1] = n;

	int result;
	int pass_limit = (board_size(&b2) - 2) * (board_size(&b2) - 2) / 2;
	int passes = is_pass(b->last_move.coord) && b->moves > 0;

	/* debug */
	static char spaces[] = "\0                                                      ";
	/* /debug */
	if (UDEBUGL(8))
		fprintf(stderr, "--- UCT walk with color %d\n", player_color);

	while (!tree_leaf_node(n) && passes < 2) {
		spaces[dlen - 1] = ' '; spaces[dlen] = 0;


		/*** Choose a node to descend to: */

		/* Parity is chosen already according to the child color, since
		 * it is applied to children. */
		node_color = stone_other(node_color);
		int parity = (node_color == player_color ? 1 : -1);

		assert(dlen < DESCENT_DLEN);
		descent[dlen] = descent[dlen - 1];
		if (u->local_tree && (!descent[dlen].lnode || descent[dlen].node->d >= u->tenuki_d)) {
			/* Start new local sequence. */
			/* Remember that node_color already holds color of the
			 * to-be-found child. */
			descent[dlen].lnode = node_color == S_BLACK ? t->ltree_black : t->ltree_white;
		}

		if (!u->random_policy_chance || fast_random(u->random_policy_chance))
			u->policy->descend(u->policy, t, &descent[dlen], parity, b2.moves > pass_limit);
		else
			u->random_policy->descend(u->random_policy, t, &descent[dlen], parity, b2.moves > pass_limit);


		/*** Perform the descent: */

		if (descent[dlen].node->u.playouts >= u->significant_threshold) {
			significant[node_color - 1] = descent[dlen].node;
		}

		seq_value.playouts += descent[dlen].value.playouts;
		seq_value.value += descent[dlen].value.value * descent[dlen].value.playouts;
		n = descent[dlen++].node;
		assert(n == t->root || n->parent);
		if (UDEBUGL(7))
			fprintf(stderr, "%s+-- UCT sent us to [%s:%d] %d,%f\n",
			        spaces, coord2sstr(node_coord(n), t->board),
				node_coord(n), n->u.playouts,
				tree_node_get_value(t, parity, n->u.value));

		/* Add virtual loss if we need to; this is used to discourage
		 * other threads from visiting this node in case of multiple
		 * threads doing the tree search. */
		if (u->virtual_loss)
			stats_add_result(&n->u, node_color == S_BLACK ? 0.0 : 1.0, u->virtual_loss);

		assert(node_coord(n) >= -1);
		record_amaf_move(&amaf, node_coord(n));

		struct move m = { node_coord(n), node_color };
		int res = board_play(&b2, &m);

		if (res < 0 || (!is_pass(m.coord) && !group_at(&b2, m.coord)) /* suicide */
		    || b2.superko_violation) {
			if (UDEBUGL(4)) {
				for (struct tree_node *ni = n; ni; ni = ni->parent)
					fprintf(stderr, "%s<%"PRIhash"> ", coord2sstr(node_coord(ni), t->board), ni->hash);
				fprintf(stderr, "marking invalid %s node %d,%d res %d group %d spk %d\n",
				        stone2str(node_color), coord_x(node_coord(n),b), coord_y(node_coord(n),b),
					res, group_at(&b2, m.coord), b2.superko_violation);
			}
			n->hints |= TREE_HINT_INVALID;
			result = 0;
			goto end;
		}

		if (is_pass(node_coord(n)))
			passes++;
		else
			passes = 0;

		enum stone next_color = stone_other(node_color);
		/* We need to make sure only one thread expands the node. If
		 * we are unlucky enough for two threads to meet in the same
		 * node, the latter one will simply do another simulation from
		 * the node itself, no big deal. t->nodes_size may exceed
		 * the maximum in multi-threaded case but not by much so it's ok.
		 * The size test must be before the test&set not after, to allow
		 * expansion of the node later if enough nodes have been freed. */
		if (tree_leaf_node(n)
		    && n->u.playouts - u->virtual_loss >= u->expand_p && t->nodes_size < u->max_tree_size
		    && !__sync_lock_test_and_set(&n->is_expanded, 1))
			tree_expand_node(t, n, &b2, next_color, u, -parity);
	}

	amaf.game_baselen = amaf.gamelen;

	if (t->use_extra_komi && u->dynkomi->persim) {
		b2.komi += round(u->dynkomi->persim(u->dynkomi, &b2, t, n));
	}

	if (passes >= 2) {
		/* XXX: No dead groups support. */
		floating_t score = board_official_score(&b2, NULL);
		/* Result from black's perspective (no matter who
		 * the player; black's perspective is always
		 * what the tree stores. */
		result = - (score * 2);

		if (UDEBUGL(5))
			fprintf(stderr, "[%d..%d] %s p-p scoring playout result %d (W %f)\n",
				player_color, node_color, coord2sstr(node_coord(n), t->board), result, score);
		if (UDEBUGL(6))
			board_print(&b2, stderr);

		board_ownermap_fill(&u->ownermap, &b2);

	} else { // assert(tree_leaf_node(n));
		/* In case of parallel tree search, the assertion might
		 * not hold if two threads chew on the same node. */
		result = uct_leaf_node(u, &b2, player_color, &amaf, descent, &dlen, significant, t, n, node_color, spaces);
	}

	if (u->policy->wants_amaf && u->playout_amaf_cutoff) {
		unsigned int cutoff = amaf.game_baselen;
		cutoff += (amaf.gamelen - amaf.game_baselen) * u->playout_amaf_cutoff / 100;
		amaf.gamelen = cutoff;
	}

	/* Record the result. */

	assert(n == t->root || n->parent);
	floating_t rval = scale_value(u, b, result);
	u->policy->update(u->policy, t, n, node_color, player_color, &amaf, &b2, rval);

	if (t->use_extra_komi) {
		stats_add_result(&u->dynkomi->score, result / 2, 1);
		stats_add_result(&u->dynkomi->value, rval, 1);
	}

	if (u->local_tree && n->parent && !is_pass(node_coord(n)) && dlen > 0) {
		/* Get the local sequences and record them in ltree. */
		/* We will look for sequence starts in our descent
		 * history, then run record_local_sequence() for each
		 * found sequence start; record_local_sequence() may
		 * pick longer sequences from descent history then,
		 * which is expected as it will create new lnodes. */
		enum stone seq_color = player_color;
		/* First move always starts a sequence. */
		record_local_sequence(u, t, &b2, descent, dlen, 1, seq_color);
		seq_color = stone_other(seq_color);
		for (int dseqi = 2; dseqi < dlen; dseqi++, seq_color = stone_other(seq_color)) {
			if (u->local_tree_allseq) {
				/* We are configured to record all subsequences. */
				record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
				continue;
			}
			if (descent[dseqi].node->d >= u->tenuki_d) {
				/* Tenuki! Record the fresh sequence. */
				record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
				continue;
			}
			if (descent[dseqi].lnode && !descent[dseqi].lnode) {
				/* Record result for in-descent picked sequence. */
				record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
				continue;
			}
		}
	}

end:
	/* We need to undo the virtual loss we added during descend. */
	if (u->virtual_loss) {
		floating_t loss = node_color == S_BLACK ? 0.0 : 1.0;
		for (; n->parent; n = n->parent) {
			stats_rm_result(&n->u, loss, u->virtual_loss);
			loss = 1.0 - loss;
		}
	}

	board_done_noalloc(&b2);
	return result;
}

int
uct_playouts(struct uct *u, struct board *b, enum stone color, struct tree *t, struct time_info *ti)
{
	int i;
	if (ti && ti->dim == TD_GAMES) {
		for (i = 0; t->root->u.playouts <= ti->len.games && !uct_halt; i++)
			uct_playout(u, b, color, t);
	} else {
		for (i = 0; !uct_halt; i++)
			uct_playout(u, b, color, t);
	}
	return i;
}