Exemple #1
0
long int pcl_configure_clocks_osc0(pcl_freq_param_t *param)
{
  // Supported main clock sources: PCL_MC_OSC0

  // Supported synchronous clocks frequencies if OSC0 is the main clock source:
  // (these obviously depend on the OSC0 frequency; we'll take 16MHz as an example)
  // 16MHz, 8MHz, 4MHz, 2MHz, 1MHz, 500kHz, 250kHz, 125kHz, 62.5kHz.

  // NOTE: by default, this implementation doesn't perform thorough checks on the
  // input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.

  unsigned long               main_clock_freq;


#ifdef AVR32SFW_INPUT_CHECK
  // Verify that fCPU >= fPBx
  if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
    return(-1);
#endif

  main_clock_freq = param->osc0_f;
#ifdef AVR32SFW_INPUT_CHECK
  // Verify that the target frequencies are reachable.
  if((param->cpu_f > main_clock_freq) || (param->pba_f > main_clock_freq)
    || (param->pbb_f > main_clock_freq))
    return(-1);
#endif
  // Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.
  scif_configure_osc_crystalmode(SCIF_OSC0, main_clock_freq);
  // Enable the OSC0
  scif_enable_osc(SCIF_OSC0, param->osc0_startup, true);

  return(pcl_configure_synchronous_clocks(PM_CLK_SRC_OSC0, main_clock_freq, param));
}
long int pcl_switch_to_osc(pcl_osc_t osc, unsigned int fcrystal, unsigned int startup)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
  if(PCL_OSC0 == osc)
  {
    // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency,
    // enable the OSC0, set the main clock source as being OSC0.
    pm_switch_to_osc0(&AVR32_PM, fcrystal, startup);
  }
  else
  {
    return PCL_NOT_SUPPORTED;
  }
#else
// Implementation for UC3C, UC3L parts.
  #if AVR32_PM_VERSION_RESETVALUE < 0x400
    return PCL_NOT_SUPPORTED;
  #else
  if(PCL_OSC0 == osc)
  {
    // Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.
    scif_configure_osc_crystalmode(SCIF_OSC0, fcrystal);
    // Enable the OSC0
    scif_enable_osc(SCIF_OSC0, startup, true);
    // Set the Flash wait state and the speed read mode (depending on the target CPU frequency).
#if (( defined (__GNUC__) && ( defined (__AVR32_UC3L016__) || defined (__AVR32_UC3L032__) || defined (__AVR32_UC3L064__))) \
    ||(defined (__ICCAVR32__) && (defined (__AT32UC3L016__) || defined (__AT32UC3L032__) || defined (__AT32UC3L064__)  )))
    flashcdw_set_flash_waitstate_and_readmode(fcrystal);
#elif ( defined (__GNUC__) && ( defined (__AVR32_UC3C064C__) || defined (__AVR32_UC3C0128C__) || defined (__AVR32_UC3C0256C__) || defined (__AVR32_UC3C0512CREVC__) || defined (__AVR32_UC3C164C__) || defined (__AVR32_UC3C1128C__) || defined (__AVR32_UC3C1256C__) || defined (__AVR32_UC3C1512CREVC__) || defined (__AVR32_UC3C264C__) || defined (__AVR32_UC3C2128C__) || defined (__AVR32_UC3C2256C__) || defined (__AVR32_UC3C2512CREVC__))) \
  ||( defined (__ICCAVR32__) && ( defined (__AT32UC3C064C__) || defined (__AT32UC3C0128C__) || defined (__AT32UC3C0256C__) || defined (__AT32UC3C0512C__) || defined (__AT32UC3C164C__) || defined (__AT32UC3C1128C__) || defined (__AT32UC3C1256C__) || defined (__AT32UC3C1512C__) || defined (__AT32UC3C264C__) || defined (__AT32UC3C2128C__) || defined (__AT32UC3C2256C__) || defined (__AT32UC3C2512C__)))
    flashc_set_flash_waitstate_and_readmode(fcrystal);
#endif
    // Set the main clock source as being OSC0.
    pm_set_mclk_source(PM_CLK_SRC_OSC0);
  }
  else
  {
    return PCL_NOT_SUPPORTED;
  }
  #endif
#endif
  return PASS;
}
Exemple #3
0
/* \brief This is an example that shows:
 *  - how to configure OSC0
 *  - how to set the main clock to use OSC0 as input
 *  - how to configure a generic clock GCLK to use OSC0 as input
 *  - how to output a generic clock to a pin (GLCK_0_1 for EVK1100 or GCLK_2 for
 *    EVK1101 or GLCK_1_0 for EVK1104+UC3_A3_XPLAINED or GLCK_1_0 for STK600+RCUC3L0
      or GLCK_0 for STK600+RCUC3D)
 *  - how to go into a sleep mode (while still maintaining GCLK output)
 *
 */
int main(void)
{
	volatile avr32_pm_t* pm = &AVR32_PM;

#if ( BOARD == STK600_RCUC3L0 ) || ( BOARD == UC3C_EK ) || (BOARD == STK600_RCUC3D)
	// Note: for UC3 C, D and L series, the osc configurations are handled by the SCIF module
	// and the synchronous clocks used to clock the main digital logic are handled
	// by the PM module.
	// 1) Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
	scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);

	// 2) Enable the OSC0
	scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);

	// 3) Set the main clock source as being OSC0.
	pm_set_mclk_source(PM_CLK_SRC_OSC0);
#else
	// 1) Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
	pm_enable_osc0_crystal(pm, FOSC0);

	// 2) Enable the OSC0
	pm_enable_clk0(pm, OSC0_STARTUP);

	// 3) Set the main clock source as being OSC0.
	pm_switch_to_clock(pm, AVR32_PM_MCSEL_OSC0);
#endif

	// - Configure a generic clock GCLK to use OSC0 as input
	// - Output that generic clock to a pin
	local_enable_gclk_on_gpio(pm);

	//*** Sleep mode
	// If there is a chance that any PB write operations are incomplete, the CPU
	// should perform a read operation from any register on the PB bus before
	// executing the sleep instruction.
	AVR32_INTC.ipr[0];  // Dummy read

	// - Go into a sleep mode (while still maintaining GCLK output)
	SLEEP(AVR32_PM_SMODE_FROZEN);

	while (true);
}
static void clockfrequencies_configure(void)
{
#if UC3L
    static scif_gclk_opt_t gc_dfllif_ref_opt = { SCIF_GCCTRL_SLOWCLOCK, 0, false };
    static pcl_freq_param_t pcl_dfll_freq_param =
    {
      .main_clk_src = PCL_MC_DFLL0,
      .cpu_f        = EXAMPLE_MCUCLK_HZ,
      .pba_f        = EXAMPLE_MCUCLK_HZ,
      .pbb_f        = EXAMPLE_MCUCLK_HZ,
      .dfll_f       = EXAMPLE_FDFLL_HZ,
      .pextra_params = &gc_dfllif_ref_opt
    };
// Implementation for UC3L
    // Note: on the AT32UC3L-EK board, there is no crystal/external clock connected
    // to the OSC0 pinout XIN0/XOUT0. We shall then program the DFLL and switch the
    // main clock source to the DFLL.
    pcl_configure_clocks(&pcl_dfll_freq_param);
    // Note: since it is dynamically computing the appropriate field values of the
    // configuration registers from the parameters structure, this function is not
    // optimal in terms of code size. For a code size optimal solution, it is better
    // to create a new function from pcl_configure_clocks_dfll0() and modify it
    // to use preprocessor computation from pre-defined target frequencies.
#elif UC3C
    // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
    scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);
    // Enable the OSC0
    scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);
    // Set the main clock source as being OSC0.
    pm_set_mclk_source(PM_CLK_SRC_OSC0);

    scif_pll_opt_t opt;

    // Setup PLL0 on Osc0, mul=7 ,no divisor, lockcount=16: (16Mhzx8)/2 = 64MHz output
    opt.osc = SCIF_OSC0;     // Sel Osc0 or Osc1
    opt.lockcount = 16;      // lockcount in main clock for the PLL wait lock
    opt.div = 1;             // DIV=1 in the formula
    opt.mul = 7;             // MUL=7 in the formula
    opt.pll_div2 = 1;        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
    opt.pll_wbwdisable = 0;  //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
    opt.pll_freq = 1;        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.

    scif_pll_setup(SCIF_PLL0, &opt); // lockcount in main clock for the PLL wait lock

    /* Enable PLL0 */
    scif_pll_enable(SCIF_PLL0);

    /* Wait for PLL0 locked */
    scif_wait_for_pll_locked(SCIF_PLL0) ;

    // Divide PLL0 output by 2 for CPU, HSB and PBx clocks = 32MHz
    pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) 0); // CPU
    pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) 0); // HSB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) 0); // PBB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) 0); // PBA
    pm_set_clk_domain_div(PM_CLK_DOMAIN_4, (pm_divratio_t) 0); // PBC

    /* Set the main clock source as being PLL0. */
    pm_set_mclk_source(PM_CLK_SRC_PLL0);

#elif UC3D
    // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
    scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);
    // Enable the OSC0
    scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);
    // Set the main clock source as being OSC0.
    pm_set_mclk_source(PM_CLK_SRC_OSC0);

    scif_pll_opt_t opt;

    // Setup PLL0 on Osc0, mul=10 ,no divisor, lockcount=16: (12Mhzx11)/2 = 66MHz output
    opt.osc = SCIF_OSC0;     // Sel Osc0 or Osc1
    opt.lockcount = 16;      // lockcount in main clock for the PLL wait lock
    opt.div = 1;             // DIV=1 in the formula
    opt.mul = 10;            // MUL=10 in the formula
    opt.pll_div2 = 1;        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
    opt.pll_wbwdisable = 0;  // pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
    opt.pll_freq = 1;        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.

    scif_pll_setup(SCIF_PLL0, &opt); // lockcount in main clock for the PLL wait lock

    /* Enable PLL0 */
    scif_pll_enable(SCIF_PLL0);

    /* Wait for PLL0 locked */
    scif_wait_for_pll_locked(SCIF_PLL0) ;

    // Divide PLL0 output by 2 for CPU, HSB and PBx clocks = 33MHz
    pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) 0); // CPU
    pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) 0); // HSB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) 0); // PBB
    pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) 0); // PBA

    /* Set the main clock source as being PLL0. */
    pm_set_mclk_source(PM_CLK_SRC_PLL0);

#else // UC3A and UC3B series
  // Switch the main clock source to Osc0.
  pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);

  // Setup PLL0 on Osc0, mul=10 ,no divisor, lockcount=16: 12Mhzx11 = 132MHz output
  pm_pll_setup(&AVR32_PM, 0,  // pll.
               10,  // mul.
               1,   // div.
               0,   // osc.
               16); // lockcount.
  // PLL output VCO frequency is 132MHz.
  // We divide it by 2 with the pll_div2=1 to get a main clock at 66MHz.
  pm_pll_set_option(&AVR32_PM, 0, // pll.
                    1,  // pll_freq.
                    1,  // pll_div2.
                    0); // pll_wbwdisable.
  // Enable the PLL.
  pm_pll_enable(&AVR32_PM, 0);
  // Wait until the PLL output is stable.
  pm_wait_for_pll0_locked(&AVR32_PM);
  // Configure each clock domain to use the main clock divided by 2
  // => fCPU = fPBA = fPBB = 33MHz.
  pm_cksel(&AVR32_PM,
           1,   // pbadiv.
           0,   // pbasel.
           1,   // pbbdiv.
           0,   // pbbsel.
           1,   // hsbdiv=cpudiv
           0);  // hsbsel=cpusel
  // Switch the main clock source to PLL0.
  pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);
#endif
}
Exemple #5
0
static long int pcl_configure_clocks_uc3c(pcl_freq_param_t *param)
{
  #define PM_MAX_MUL                         ((1 << AVR32_SCIF_PLLMUL_SIZE) - 1)
  #define AVR32_PM_PBA_MAX_FREQ              66000000
  #define AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ   240000000
  #define AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ   160000000

    // Implementation for  UC3C parts.
        // Supported frequencies:
        // Fosc0 mul div PLL div2_en cpu_f pba_f   Comment
        //  12   15   1  192     1     12    12
        //  12    9   3   40     1     20    20    PLL out of spec
        //  12   15   1  192     1     24    12
        //  12    9   1  120     1     30    15
        //  12    9   3   40     0     40    20    PLL out of spec
        //  12   15   1  192     1     48    12
        //  12   15   1  192     1     48    24
        //  12    8   1  108     1     54    27
        //  12    9   1  120     1     60    15
        //  12    9   1  120     1     60    30
        //  12   10   1  132     1     66    16.5
        //
        unsigned long in_cpu_f  = param->cpu_f;
        unsigned long in_osc0_f = param->osc0_f;
        unsigned long mul, div, div2_en = 0, div2_cpu = 0, div2_pba = 0;
        unsigned long pll_freq, rest;
        Bool b_div2_pba, b_div2_cpu;

        // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
        scif_configure_osc_crystalmode(SCIF_OSC0, in_osc0_f);
        // Enable the OSC0
        scif_enable_osc(SCIF_OSC0, param->osc0_startup, true);
        // Set the main clock source as being OSC0.
        pm_set_mclk_source(PM_CLK_SRC_OSC0);

        // Start with CPU freq config
        if (in_cpu_f == in_osc0_f)
        {
          param->cpu_f = in_osc0_f;
          param->pba_f = in_osc0_f;
          return PASS;
        }
        else if (in_cpu_f < in_osc0_f)
        {
          // TBD
        }

        rest = in_cpu_f % in_osc0_f;

        for (div = 1; div < 32; div++)
        {
          if ((div * rest) % in_osc0_f == 0)
            break;
        }
        if (div == 32)
          return FAIL;

        mul = (in_cpu_f * div) / in_osc0_f;

        if (mul > PM_MAX_MUL)
          return FAIL;

        // export 2power from PLL div to div2_cpu
        while (!(div % 2))
        {
          div /= 2;
          div2_cpu++;
        }

        // Here we know the mul and div parameter of the PLL config.
        // . Check out if the PLL has a valid in_cpu_f.
        // . Try to have for the PLL frequency (VCO output) the highest possible value
        //   to reduce jitter.
        while (in_osc0_f * 2 * mul / div < AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ)
        {
          if (2 * mul > PM_MAX_MUL)
            break;
          mul *= 2;
          div2_cpu++;
        }

        if (div2_cpu != 0)
        {
          div2_cpu--;
          div2_en = 1;
        }

        pll_freq = in_osc0_f * mul / (div * (1 << div2_en));

        // Update real CPU Frequency
        param->cpu_f = pll_freq / (1 << div2_cpu);
        mul--;

        scif_pll_opt_t opt;

        opt.osc = SCIF_OSC0,     // Sel Osc0 or Osc1
        opt.lockcount = 16,      // lockcount in main clock for the PLL wait lock
        opt.div = div,             // DIV=1 in the formula
        opt.mul = mul,             // MUL=7 in the formula
        opt.pll_div2 = div2_en,        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
        opt.pll_wbwdisable = 0,  //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
        opt.pll_freq = (pll_freq < AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ) ? 1 : 0,        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.


        scif_pll_setup(SCIF_PLL0, opt); // lockcount in main clock for the PLL wait lock

        /* Enable PLL0 */
        scif_pll_enable(SCIF_PLL0);

        /* Wait for PLL0 locked */
        scif_wait_for_pll_locked(SCIF_PLL0) ;

        rest = pll_freq;
        while (rest > AVR32_PM_PBA_MAX_FREQ ||
               rest != param->pba_f)
        {
          div2_pba++;
          rest = pll_freq / (1 << div2_pba);
          if (rest < param->pba_f)
            break;
        }

        // Update real PBA Frequency
        param->pba_f = pll_freq / (1 << div2_pba);


        if (div2_cpu)
        {
          b_div2_cpu = TRUE;
          div2_cpu--;
        }
        else
          b_div2_cpu = FALSE;

        if (div2_pba)
        {
          b_div2_pba = TRUE;
          div2_pba--;
        }
        else
          b_div2_pba = FALSE;

        if (b_div2_cpu == TRUE )
        {
          pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) div2_cpu); // CPU
          pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) div2_cpu); // HSB
          pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) div2_cpu); // PBB
        }
        if (b_div2_pba == TRUE )
        {
          pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) div2_pba); // PBA
          pm_set_clk_domain_div(PM_CLK_DOMAIN_4, (pm_divratio_t) div2_pba); // PBC
        }

        // Set Flashc Wait State
        flashc_set_flash_waitstate_and_readmode(param->cpu_f);

        // Set the main clock source as being PLL0.
        pm_set_mclk_source(PM_CLK_SRC_PLL0);

        return PASS;
}
Exemple #6
0
/**
 * \brief  Detects extern OSC frequency and initialize system clocks on it
 */
void sysclk_auto_init(void)
{
	int mul;

	// Switch to OSC ISP
	// Set max startup time to make sure any crystal will be supported
	// We cannot use a TC to measure this OSC frequency
	// because the master clock must be faster than the clock selected by the TC

	// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.

	// Replace "scif_configure_osc_crystalmode(SCIF_OSC0, 16000000)" by
	// inline routine to safe code (160B)
	{
		u_avr32_scif_oscctrl0_t   u_avr32_scif_oscctrl0 = {AVR32_SCIF.oscctrl0};

		// Modify : Configure the oscillator mode to crystal and set the gain according to the
		// crystal frequency.
		u_avr32_scif_oscctrl0.OSCCTRL0.mode = SCIF_OSC_MODE_2PIN_CRYSTAL;
		u_avr32_scif_oscctrl0.OSCCTRL0.gain =
			(16000000 <  900000) ? AVR32_SCIF_OSCCTRL0_GAIN_G0 :
			(16000000 < 3000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G1 :
			(16000000 < 8000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G2 :
										  AVR32_SCIF_OSCCTRL0_GAIN_G3;
		AVR32_ENTER_CRITICAL_REGION( );
		// Unlock the write-protected OSCCTRL0 register
		SCIF_UNLOCK(AVR32_SCIF_OSCCTRL0);
		// Write Back
		AVR32_SCIF.oscctrl0 = u_avr32_scif_oscctrl0.oscctrl0;
		AVR32_LEAVE_CRITICAL_REGION( );
	}

	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, AVR32_SCIF_OSCCTRL0_STARTUP_16384_RCOSC, true);
	pm_set_mclk_source(PM_CLK_SRC_OSC0);

	// Initialize the AST with the internal RC oscillator
	// AST will count at the frequency of 115KHz/2
	if (!ast_init_counter(&AVR32_AST, AST_OSC_RC, 0, 0)) {
		while (1);
	}
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Detect the frequency
	switch (freq_detect_start()) {
	case 8000000:
		mul = 11;
		break;
	case 16000000:
		mul = 5;
		break;
	case 12000000:
	default:
		mul = 7;
		break;
	}

	scif_pll_opt_t opt;

	// Set PLL0 VCO @ 96 MHz
	// Set PLL0 @ 48 MHz
	opt.osc = SCIF_OSC0;
	opt.lockcount = 63;
	opt.div = 1;
	opt.mul = mul;
	opt.pll_div2 = 1;
	opt.pll_wbwdisable = 0;
	opt.pll_freq = 1;

	// lockcount in main clock for the PLL wait lock
	scif_pll0_setup((const scif_pll_opt_t *)&opt);

	/* Enable PLL0 */
	scif_pll0_enable();

	/* Wait for PLL0 locked */
	scif_wait_for_pll0_locked();

	// Configure and start the RC120Mhz internal oscillator.
	scif_start_rc120M();

	// Since our target is to set the CPU&HSB frequency domains to 30MHz, we must
	// set one wait-state and enable the High-speed read mode on the flash controller.
	flashcdw_set_flash_waitstate_and_readmode(30000000UL);

	// Set the CPU clock domain to 30MHz (by applying a division ratio = 4).
	pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_CPU, PM_CKSEL_DIVRATIO_4);

	// Set the PBA clock domain to 30MHz (by applying a division ratio = 4).
	pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBA, PM_CKSEL_DIVRATIO_4);

	// Set the PBB clock domain to 30MHz (by applying a division ratio = 4).
	pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBB, PM_CKSEL_DIVRATIO_4);

	// Set the main clock source to be DFLL0.
	pm_set_mclk_source(PM_CLK_SRC_RC120M);
}
Exemple #7
0
/*! \brief This is an example demonstrating the SPI mode of USART IP
 *         functionalities using the USART driver.
 */
int main(void)
{
#if BOARD == STK600_RCUC3D
	// Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
	scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);

	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);

	// Set the main clock source as being OSC0.
	pm_set_mclk_source(PM_CLK_SRC_OSC0);
#else
	// Switch main clock to external oscillator 0 (crystal).
	pm_switch_to_osc0(&AVR32_PM, FOSC0, OSC0_STARTUP);
#endif

	static const gpio_map_t USART_GPIO_MAP =
	{
		{EXAMPLE_USART_RX_PIN, EXAMPLE_USART_RX_FUNCTION},
		{EXAMPLE_USART_TX_PIN, EXAMPLE_USART_TX_FUNCTION}
	};

	static const usart_options_t USART_OPTIONS =
	{
		.baudrate     = 57600,
		.charlength   = 8,
		.paritytype   = USART_NO_PARITY,
		.stopbits     = USART_1_STOPBIT,
		.channelmode  = USART_NORMAL_CHMODE
	};

	// Assign GPIO to USART.
	gpio_enable_module(USART_GPIO_MAP,
		sizeof(USART_GPIO_MAP) / sizeof(USART_GPIO_MAP[0]));

	// Initialize USART in RS232 mode.
	usart_init_rs232(EXAMPLE_USART, &USART_OPTIONS, FOSC0);

	static const gpio_map_t USART_SPI_GPIO_MAP =
	{
		{EXAMPLE_USART_SPI_SCK_PIN,  EXAMPLE_USART_SPI_SCK_FUNCTION },
		{EXAMPLE_USART_SPI_MISO_PIN, EXAMPLE_USART_SPI_MISO_FUNCTION},
		{EXAMPLE_USART_SPI_MOSI_PIN, EXAMPLE_USART_SPI_MOSI_FUNCTION},
		{EXAMPLE_USART_SPI_NSS_PIN,  EXAMPLE_USART_SPI_NSS_FUNCTION }
	};

	static const usart_spi_options_t USART_SPI_OPTIONS =
	{
		.baudrate     = 60000,
		.charlength   = 8,
		.spimode      = 0,
		.channelmode  = USART_NORMAL_CHMODE
	};

	// Assign GPIO to SPI.
	gpio_enable_module(USART_SPI_GPIO_MAP,
		sizeof(USART_SPI_GPIO_MAP) / sizeof(USART_SPI_GPIO_MAP[0]));

	// Initialize USART in SPI mode.
	usart_init_spi_master(EXAMPLE_USART_SPI, &USART_SPI_OPTIONS, FOSC0);

	// Show startup message
	usart_write_line(EXAMPLE_USART, "Basic write in USART SPI Mode (press enter)\r\n");

	// Press enter to continue.
	while (usart_get_echo_line(EXAMPLE_USART) == USART_FAILURE);  // Get and echo characters until end of line.

	usart_write_line(EXAMPLE_USART, "Writing SPI test pattern.\r\n");

	while (true)
	{
		usart_spi_selectChip(EXAMPLE_USART_SPI);
		usart_putchar(EXAMPLE_USART_SPI, 0x55);
		usart_putchar(EXAMPLE_USART_SPI, 0xAA);
		usart_spi_unselectChip(EXAMPLE_USART_SPI);
	}
}
Exemple #8
0
/**
 * \brief  Detects extern OSC frequency and initialize system clocks on it
 */
void sysclk_auto_init(void)
{
	int mul;

	// Switch to OSC ISP
	// Set max startup time to make sure any crystal will be supported
	// We cannot use a TC to measure this OSC frequency
	// because the master clock must be faster than the clock selected by the TC

	// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.

	// Replace "scif_configure_osc_crystalmode(SCIF_OSC0, 16000000)" by
	// inline routine to safe code (160B)
	{
		typedef union
		{
			unsigned long                 oscctrl[2];
			avr32_scif_oscctrl_t          OSCCTRL[2];
		} u_avr32_scif_oscctrl_t;
		u_avr32_scif_oscctrl_t   u_avr32_scif_oscctrl;

		// Read Register
		u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0] = AVR32_SCIF.OSCCTRL[SCIF_OSC0] ;
		// Modify : Configure the oscillator mode to crystal and set the gain according to the
		// crystal frequency.
		u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0].mode = SCIF_OSC_MODE_2PIN_CRYSTAL;
		u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0].gain =
			(16000000 <  900000) ? AVR32_SCIF_OSCCTRL0_GAIN_G0 :
			(16000000 < 3000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G1 :
			(16000000 < 8000000) ? AVR32_SCIF_OSCCTRL0_GAIN_G2 :
										  AVR32_SCIF_OSCCTRL0_GAIN_G3;
		AVR32_ENTER_CRITICAL_REGION( );
		// Unlock the write-protected OSCCTRL0 register
		SCIF_UNLOCK(AVR32_SCIF_OSCCTRL);
		// Write Back
		AVR32_SCIF.OSCCTRL[SCIF_OSC0] = u_avr32_scif_oscctrl.OSCCTRL[SCIF_OSC0];
		AVR32_LEAVE_CRITICAL_REGION( );
	}

	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, AVR32_SCIF_OSCCTRL0_STARTUP_16384_RCOSC, true);
	flashc_set_flash_waitstate_and_readmode(16000000);
	pm_set_mclk_source(PM_CLK_SRC_OSC0);

	// Initialize the AST with the internal RC oscillator
	// AST will count at the frequency of 115KHz/2
	if (!ast_init_counter(&AVR32_AST, AST_OSC_RC, 0, 0)) {
		while (1);
	}
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Detect the frequency
	switch (freq_detect_start()) {
	case 8000000:
		mul = 5;
		break;
	case 16000000:
		mul = 2;
		break;
	case 12000000:
	default:
		mul = 3;
		break;
	}

	scif_pll_opt_t opt;

	// Set PLL0 VCO @ 96 MHz
	// Set PLL0 @ 48 MHz
	opt.osc = SCIF_OSC0;
	opt.lockcount = 63;
	opt.div = 0;
	opt.mul = mul;
	opt.pll_div2 = 1;
	opt.pll_wbwdisable = 0;
	opt.pll_freq = 1;

	// lockcount in main clock for the PLL wait lock
	scif_pll_setup(SCIF_PLL0, &opt);

	/* Enable PLL0 */
	scif_pll_enable(SCIF_PLL0);

	/* Wait for PLL0 locked */
	scif_wait_for_pll_locked(SCIF_PLL0);

	// Use 1 flash wait state
	flashc_set_wait_state(1);

	// Switch the main clock to PLL0
	pm_set_mclk_source(PM_CLK_SRC_PLL0);

	// fCPU: 48 MHz  // USBC request a CPU clock >25MHz
	// fPBA: 48 MHz
	// fHSB: 48 MHz
	// fPBB: 48 MHz must be the same that CPU
	// fPBC: 48 MHz
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_0);	// CPU
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_1);	// HSB
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_2);	// PBA
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_3);	// PBB
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_4);	// PBC

	// Use 0 flash wait state
	flashc_set_wait_state(1);
}
Exemple #9
0
/* \brief Start PLL0, switch main clock to PLL0 output.
 *
 *
 */
static void local_start_highfreq_clock(void)
{
#if BOARD == STK600_RCUC3L0 || BOARD == UC3L_EK
  scif_dfll_openloop_conf_t dfllconfig = {EXAMPLE_DFLL_FINE_FDFLL96, EXAMPLE_DFLL_COARSE_FDFLL96};

  // Configure and start the DFLL0 in open loop mode to generate a frequency of 96MHz.
  scif_dfll0_openloop_start(&dfllconfig);

  // Since our target is to set the CPU&HSB frequency domains to 48MHz, we must
  // set one wait-state and enable the High-speed read mode on the flash controller.
  flashcdw_set_flash_waitstate_and_readmode(EXAMPLE_CPUCLK_HZ);

  // Set the CPU clock domain to 48MHz (by applying a division ratio = 2).
  pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_CPU, PM_CKSEL_DIVRATIO_2);

  // Set the PBA clock domain to 24MHz (by applying a division ratio = 4).
  pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBA, PM_CKSEL_DIVRATIO_4);

  // Set the PBB clock domain to 48MHz (by applying a division ratio = 2).
  pm_set_clk_domain_div((pm_clk_domain_t)AVR32_PM_CLK_GRP_PBB, PM_CKSEL_DIVRATIO_2);

  // Set the main clock source to be DFLL0.
  pm_set_mclk_source(PM_CLK_SRC_DFLL0);
#elif BOARD == UC3C_EK || BOARD == STK600_RCUC3D

  scif_pll_opt_t opt;

  // Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
  scif_configure_osc_crystalmode(SCIF_OSC0, FOSC0);

  // Enable the OSC0
  scif_enable_osc(SCIF_OSC0, OSC0_STARTUP, true);

  // Set the main clock source as being OSC0.
  pm_set_mclk_source(PM_CLK_SRC_OSC0);

  opt.osc = SCIF_OSC0;     // Sel Osc0 or Osc1
  opt.lockcount = 16;      // lockcount in main clock for the PLL wait lock
  opt.div = 1;             // DIV=1 in the formula
  opt.mul = 5;             // MUL=6 in the formula
  opt.pll_div2 = 1;        // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
  opt.pll_wbwdisable = 0;  //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
  opt.pll_freq = 1;        // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.

  scif_pll_setup(SCIF_PLL0, &opt); // lockcount in main clock for the PLL wait lock

  /* Enable PLL0 */
  scif_pll_enable(SCIF_PLL0);

  /* Wait for PLL0 locked */
  scif_wait_for_pll_locked(SCIF_PLL0) ;

  /* Divide PBA clock by 2 from main clock (PBA clock = 48MHz/2 = 24MHz).
     Peripheral Bus A clock divisor enable = 1
     Peripheral Bus A select = 0
     Peripheral Bus B clock divisor enable = 0
     Peripheral Bus B select = 0
     High Speed Bus clock divisor enable = 0
     High Speed Bus select = 0
  */
  pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) 0); // PBA

  // Set one wait-state (WS) for flash controller. 0 WS access is up to 30MHz for HSB/CPU clock.
  // As we want to have 48MHz on HSB/CPU clock, we need to set 1 WS on flash controller.
#if UC3D
  flashcdw_set_wait_state(1);
#else
  flashc_set_wait_state(1);
#endif

  // Set the main clock source as being PLL0.
  pm_set_mclk_source(PM_CLK_SRC_PLL0);

#else
  volatile avr32_pm_t* pm = &AVR32_PM;
  /* \note All calculations here suppose that the Osc0 frequency is 12MHz. */

  pm_switch_to_osc0(pm, FOSC0, OSC0_STARTUP);  // Switch main clock to Osc0.

  /* Setup PLL0 on Osc0, mul=7 ,no divisor, lockcount=16, ie. 12Mhzx8 = 96MHz output */
  /*void pm_pll_setup(volatile avr32_pm_t* pm,
                  unsigned int pll,
                  unsigned int mul,
                  unsigned int div,
                  unsigned int osc,
                  unsigned int lockcount) {
   */
  pm_pll_setup(pm,
               0,   // use PLL0
               7,   // MUL=7 in the formula
               1,   // DIV=1 in the formula
               0,   // Sel Osc0/PLL0 or Osc1/PLL1
               16); // lockcount in main clock for the PLL wait lock

  /*
   This function will set a PLL option.
   *pm Base address of the Power Manager (i.e. &AVR32_PM)
   pll PLL number 0
   pll_freq Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
   pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
   pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
  */
  /* PLL output VCO frequency is 96MHz. We divide it by 2 with the pll_div2=1. This enable to get later main clock to 48MHz */
  pm_pll_set_option(pm, 0, 1, 1, 0);

  /* Enable PLL0 */
  /*
    void pm_pll_enable(volatile avr32_pm_t* pm,
                  unsigned int pll) {
  */
  pm_pll_enable(pm,0);

  /* Wait for PLL0 locked */
  pm_wait_for_pll0_locked(pm) ;

  /* Divide PBA clock by 2 from main clock (PBA clock = 48MHz/2 = 24MHz).
     Peripheral Bus A clock divisor enable = 1
     Peripheral Bus A select = 0
     Peripheral Bus B clock divisor enable = 0
     Peripheral Bus B select = 0
     High Speed Bus clock divisor enable = 0
     High Speed Bus select = 0
  */
  pm_cksel(pm, 1, 0, 0, 0, 0, 0);

  // Set one wait-state (WS) for flash controller. 0 WS access is up to 30MHz for HSB/CPU clock.
  // As we want to have 48MHz on HSB/CPU clock, we need to set 1 WS on flash controller.
  flashc_set_wait_state(1);

  pm_switch_to_clock(pm, AVR32_PM_MCSEL_PLL0); /* Switch main clock to 48MHz */
#endif
}
Exemple #10
0
/**
 * \brief  Detects extern OSC frequency and initialize system clocks on it
 */
void sysclk_auto_init(void)
{
	int mul;

	// Switch to OSC ISP
	// Set max startup time to make sure any crystal will be supported
	// We cannot use a TC to measure this OSC frequency
	// because the master clock must be faster than the clock selected by the TC

	// Configure OSC0 in crystal mode, external crystal
	// with a fcrystal Hz frequency.
	scif_configure_osc_crystalmode(SCIF_OSC0, 12000000);
	// Enable the OSC0
	scif_enable_osc(SCIF_OSC0, AVR32_SCIF_OSCCTRL0_STARTUP_16384_RCOSC,
			true);
	flashcdw_set_flash_waitstate_and_readmode(12000000);
	pm_set_mclk_source(PM_CLK_SRC_OSC0);

	// Initialize the AST with the internal RC oscillator
	// AST will count at the frequency of 115KHz/2
	if (!ast_init_counter(&AVR32_AST, AST_OSC_RC, 0, 0)) {
		while (1);
	}
	// Enable the AST
	ast_enable(&AVR32_AST);

	// Detect the frequency
	switch (freq_detect_start()) {
	case 8000000:
		mul = 5;
		break;
	case 16000000:
		mul = 2;
		break;
	case 12000000:
	default:
		mul = 3;
		break;
	}

	scif_pll_opt_t opt;

	// Set PLL0 VCO @ 96 MHz
	// Set PLL0 @ 48 MHz
	opt.osc = SCIF_OSC0;
	opt.lockcount = 63;
	opt.div = 0;
	opt.mul = mul;
	opt.pll_div2 = 1;
	opt.pll_wbwdisable = 0;
	opt.pll_freq = 1;

	// lockcount in main clock for the PLL wait lock
	scif_pll_setup(SCIF_PLL0, &opt);

	/* Enable PLL0 */
	scif_pll_enable(SCIF_PLL0);

	/* Wait for PLL0 locked */
	scif_wait_for_pll_locked(SCIF_PLL0);

	// Use 1 flash wait state
	flashcdw_set_wait_state(1);

	// Switch the main clock to PLL0
	pm_set_mclk_source(PM_CLK_SRC_PLL0);

	// fCPU: 48 MHz  // USBC request a CPU clock >25MHz
	// fHSB: 48 MHz
	// fPBA: 48 MHz
	// fPBB: 48 MHz
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_0);	// CPU
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_1);	// HSB
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_2);	// PBA
	pm_disable_clk_domain_div(PM_CLK_DOMAIN_3);	// PBB

	// Use 0 flash wait state
	flashcdw_set_wait_state(1);
}