/****************************************************************************
 * Name: up_unblock_task
 *
 * Description:
 *   A task is currently in an inactive task list
 *   but has been prepped to execute.  Move the TCB to the
 *   ready-to-run list, restore its context, and start execution.
 *
 * Inputs:
 *   tcb: Refers to the tcb to be unblocked.  This tcb is
 *     in one of the waiting tasks lists.  It must be moved to
 *     the ready-to-run list and, if it is the highest priority
 *     ready to run taks, executed.
 *
 ****************************************************************************/
void up_unblock_task(struct tcb_s *tcb)
{
    /* Verify that the context switch can be performed */
    if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
        (tcb->task_state > LAST_BLOCKED_STATE)) {
        warn("%s: task sched error\n", __func__);
        return;
    }
    else {
        struct tcb_s *rtcb = current_task;

        /* Remove the task from the blocked task list */
        sched_removeblocked(tcb);

        /* Reset its timeslice.  This is only meaningful for round
         * robin tasks but it doesn't here to do it for everything
         */
#if CONFIG_RR_INTERVAL > 0
        tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif
    
        // Add the task in the correct location in the prioritized
        // g_readytorun task list.
        if (sched_addreadytorun(tcb) && !up_interrupt_context()) {
            /* The currently active task has changed! */
            struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
            // context switch
            up_switchcontext(rtcb, nexttcb);
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
    /* Verify that the caller is sane */

    if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
        tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > UINT8_MIN
        || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
        || priority > SCHED_PRIORITY_MAX
#endif
        ) {
        warn("%s: task sched error\n", __func__);
        return;
    }
    else {
        struct tcb_s *rtcb = current_task;
        bool switch_needed;

        /* Remove the tcb task from the ready-to-run list.
         * sched_removereadytorun will return true if we just
         * remove the head of the ready to run list.
         */
        switch_needed = sched_removereadytorun(tcb);

        /* Setup up the new task priority */
        tcb->sched_priority = (uint8_t)priority;

        /* Return the task to the specified blocked task list.
         * sched_addreadytorun will return true if the task was
         * added to the new list.  We will need to perform a context
         * switch only if the EXCLUSIVE or of the two calls is non-zero
         * (i.e., one and only one the calls changes the head of the
         * ready-to-run list).
         */
        switch_needed ^= sched_addreadytorun(tcb);

        /* Now, perform the context switch if one is needed */
        if (switch_needed && !up_interrupt_context()) {
            struct tcb_s *nexttcb;
            // If there are any pending tasks, then add them to the g_readytorun
            // task list now. It should be the up_realease_pending() called from
            // sched_unlock() to do this for disable preemption. But it block 
            // itself, so it's OK.
            if (g_pendingtasks.head) {
                warn("Disable preemption failed for reprioritize task\n");
                sched_mergepending();
            }

            nexttcb = (struct tcb_s*)g_readytorun.head;
            // context switch
            up_switchcontext(rtcb, nexttcb);
        }
    }
}
Exemple #3
0
void up_unblock_task(struct tcb_s *tcb)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
      (tcb->task_state > LAST_BLOCKED_STATE))
    {
      warn("%s: task sched error\n", __func__);
      return;
    }
  else
    {
      struct tcb_s *rtcb = current_task;

      /* Remove the task from the blocked task list */

      sched_removeblocked(tcb);

      /* Add the task in the correct location in the prioritized
       * ready-to-run task list.
       */

      if (sched_addreadytorun(tcb) && !up_interrupt_context())
        {
          /* The currently active task has changed! */
          /* Update scheduler parameters */

          sched_suspend_scheduler(rtcb);

          /* Are we in an interrupt handler? */

          struct tcb_s *nexttcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.

          (void)group_addrenv(nexttcb);
#endif
          /* Update scheduler parameters */

          sched_resume_scheduler(nexttcb);

          /* context switch */

          up_switchcontext(rtcb, nexttcb);
        }
    }
}
void up_unblock_task(struct tcb_s *tcb)
{
  struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
         (tcb->task_state <= LAST_BLOCKED_STATE));

  /* Remove the task from the blocked task list */

  sched_removeblocked(tcb);

  /* Reset its timeslice.  This is only meaningful for round
   * robin tasks but it doesn't here to do it for everything
   */

#if CONFIG_RR_INTERVAL > 0
  tcb->timeslice = MSEC2TICK(CONFIG_RR_INTERVAL);
#endif

  /* Add the task in the correct location in the prioritized
   * g_readytorun task list
   */

  if (sched_addreadytorun(tcb))
    {
      /* The currently active task has changed! We need to do
       * a context switch to the new task.
       *
       * Are we in an interrupt handler?
       */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

          up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;

          /* Then switch contexts */

          up_restorestate(rtcb->xcp.regs);

#ifdef CONFIG_ARCH_ADDRENV
         /* Make sure that the address environment for the previously
          * running task is closed down gracefully (data caches dump,
          * MMU flushed) and set up the address environment for the new
          * thread at the head of the ready-to-run list.
          */

         (void)group_addrenv(rtcb);
#endif
        }

      /* We are not in an interrupt handler.  Copy the user C context
       * into the TCB of the task that was previously active.  if
       * up_saveusercontext returns a non-zero value, then this is really the
       * previously running task restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the new task that is ready to
           * run (probably tcb).  This is the new rtcb at the head of the
           * g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
         /* Make sure that the address environment for the previously
          * running task is closed down gracefully (data caches dump,
          * MMU flushed) and set up the address environment for the new
          * thread at the head of the ready-to-run list.
          */

         (void)group_addrenv(rtcb);
#endif
          /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC();
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      slldbg("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just removed the head
       * of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the ready-to-run task list. sched_addreadytorun
       * will return true if the task was added to the head of ready-to-run
       * list.  We will need to perform a context switch only if the
       * EXCLUSIVE or of the two calls is non-zero (i.e., one and only one
       * the calls changes the head of the ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed (i.e. if the head
       * of the ready-to-run list is no longer the same).
       */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

         /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_savestate(rtcb->xcp.regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;
              slldbg("New Active Task TCB=%p\n", rtcb);

              /* Then switch contexts */

              up_restorestate(rtcb->xcp.regs);
            }

          /* No, then we will need to perform the user context switch */

          else
            {
              /* Switch context to the context of the task at the head of the
               * ready to run list.
               */

              struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
              up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

              /* up_switchcontext forces a context switch to the task at the
               * head of the ready-to-run list.  It does not 'return' in the
               * normal sense.  When it does return, it is because the blocked
               * task is again ready to run and has execution priority.
               */
            }
        }
    }
}
void up_unblock_task(struct tcb_s *tcb)
{
  struct tcb_s *rtcb = this_task();

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
         (tcb->task_state <= LAST_BLOCKED_STATE));

  /* Remove the task from the blocked task list */

  sched_removeblocked(tcb);

  /* Add the task in the correct location in the prioritized
   * ready-to-run task list
   */

  if (sched_addreadytorun(tcb))
    {
      /* The currently active task has changed! We need to do
       * a context switch to the new task.
       */

      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Are we in an interrupt handler? */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

          up_copystate(rtcb->xcp.regs, current_regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          current_regs = rtcb->xcp.regs;
        }

      /* We are not in an interrupt handler.  Copy the user C context
       * into the TCB of the task that was previously active.  if
       * up_saveusercontext returns a non-zero value, then this is really the
       * previously running task restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the new task that is ready to
           * run (probably tcb).  This is the new rtcb at the head of the
           * ready-to-run task list.
           */

          rtcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
         /* Make sure that the address environment for the previously
          * running task is closed down gracefully (data caches dump,
          * MMU flushed) and set up the address environment for the new
          * thread at the head of the ready-to-run list.
          */

         (void)group_addrenv(rtcb);
#endif
          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
Exemple #7
0
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC();
    }
  else
    {
      FAR struct tcb_s *rtcb = this_task();
      bool switch_needed;

      sinfo("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

          /* Update scheduler parameters */

          sched_suspend_scheduler(rtcb);

          /* Copy the exception context into the TCB at the (old) head of the
           * ready-to-run Task list. if up_setjmp returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          if (!up_setjmp(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head
               * of the ready-to-run task list.
               */

              rtcb = this_task();
              sinfo("New Active Task TCB=%p\n", rtcb);

              /* The way that we handle signals in the simulation is kind of
               * a kludge.  This would be unsafe in a truly multi-threaded, interrupt
               * driven environment.
               */

              if (rtcb->xcp.sigdeliver)
                {
                  sinfo("Delivering signals TCB=%p\n", rtcb);
                  ((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
                  rtcb->xcp.sigdeliver = NULL;
                }

              /* Update scheduler parameters */

              sched_resume_scheduler(rtcb);

              /* Then switch contexts */

              up_longjmp(rtcb->xcp.regs, 1);
            }
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC(OSERR_BADREPRIORITIZESTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      slldbg("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

         /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_savestate(rtcb->xcp.regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;
              slldbg("New Active Task TCB=%p\n", rtcb);

              /* Then switch contexts */

              up_restorestate(rtcb->xcp.regs);
            }

          /* Copy the exception context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_saveusercontext returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;
              slldbg("New Active Task TCB=%p\n", rtcb);

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
Exemple #9
0
void up_unblock_task(struct tcb_s *tcb)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
      (tcb->task_state > LAST_BLOCKED_STATE))
    {
      PANIC(OSERR_BADUNBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

      /* Remove the task from the blocked task list */

      sched_removeblocked(tcb);

      /* Reset its timeslice.  This is only meaningful for round
       * robin tasks but it doesn't here to do it for everything
       */

#if CONFIG_RR_INTERVAL > 0
      tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif

      /* Add the task in the correct location in the prioritized
       * g_readytorun task list
       */

      if (sched_addreadytorun(tcb))
        {
          /* The currently active task has changed! We need to do
           * a context switch to the new task.
           *
           * Are we in an interrupt handler? 
           */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_copystate(rtcb->xcp.regs, current_regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              current_regs = rtcb->xcp.regs;
            }

          /* We are not in an interrupt handler.  Copy the user C context
           * into the TCB of the task that was previously active.  if 
           * up_saveusercontext returns a non-zero value, then this is really the
           * previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the new task that is ready to
               * run (probably tcb).  This is the new rtcb at the head of the
               * g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
void up_unblock_task(struct tcb_s *tcb)
{
  struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
         (tcb->task_state <= LAST_BLOCKED_STATE));

  /* Remove the task from the blocked task list */

  sched_removeblocked(tcb);

  /* Reset its timeslice.  This is only meaningful for round
   * robin tasks but it doesn't here to do it for everything
   */

#if CONFIG_RR_INTERVAL > 0
  tcb->timeslice = MSEC2TICK(CONFIG_RR_INTERVAL);
#endif

  /* Add the task in the correct location in the prioritized
   * g_readytorun task list
   */

  if (sched_addreadytorun(tcb))
    {
      /* The currently active task has changed! We need to do
       * a context switch to the new task.
       *
       * Are we in an interrupt handler?
       */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

          up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          up_restorestate(rtcb->xcp.regs);
        }

      /* No, then we will need to perform the user context switch */

      else
        {
          /* Restore the exception context of the new task that is ready to
           * run (probably tcb).  This is the new rtcb at the head of the
           * g_readytorun task list.
           */

          struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
         /* Make sure that the address environment for the previously
          * running task is closed down gracefully (data caches dump,
          * MMU flushed) and set up the address environment for the new
          * thread at the head of the ready-to-run list.
          */

         (void)group_addrenv(nexttcb);
#endif
          /* Then switch contexts */

          up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

          /* up_switchcontext forces a context switch to the task at the
           * head of the ready-to-run list.  It does not 'return' in the
           * normal sense.  When it does return, it is because the blocked
           * task is again ready to run and has execution priority.
           */
        }
    }
}
Exemple #11
0
void up_unblock_task(struct tcb_s *tcb)
{
  struct tcb_s *rtcb = this_task();

  /* Verify that the context switch can be performed */

  DEBUGASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
              (tcb->task_state <= LAST_BLOCKED_STATE));

  /* Remove the task from the blocked task list */

  sched_removeblocked(tcb);

  /* Add the task in the correct location in the prioritized
   * ready-to-run task list
   */

  if (sched_addreadytorun(tcb))
    {
      /* The currently active task has changed! We need to do
       * a context switch to the new task.
       */

      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Are we in an interrupt handler? */

      if (CURRENT_REGS)
        {
          /* Yes, then we have to do things differently.
           * Just copy the CURRENT_REGS into the OLD rtcb.
           */

          up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_restorestate(rtcb->xcp.regs);
        }

      /* No, then we will need to perform the user context switch */

      else
        {
          struct tcb_s *nexttcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(nexttcb);

          /* Switch context to the context of the task at the head of the
           * ready to run list.
           */

          up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

          /* up_switchcontext forces a context switch to the task at the
           * head of the ready-to-run list.  It does not 'return' in the
           * normal sense.  When it does return, it is because the blocked
           * task is again ready to run and has execution priority.
           */
        }
    }
}
Exemple #12
0
void up_unblock_task(FAR _TCB *tcb)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
      (tcb->task_state > LAST_BLOCKED_STATE))
    {
      PANIC(OSERR_BADUNBLOCKSTATE);
    }
  else
    {
      FAR _TCB *rtcb = (FAR _TCB*)g_readytorun.head;

      /* dbg("Unblocking TCB=%p\n", tcb); */

      /* Remove the task from the blocked task list */

      sched_removeblocked(tcb);

      /* Reset its timeslice.  This is only meaningful for round
       * robin tasks but it doesn't here to do it for everything
       */

#if CONFIG_RR_INTERVAL > 0
      tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif

      /* Add the task in the correct location in the prioritized
       * g_readytorun task list
       */

      if (sched_addreadytorun(tcb))
        {
          /* The currently active task has changed! We need to do
           * a context switch to the new task.
           *
           * Are we in an interrupt handler? 
           */

          if (IN_INTERRUPT)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current context into the OLD rtcb.
               */

               SAVE_IRQCONTEXT(rtcb);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (FAR _TCB*)g_readytorun.head;
              /* dbg("New Active Task TCB=%p\n", rtcb); */

              /* Then setup so that the context will be performed on exit
               * from the interrupt.
               */

              SET_IRQCONTEXT(rtcb);
            }

          /* We are not in an interrupt handler.  Copy the user C context
           * into the TCB of the task that was previously active.  if 
           * SAVE_USERCONTEXT returns a non-zero value, then this is really the
           * previously running task restarting!
           */

          else if (!SAVE_USERCONTEXT(rtcb))
            {
              /* Restore the exception context of the new task that is ready to
               * run (probably tcb).  This is the new rtcb at the head of the
               * g_readytorun task list.
               */

              rtcb = (FAR _TCB*)g_readytorun.head;
              /* dbg("New Active Task TCB=%p\n", rtcb); */

              /* Then switch contexts */

              RESTORE_USERCONTEXT(rtcb);
            }
        }
    }
}
Exemple #13
0
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > UINT8_MIN
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
      )
    {
      warn("%s: task sched error\n", __func__);
      return;
    }
  else
    {
      struct tcb_s *rtcb = current_task;
      bool switch_needed;

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed && !up_interrupt_context())
        {
          struct tcb_s *nexttcb;

          /* If there are any pending tasks, then add them to the ready-to-run
           * task list now. It should be the up_realease_pending() called from
           * sched_unlock() to do this for disable preemption. But it block
           * itself, so it's OK.
           */

          if (g_pendingtasks.head)
            {
              warn("Disable preemption failed for reprioritize task\n");
              sched_mergepending();
            }

          /* Update scheduler parameters */

          sched_suspend_scheduler(rtcb);

          /* Get the TCB of the new task to run */

          nexttcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(nexttcb);
#endif
          /* Update scheduler parameters */

          sched_resume_scheduler(nexttcb);

          /* context switch */

          up_switchcontext(rtcb, nexttcb);
        }
    }
}
void up_unblock_task(FAR struct tcb_s *tcb)
{
  FAR struct tcb_s *rtcb = this_task();

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
         (tcb->task_state <= LAST_BLOCKED_STATE));

  sdbg("Unblocking TCB=%p\n", tcb);

  /* Remove the task from the blocked task list */

  sched_removeblocked(tcb);

  /* Reset scheduler parameters */

  sched_resume_scheduler(tcb);

  /* Add the task in the correct location in the prioritized
   * ready-to-run task list
   */

  if (sched_addreadytorun(tcb))
    {
      /* The currently active task has changed! */
      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Copy the exception context into the TCB of the task that was
       * previously active.  if up_setjmp returns a non-zero value, then
       * this is really the previously running task restarting!
       */

      if (!up_setjmp(rtcb->xcp.regs))
        {
          /* Restore the exception context of the new task that is ready to
           * run (probably tcb).  This is the new rtcb at the head of the
           * ready-to-run task list.
           */

          rtcb = this_task();
          sdbg("New Active Task TCB=%p\n", rtcb);

          /* The way that we handle signals in the simulation is kind of
           * a kludge.  This would be unsafe in a truly multi-threaded, interrupt
           * driven environment.
           */

          if (rtcb->xcp.sigdeliver)
            {
              sdbg("Delivering signals TCB=%p\n", rtcb);
              ((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
              rtcb->xcp.sigdeliver = NULL;
            }

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_longjmp(rtcb->xcp.regs, 1);
       }
    }
}
Exemple #15
0
void up_unblock_task(struct tcb_s *tcb)
{
  /* Verify that the context switch can be performed */
  if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
      (tcb->task_state > LAST_BLOCKED_STATE))
    {
      PANIC(OSERR_BADUNBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

      sdbg("Unblocking TCB=%p\n", tcb);

     /* Remove the task from the blocked task list */

     sched_removeblocked(tcb);

     /* Reset its timeslice.  This is only meaningful for round
      * robin tasks but it doesn't here to do it for everything
      */

#if CONFIG_RR_INTERVAL > 0
     tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif

     /* Add the task in the correct location in the prioritized
      * g_readytorun task list
      */

     if (sched_addreadytorun(tcb))
       {
         /* The currently active task has changed! Copy the exception context
          * into the TCB of the task that was previously active.  if 
          * up_setjmp returns a non-zero value, then this is really the
          * previously running task restarting!
          */

         if (!up_setjmp(rtcb->xcp.regs))
           {
             /* Restore the exception context of the new task that is ready to
              * run (probably tcb).  This is the new rtcb at the head of the
              * g_readytorun task list.
              */

             rtcb = (struct tcb_s*)g_readytorun.head;
             sdbg("New Active Task TCB=%p\n", rtcb);

              /* The way that we handle signals in the simulation is kind of
               * a kludge.  This would be unsafe in a truly multi-threaded, interrupt
               * driven environment.
               */

              if (rtcb->xcp.sigdeliver)
                {
                  sdbg("Delivering signals TCB=%p\n", rtcb);
                  ((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
                  rtcb->xcp.sigdeliver = NULL;
                }

              /* Then switch contexts */

             up_longjmp(rtcb->xcp.regs, 1);
           }
       }
    }
}
int sched_setpriority(FAR struct tcb_s *tcb, int sched_priority)
{
  FAR struct tcb_s *rtcb = (FAR struct tcb_s*)g_readytorun.head;
  tstate_t task_state;
  irqstate_t saved_state;

  /* Verify that the requested priority is in the valid range */

  if (sched_priority < SCHED_PRIORITY_MIN ||
      sched_priority > SCHED_PRIORITY_MAX)
    {
      set_errno(EINVAL);
      return ERROR;
    }

  /* We need to assure that there there is no interrupt activity while
   * performing the following.
   */

  saved_state = irqsave();

  /* There are four cases that must be considered: */

  task_state = tcb->task_state;
  switch (task_state)
    {
      /* CASE 1. The task is running or ready-to-run and a context switch
       * may be caused by the re-prioritization
       */

      case TSTATE_TASK_RUNNING:

        /* A context switch will occur if the new priority of the running
         * task becomes less than OR EQUAL TO the next highest priority
         * ready to run task.
         */

        if (sched_priority <= tcb->flink->sched_priority)
          {
            /* A context switch will occur. */

            up_reprioritize_rtr(tcb, (uint8_t)sched_priority);
          }

        /* Otherwise, we can just change priority since it has no effect */

        else
          {
            /* Change the task priority */

            tcb->sched_priority = (uint8_t)sched_priority;
          }
        break;

      /* CASE 2. The task is running or ready-to-run and a context switch
       * may be caused by the re-prioritization
       */

      case TSTATE_TASK_READYTORUN:

        /* A context switch will occur if the new priority of the ready-to
         * run task is (strictly) greater than the current running task
         */

        if (sched_priority > rtcb->sched_priority)
          {
            /* A context switch will occur. */

            up_reprioritize_rtr(tcb, (uint8_t)sched_priority);
          }

        /* Otherwise, we can just change priority and re-schedule (since it
         * have no other effect).
         */

        else
          {
            /* Remove the TCB from the ready-to-run task list */

            ASSERT(!sched_removereadytorun(tcb));

            /* Change the task priority */

            tcb->sched_priority = (uint8_t)sched_priority;

            /* Put it back into the ready-to-run task list */

            ASSERT(!sched_addreadytorun(tcb));
          }
        break;

      /* CASE 3. The task is not in the ready to run list.  Changing its
       * Priority cannot effect the currently executing task.
       */

      default:

        /* CASE 3a. The task resides in a prioritized list. */

        if (g_tasklisttable[task_state].prioritized)
          {
            /* Remove the TCB from the prioritized task list */

            dq_rem((FAR dq_entry_t*)tcb, (FAR dq_queue_t*)g_tasklisttable[task_state].list);

            /* Change the task priority */

            tcb->sched_priority = (uint8_t)sched_priority;

            /* Put it back into the prioritized list at the correct
             * position
             */

            sched_addprioritized(tcb, (FAR dq_queue_t*)g_tasklisttable[task_state].list);
          }

        /* CASE 3b. The task resides in a non-prioritized list. */

        else
          {
            /* Just change the task's priority */

            tcb->sched_priority = (uint8_t)sched_priority;
          }
        break;
    }

  irqrestore(saved_state);
  return OK;
}
void up_reprioritize_rtr(FAR struct tcb_s *tcb, uint8_t priority)
{
    /* Verify that the caller is sane */

    if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
            tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
            || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
            || priority > SCHED_PRIORITY_MAX
#endif
       )
    {
        PANIC();
    }
    else
    {
        FAR struct tcb_s *rtcb = this_task();
        bool switch_needed;

        slldbg("TCB=%p PRI=%d\n", tcb, priority);

        /* Remove the tcb task from the ready-to-run list.
         * sched_removereadytorun will return true if we just
         * remove the head of the ready to run list.
         */

        switch_needed = sched_removereadytorun(tcb);

        /* Setup up the new task priority */

        tcb->sched_priority = (uint8_t)priority;

        /* Return the task to the specified blocked task list.
         * sched_addreadytorun will return true if the task was
         * added to the new list.  We will need to perform a context
         * switch only if the EXCLUSIVE or of the two calls is non-zero
         * (i.e., one and only one the calls changes the head of the
         * ready-to-run list).
         */

        switch_needed ^= sched_addreadytorun(tcb);

        /* Now, perform the context switch if one is needed */

        if (switch_needed)
        {
            /* If we are going to do a context switch, then now is the right
             * time to add any pending tasks back into the ready-to-run list.
             * task list now
             */

            if (g_pendingtasks.head)
            {
                sched_mergepending();
            }

            /* Update scheduler parameters */

            sched_suspend_scheduler(rtcb);

            /* Are we in an interrupt handler? */

            if (IN_INTERRUPT)
            {
                /* Yes, then we have to do things differently.
                 * Just copy the current context into the OLD rtcb.
                 */

                SAVE_IRQCONTEXT(rtcb);

                /* Restore the exception context of the rtcb at the (new) head
                 * of the ready-to-run task list.
                 */

                rtcb = this_task();

                /* Update scheduler parameters */

                sched_resume_scheduler(rtcb);

                /* Then setup so that the context will be performed on exit
                 * from the interrupt.
                 */

                SET_IRQCONTEXT(rtcb);
            }

            /* Copy the exception context into the TCB at the (old) head of the
             * ready-to-run Task list. if SAVE_USERCONTEXT returns a non-zero
             * value, then this is really the previously running task restarting!
             */

            else if (!SAVE_USERCONTEXT(rtcb))
            {
                /* Restore the exception context of the rtcb at the (new) head
                 * of the ready-to-run task list.
                 */

                rtcb = this_task();

                /* Update scheduler parameters */

                sched_resume_scheduler(rtcb);

                /* Then switch contexts */

                RESTORE_USERCONTEXT(rtcb);
            }
        }
    }
}
Exemple #18
0
void up_unblock_task(struct tcb_s *tcb)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
      (tcb->task_state > LAST_BLOCKED_STATE))
    {
      PANIC(OSERR_BADUNBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

      /* Remove the task from the blocked task list */

      sched_removeblocked(tcb);

      /* Reset its timeslice.  This is only meaningful for round
       * robin tasks but it doesn't here to do it for everything
       */

#if CONFIG_RR_INTERVAL > 0
      tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif

      /* Add the task in the correct location in the prioritized
       * g_readytorun task list
       */

      if (sched_addreadytorun(tcb))
        {
          /* The currently active task has changed! We need to do
           * a context switch to the new task.
           *
           * Are we in an interrupt handler? 
           */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_savestate(rtcb->xcp.regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              up_restorestate(rtcb->xcp.regs);
            }

          /* No, then we will need to perform the user context switch */

          else
            {
              /* Switch context to the context of the task at the head of the
               * ready to run list.
               */

               struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
               up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

              /* up_switchcontext forces a context switch to the task at the
               * head of the ready-to-run list.  It does not 'return' in the
               * normal sense.  When it does return, it is because the blocked
               * task is again ready to run and has execution priority.
               */
           }
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC();
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      slldbg("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

          /* Update scheduler parameters */

          sched_suspend_scheduler(rtcb);

          /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_savestate(rtcb->xcp.regs);

              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Update scheduler parameters */

              sched_resume_scheduler(rtcb);

              /* Then switch contexts.  Any necessary address environment
               * changes will be made when the interrupt returns.
               */

              up_restorestate(rtcb->xcp.regs);
            }

          /* Copy the exception context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_saveusercontext returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
              /* Make sure that the address environment for the previously
               * running task is closed down gracefully (data caches dump,
               * MMU flushed) and set up the address environment for the new
               * thread at the head of the ready-to-run list.
               */

              (void)group_addrenv(rtcb);
#endif
              /* Update scheduler parameters */

              sched_resume_scheduler(rtcb);

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}