SkCodec* SkScaledCodec::NewFromStream(SkStream* stream) {
    bool isWebp = SkWebpCodec::IsWebp(stream);
    if (!stream->rewind()) {
        return NULL;
    }
    if (isWebp) {
        // Webp codec supports scaling and subsetting natively
        return SkWebpCodec::NewFromStream(stream);  
    }

    SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(SkScanlineDecoder::NewFromStream(stream));
    if (NULL == scanlineDecoder) {
        return NULL;
    }

    // wrap in new SkScaledCodec
    return SkNEW_ARGS(SkScaledCodec, (scanlineDecoder.detach()));
}
static void check(skiatest::Reporter* r,
                  const char path[],
                  SkISize size,
                  bool supportsScanlineDecoding,
                  bool supportsSubsetDecoding,
                  bool supports565 = true) {
    SkAutoTDelete<SkStream> stream(resource(path));
    if (!stream) {
        SkDebugf("Missing resource '%s'\n", path);
        return;
    }
    SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach()));
    if (!codec) {
        ERRORF(r, "Unable to decode '%s'", path);
        return;
    }

    // This test is used primarily to verify rewinding works properly.  Using kN32 allows
    // us to test this without the added overhead of creating different bitmaps depending
    // on the color type (ex: building a color table for kIndex8).  DM is where we test
    // decodes to all possible destination color types.
    SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType);
    REPORTER_ASSERT(r, info.dimensions() == size);

    {
        // Test decoding to 565
        SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType);
        SkCodec::Result expected = (supports565 && info.alphaType() == kOpaque_SkAlphaType) ?
                SkCodec::kSuccess : SkCodec::kInvalidConversion;
        test_info(r, codec, info565, expected, NULL);
    }

    SkBitmap bm;
    bm.allocPixels(info);
    SkAutoLockPixels autoLockPixels(bm);
    SkCodec::Result result =
        codec->getPixels(info, bm.getPixels(), bm.rowBytes(), NULL, NULL, NULL);
    REPORTER_ASSERT(r, result == SkCodec::kSuccess);

    SkMD5::Digest digest;
    md5(bm, &digest);

    // verify that re-decoding gives the same result.
    test_info(r, codec, info, SkCodec::kSuccess, &digest);

    {
        // Check alpha type conversions
        if (info.alphaType() == kOpaque_SkAlphaType) {
            test_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType),
                      SkCodec::kInvalidConversion, NULL);
            test_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType),
                      SkCodec::kInvalidConversion, NULL);
        } else {
            // Decoding to opaque should fail
            test_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType),
                      SkCodec::kInvalidConversion, NULL);
            SkAlphaType otherAt = info.alphaType();
            if (kPremul_SkAlphaType == otherAt) {
                otherAt = kUnpremul_SkAlphaType;
            } else {
                otherAt = kPremul_SkAlphaType;
            }
            // The other non-opaque alpha type should always succeed, but not match.
            test_info(r, codec, info.makeAlphaType(otherAt), SkCodec::kSuccess, NULL);
        }
    }

    // Scanline decoding follows.

    stream.reset(resource(path));
    SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(
            SkScanlineDecoder::NewFromStream(stream.detach()));
    if (supportsScanlineDecoding) {
        bm.eraseColor(SK_ColorYELLOW);
        REPORTER_ASSERT(r, scanlineDecoder);

        REPORTER_ASSERT(r, scanlineDecoder->start(info) == SkCodec::kSuccess);

        for (int y = 0; y < info.height(); y++) {
            result = scanlineDecoder->getScanlines(bm.getAddr(0, y), 1, 0);
            REPORTER_ASSERT(r, result == SkCodec::kSuccess);
        }
        // verify that scanline decoding gives the same result.
        compare_to_good_digest(r, digest, bm);
    } else {
        REPORTER_ASSERT(r, !scanlineDecoder);
    }

    // The rest of this function tests decoding subsets, and will decode an arbitrary number of
    // random subsets.
    // Do not attempt to decode subsets of an image of only once pixel, since there is no
    // meaningful subset.
    if (size.width() * size.height() == 1) {
        return;
    }

    SkRandom rand;
    SkIRect subset;
    SkCodec::Options opts;
    opts.fSubset = &subset;
    for (int i = 0; i < 5; i++) {
        subset = generate_random_subset(&rand, size.width(), size.height());
        SkASSERT(!subset.isEmpty());
        const bool supported = codec->getValidSubset(&subset);
        REPORTER_ASSERT(r, supported == supportsSubsetDecoding);

        SkImageInfo subsetInfo = info.makeWH(subset.width(), subset.height());
        SkBitmap bm;
        bm.allocPixels(subsetInfo);
        const SkCodec::Result result = codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes(),
                                                        &opts, NULL, NULL);

        if (supportsSubsetDecoding) {
            REPORTER_ASSERT(r, result == SkCodec::kSuccess);
            // Webp is the only codec that supports subsets, and it will have modified the subset
            // to have even left/top.
            REPORTER_ASSERT(r, SkIsAlign2(subset.fLeft) && SkIsAlign2(subset.fTop));
        } else {
            // No subsets will work.
            REPORTER_ASSERT(r, result == SkCodec::kUnimplemented);
        }
    }
}
Exemple #3
0
void SubsetZoomBench::onDraw(const int n, SkCanvas* canvas) {
    // When the color type is kIndex8, we will need to store the color table.  If it is
    // used, it will be initialized by the codec.
    int colorCount;
    SkPMColor colors[256];
    if (fUseCodec) {
        for (int count = 0; count < n; count++) {
            SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(
                    SkScanlineDecoder::NewFromStream(fStream->duplicate()));
            const SkImageInfo info = scanlineDecoder->getInfo().makeColorType(fColorType);
            SkAutoTDeleteArray<uint8_t> row(new uint8_t[info.minRowBytes()]);
            scanlineDecoder->start(info, nullptr, colors, &colorCount);

            const int centerX = info.width() / 2;
            const int centerY = info.height() / 2;
            int w = fSubsetWidth;
            int h = fSubsetHeight;
            do {
                const int subsetStartX = SkTMax(0, centerX - w / 2);
                const int subsetStartY = SkTMax(0, centerY - h / 2);
                const int subsetWidth = SkTMin(w, info.width() - subsetStartX);
                const int subsetHeight = SkTMin(h, info.height() - subsetStartY);
                // Note that if we subsetted and scaled in a single step, we could use the
                // same bitmap - as is often done in actual use cases.
                SkBitmap bitmap;
                SkImageInfo subsetInfo = info.makeWH(subsetWidth, subsetHeight);
                alloc_pixels(&bitmap, subsetInfo, colors, colorCount);

                uint32_t bpp = info.bytesPerPixel();
                scanlineDecoder->skipScanlines(subsetStartY);
                for (int y = 0; y < subsetHeight; y++) {
                    scanlineDecoder->getScanlines(row.get(), 1, 0);
                    memcpy(bitmap.getAddr(0, y), row.get() + subsetStartX * bpp,
                            subsetWidth * bpp);
                }
                w <<= 1;
                h <<= 1;
            } while (w < 2 * info.width() || h < 2 * info.height());
        }
    } else {
        for (int count = 0; count < n; count++) {
            int width, height;
            SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(fStream));
            decoder->buildTileIndex(fStream->duplicate(), &width, &height);

            const int centerX = width / 2;
            const int centerY = height / 2;
            int w = fSubsetWidth;
            int h = fSubsetHeight;
            do {
                const int subsetStartX = SkTMax(0, centerX - w / 2);
                const int subsetStartY = SkTMax(0, centerY - h / 2);
                const int subsetWidth = SkTMin(w, width - subsetStartX);
                const int subsetHeight = SkTMin(h, height - subsetStartY);
                SkBitmap bitmap;
                SkIRect rect = SkIRect::MakeXYWH(subsetStartX, subsetStartY, subsetWidth,
                        subsetHeight);
                decoder->decodeSubset(&bitmap, rect, fColorType);
                w <<= 1;
                h <<= 1;
            } while (w < 2 * width || h < 2 * height);
        }
    }
}
void SubsetTranslateBench::onDraw(const int n, SkCanvas* canvas) {
    // When the color type is kIndex8, we will need to store the color table.  If it is
    // used, it will be initialized by the codec.
    int colorCount;
    SkPMColor colors[256];
    if (fUseCodec) {
        for (int count = 0; count < n; count++) {
            SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(
                    SkScanlineDecoder::NewFromStream(fStream->duplicate()));
            const SkImageInfo info = scanlineDecoder->getInfo().makeColorType(fColorType);
            SkAutoTDeleteArray<uint8_t> row(new uint8_t[info.minRowBytes()]);
            scanlineDecoder->start(info, nullptr, colors, &colorCount);

            SkBitmap bitmap;
            // Note that we use the same bitmap for all of the subsets.
            // It might be larger than necessary for the end subsets.
            SkImageInfo subsetInfo = info.makeWH(fSubsetWidth, fSubsetHeight);
            alloc_pixels(&bitmap, subsetInfo, colors, colorCount);

            for (int x = 0; x < info.width(); x += fSubsetWidth) {
                for (int y = 0; y < info.height(); y += fSubsetHeight) {
                    scanlineDecoder->skipScanlines(y);
                    const uint32_t currSubsetWidth =
                            x + (int) fSubsetWidth > info.width() ?
                            info.width() - x : fSubsetWidth;
                    const uint32_t currSubsetHeight =
                            y + (int) fSubsetHeight > info.height() ?
                            info.height() - y : fSubsetHeight;
                    const uint32_t bpp = info.bytesPerPixel();
                    for (uint32_t y = 0; y < currSubsetHeight; y++) {
                        scanlineDecoder->getScanlines(row.get(), 1, 0);
                        memcpy(bitmap.getAddr(0, y), row.get() + x * bpp,
                                currSubsetWidth * bpp);
                    }
                }
            }
        }
    } else {
        // We create a color table here to satisfy allocPixels() when the output
        // type is kIndex8.  It's okay that this is uninitialized since we never
        // use it.
        SkColorTable* colorTable = new SkColorTable(colors, 0);
        for (int count = 0; count < n; count++) {
            int width, height;
            SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(fStream));
            decoder->buildTileIndex(fStream->duplicate(), &width, &height);
            SkBitmap bitmap;
            // Note that we use the same bitmap for all of the subsets.
            // It might be larger than necessary for the end subsets.
            // If we do not include this step, decodeSubset() would allocate space
            // for the pixels automatically, but this would not allow us to reuse the
            // same bitmap as the other subsets.  We want to reuse the same bitmap
            // because it gives a more fair comparison with SkCodec and is a common
            // use case of BitmapRegionDecoder.
            bitmap.allocPixels(SkImageInfo::Make(fSubsetWidth, fSubsetHeight,
                    fColorType, kOpaque_SkAlphaType), nullptr, colorTable);

            for (int x = 0; x < width; x += fSubsetWidth) {
                for (int y = 0; y < height; y += fSubsetHeight) {
                    const uint32_t currSubsetWidth = x + (int) fSubsetWidth > width ?
                            width - x : fSubsetWidth;
                    const uint32_t currSubsetHeight = y + (int) fSubsetHeight > height ?
                            height - y : fSubsetHeight;
                    SkIRect rect = SkIRect::MakeXYWH(x, y, currSubsetWidth,
                            currSubsetHeight);
                    decoder->decodeSubset(&bitmap, rect, fColorType);
                }
            }
        }
    }
}