Exemple #1
0
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) ||
      (tcb->task_state > LAST_READY_TO_RUN_STATE))
    {
      PANIC(OSERR_BADBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      /* Remove the tcb task from the ready-to-run list.  If we
       * are blocking the task at the head of the task list (the
       * most likely case), then a context switch to the next
       * ready-to-run task is needed. In this case, it should
       * also be true that rtcb == tcb.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Add the task to the specified blocked task list */

      sched_addblocked(tcb, (tstate_t)task_state);

      /* If there are any pending tasks, then add them to the g_readytorun
       * task list now
       */

      if (g_pendingtasks.head)
        {
          switch_needed |= sched_mergepending();
        }

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_copystate(rtcb->xcp.regs, current_regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              current_regs = rtcb->xcp.regs;
            }

          /* Copy the user C context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_saveusercontext returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC();
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      slldbg("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

         /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_savestate(rtcb->xcp.regs);

              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;
              slldbg("New Active Task TCB=%p\n", rtcb);

              /* Then switch contexts */

              up_restorestate(rtcb->xcp.regs);
            }

          /* Copy the exception context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_saveusercontext returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;
              slldbg("New Active Task TCB=%p\n", rtcb);

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
Exemple #3
0
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) ||
      (tcb->task_state > LAST_READY_TO_RUN_STATE))
    {
      PANIC(OSERR_BADBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      /* Remove the tcb task from the ready-to-run list.  If we
       * are blocking the task at the head of the task list (the
       * most likely case), then a context switch to the next
       * ready-to-run task is needed. In this case, it should
       * also be true that rtcb == tcb.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Add the task to the specified blocked task list */

      sched_addblocked(tcb, (tstate_t)task_state);

      /* If there are any pending tasks, then add them to the g_readytorun
       * task list now
       */

      if (g_pendingtasks.head)
        {
          switch_needed |= sched_mergepending();
        }

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_savestate(rtcb->xcp.regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              up_restorestate(rtcb->xcp.regs);
            }

          /* No, then we will need to perform the user context switch */

          else
            {
              /* Switch context to the context of the task at the head of the
               * ready to run list.
               */

               struct tcb_s *nexttcb = (struct tcb_s*)g_readytorun.head;
               up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

              /* up_switchcontext forces a context switch to the task at the
               * head of the ready-to-run list.  It does not 'return' in the
               * normal sense.  When it does return, it is because the blocked
               * task is again ready to run and has execution priority.
               */
           }
        }
    }
}
void up_release_pending(void)
{
  struct tcb_s *rtcb = this_task();

  sinfo("From TCB=%p\n", rtcb);

  /* Merge the g_pendingtasks list into the ready-to-run task list */

  /* sched_lock(); */
  if (sched_mergepending())
    {
      /* The currently active task has changed!  We will need to switch
       * contexts.
       */

      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Are we operating in interrupt context? */

      if (CURRENT_REGS)
        {
          /* Yes, then we have to do things differently. Just copy the
           * CURRENT_REGS into the OLD rtcb.
           */

           up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_restorestate(rtcb->xcp.regs);
        }

      /* No, then we will need to perform the user context switch */

      else
        {
          struct tcb_s *nexttcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(nexttcb);

          /* Switch context to the context of the task at the head of the
           * ready to run list.
           */

          up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

          /* up_switchcontext forces a context switch to the task at the
           * head of the ready-to-run list.  It does not 'return' in the
           * normal sense.  When it does return, it is because the blocked
           * task is again ready to run and has execution priority.
           */
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC();
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      sdbg("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

          /* Copy the exception context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_setjmp returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          if (!up_setjmp(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;
              sdbg("New Active Task TCB=%p\n", rtcb);

              /* The way that we handle signals in the simulation is kind of
               * a kludge.  This would be unsafe in a truly multi-threaded, interrupt
               * driven environment.
               */

              if (rtcb->xcp.sigdeliver)
                {
                  sdbg("Delivering signals TCB=%p\n", rtcb);
                  ((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
                  rtcb->xcp.sigdeliver = NULL;
                }

              /* Then switch contexts */

              up_longjmp(rtcb->xcp.regs, 1);
            }
        }
    }
}
void up_release_pending(void)
{
  struct tcb_s *rtcb = this_task();

  sinfo("From TCB=%p\n", rtcb);

  /* Merge the g_pendingtasks list into the ready-to-run task list */

  /* sched_lock(); */
  if (sched_mergepending())
    {
      /* The currently active task has changed!  We will need to switch
       * contexts.
       *
       * Update scheduler parameters.
       */

      sched_suspend_scheduler(rtcb);

      /* Are we operating in interrupt context? */

      if (g_current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the g_current_regs into the OLD rtcb.
           */

           up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          up_restorestate(rtcb->xcp.regs);
        }

      /* No, then we will need to perform the user context switch */

      else
        {
          /* Switch context to the context of the task at the head of the
           * ready to run list.
           */

          struct tcb_s *nexttcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(nexttcb);
#endif
          /* Update scheduler parameters */

          sched_resume_scheduler(nexttcb);

          /* Then switch contexs */

          up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

          /* up_switchcontext forces a context switch to the task at the
           * head of the ready-to-run list.  It does not 'return' in the
           * normal sense.  When it does return, it is because the blocked
           * task is again ready to run and has execution priority.
           */
        }
    }
}
Exemple #7
0
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  struct tcb_s *rtcb = this_task();
  bool switch_needed;

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_READY_TO_RUN_STATE) &&
         (tcb->task_state <= LAST_READY_TO_RUN_STATE));

  /* Remove the tcb task from the ready-to-run list.  If we
   * are blocking the task at the head of the task list (the
   * most likely case), then a context switch to the next
   * ready-to-run task is needed. In this case, it should
   * also be true that rtcb == tcb.
   */

  switch_needed = sched_removereadytorun(tcb);

  /* Add the task to the specified blocked task list */

  sched_addblocked(tcb, (tstate_t)task_state);

  /* If there are any pending tasks, then add them to the ready-to-run
   * task list now
   */

  if (g_pendingtasks.head)
    {
      switch_needed |= sched_mergepending();
    }

  /* Now, perform the context switch if one is needed */

  if (switch_needed)
    {
      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Are we in an interrupt handler? */

      if (g_current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the g_current_regs into the OLD rtcb.
           */

          up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Reset scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          up_restorestate(rtcb->xcp.regs);
        }

      /* No, then we will need to perform the user context switch */

      else
        {
          /* Get the context of the task at the head of the ready to
           * run list.
           */

          struct tcb_s *nexttcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(nexttcb);
#endif
          /* Reset scheduler parameters */

          sched_resume_scheduler(nexttcb);

          /* Then switch contexts */

          up_switchcontext(rtcb->xcp.regs, nexttcb->xcp.regs);

          /* up_switchcontext forces a context switch to the task at the
           * head of the ready-to-run list.  It does not 'return' in the
           * normal sense.  When it does return, it is because the blocked
           * task is again ready to run and has execution priority.
           */
        }
    }
}
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
  bool switch_needed;

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_READY_TO_RUN_STATE) &&
         (tcb->task_state <= LAST_READY_TO_RUN_STATE));

  /* Remove the tcb task from the ready-to-run list.  If we
   * are blocking the task at the head of the task list (the
   * most likely case), then a context switch to the next
   * ready-to-run task is needed. In this case, it should
   * also be true that rtcb == tcb.
   */

  switch_needed = sched_removereadytorun(tcb);

  /* Add the task to the specified blocked task list */

  sched_addblocked(tcb, (tstate_t)task_state);

  /* If there are any pending tasks, then add them to the g_readytorun
   * task list now
   */

  if (g_pendingtasks.head)
    {
      switch_needed |= sched_mergepending();
    }

  /* Now, perform the context switch if one is needed */

  if (switch_needed)
    {
      /* Are we in an interrupt handler? */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

          up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          up_restorestate(rtcb->xcp.regs);
        }

      /* Copy the user C context into the TCB at the (old) head of the
       * g_readytorun Task list. if up_saveusercontext returns a non-zero
       * value, then this is really the previously running task restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(rtcb);
#endif
          /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
void up_release_pending(void)
{
  struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

  slldbg("From TCB=%p\n", rtcb);

  /* Merge the g_pendingtasks list into the g_readytorun task list */

  /* sched_lock(); */
  if (sched_mergepending())
    {
      /* The currently active task has changed!  We will need to
       * switch contexts.  First check if we are operating in
       * interrupt context:
       */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

           up_savestate(rtcb->xcp.regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;
          slldbg("New Active Task TCB=%p\n", rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          up_restorestate(rtcb->xcp.regs);
        }

      /* Copy the exception context into the TCB of the task that
       * was currently active. if up_saveusercontext returns a non-zero
       * value, then this is really the previously running task
       * restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;
          slldbg("New Active Task TCB=%p\n", rtcb);

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(rtcb);
#endif
           /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
Exemple #10
0
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
  bool switch_needed;

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_READY_TO_RUN_STATE) &&
         (tcb->task_state <= LAST_READY_TO_RUN_STATE));

  sdbg("Blocking TCB=%p\n", tcb);

  /* Remove the tcb task from the ready-to-run list.  If we
   * are blocking the task at the head of the task list (the
   * most likely case), then a context switch to the next
   * ready-to-run task is needed. In this case, it should
   * also be true that rtcb == tcb.
   */

  switch_needed = sched_removereadytorun(tcb);

  /* Add the task to the specified blocked task list */

  sched_addblocked(tcb, (tstate_t)task_state);

  /* If there are any pending tasks, then add them to the g_readytorun
   * task list now
   */

  if (g_pendingtasks.head)
    {
      switch_needed |= sched_mergepending();
    }

  /* Now, perform the context switch if one is needed */

  if (switch_needed)
    {
      /* Copy the exception context into the TCB at the (old) head of the
       * g_readytorun Task list. if up_setjmp returns a non-zero
       * value, then this is really the previously running task restarting!
       */

      if (!up_setjmp(rtcb->xcp.regs))
        {
          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;
          sdbg("New Active Task TCB=%p\n", rtcb);

          /* The way that we handle signals in the simulation is kind of
           * a kludge.  This would be unsafe in a truly multi-threaded, interrupt
           * driven environment.
           */

          if (rtcb->xcp.sigdeliver)
            {
              sdbg("Delivering signals TCB=%p\n", rtcb);
              ((sig_deliver_t)rtcb->xcp.sigdeliver)(rtcb);
              rtcb->xcp.sigdeliver = NULL;
            }

          /* Then switch contexts */

          up_longjmp(rtcb->xcp.regs, 1);
        }
    }
}