Exemple #1
0
/* Reallocate the sds string so that it has no free space at the end. The
 * contained string remains not altered, but next concatenation operations
 * will require a reallocation.
 *
 * After the call, the passed sds string is no longer valid and all the
 * references must be substituted with the new pointer returned by the call. */
sds sdsRemoveFreeSpace(sds s) {
    void *sh, *newsh;
    char type, oldtype = s[-1] & SDS_TYPE_MASK;
    int hdrlen, oldhdrlen = sdsHdrSize(oldtype);
    size_t len = sdslen(s);
    sh = (char*)s-oldhdrlen;

    /* Check what would be the minimum SDS header that is just good enough to
     * fit this string. */
    type = sdsReqType(len);
    hdrlen = sdsHdrSize(type);

    /* If the type is the same, or at least a large enough type is still
     * required, we just realloc(), letting the allocator to do the copy
     * only if really needed. Otherwise if the change is huge, we manually
     * reallocate the string to use the different header type. */
    if (oldtype==type || type > SDS_TYPE_8) {
        newsh = s_realloc(sh, oldhdrlen+len+1);
        if (newsh == NULL) return NULL;
        s = (char*)newsh+oldhdrlen;
    } else {
        newsh = s_malloc(hdrlen+len+1);
        if (newsh == NULL) return NULL;
        memcpy((char*)newsh+hdrlen, s, len+1);
        s_free(sh);
        s = (char*)newsh+hdrlen;
        s[-1] = type;
        sdssetlen(s, len);
    }
    sdssetalloc(s, len);
    return s;
}
Exemple #2
0
/* Reallocate the sds string so that it has no free space at the end. The
 * contained string remains not altered, but next concatenation operations
 * will require a reallocation.
 *
 * After the call, the passed sds string is no longer valid and all the
 * references must be substituted with the new pointer returned by the call. */
sds sdsRemoveFreeSpace(sds s) {
    void *sh, *newsh;
    char type, oldtype = s[-1] & SDS_TYPE_MASK;
    int hdrlen;
    size_t len = sdslen(s);
    sh = (char*)s-sdsHdrSize(oldtype);

    type = sdsReqType(len);
    hdrlen = sdsHdrSize(type);
    if (oldtype==type) {
        newsh = s_realloc(sh, hdrlen+len+1);
        if (newsh == NULL) return NULL;
        s = (char*)newsh+hdrlen;
    } else {
        newsh = s_malloc(hdrlen+len+1);
        if (newsh == NULL) return NULL;
        memcpy((char*)newsh+hdrlen, s, len+1);
        s_free(sh);
        s = (char*)newsh+hdrlen;
        s[-1] = type;
        sdssetlen(s, len);
    }
    sdssetalloc(s, len);
    return s;
}
Exemple #3
0
/* Destructively modify the sds string 's' to hold the specified binary
 * safe string pointed by 't' of length 'len' bytes. */
sds sdscpylen(sds s, const char *t, size_t len) {
    if (sdsalloc(s) < len) {
        s = sdsMakeRoomFor(s,len-sdslen(s));
        if (s == NULL) return NULL;
    }
    memcpy(s, t, len);
    s[len] = '\0';
    sdssetlen(s, len);
    return s;
}
Exemple #4
0
/* Append the specified binary-safe string pointed by 't' of 'len' bytes to the
 * end of the specified sds string 's'.
 *
 * After the call, the passed sds string is no longer valid and all the
 * references must be substituted with the new pointer returned by the call. */
sds sdscatlen(sds s, const void *t, size_t len) {
    size_t curlen = sdslen(s);

    s = sdsMakeRoomFor(s,len);
    if (s == NULL) return NULL;
    memcpy(s+curlen, t, len);
    sdssetlen(s, curlen+len);
    s[curlen+len] = '\0';
    return s;
}
Exemple #5
0
/* Grow the sds to have the specified length. Bytes that were not part of
 * the original length of the sds will be set to zero.
 *
 * if the specified length is smaller than the current length, no operation
 * is performed. */
sds sdsgrowzero(sds s, size_t len) {
    size_t curlen = sdslen(s);

    if (len <= curlen) return s;
    s = sdsMakeRoomFor(s,len-curlen);
    if (s == NULL) return NULL;

    /* Make sure added region doesn't contain garbage */
    memset(s+curlen,0,(len-curlen+1)); /* also set trailing \0 byte */
    sdssetlen(s, len);
    return s;
}
Exemple #6
0
/* Enlarge the free space at the end of the sds string so that the caller
 * is sure that after calling this function can overwrite up to addlen
 * bytes after the end of the string, plus one more byte for nul term.
 *
 * Note: this does not change the *length* of the sds string as returned
 * by sdslen(), but only the free buffer space we have. */
sds sdsMakeRoomFor(sds s, size_t addlen) {
    void *sh, *newsh;
    size_t avail = sdsavail(s);
    size_t len, newlen;
    char type, oldtype = s[-1] & SDS_TYPE_MASK;
    int hdrlen;

    /* Return ASAP if there is enough space left. */
    if (avail >= addlen) return s;

    len = sdslen(s);
    sh = (char*)s-sdsHdrSize(oldtype);
    newlen = (len+addlen);
    if (newlen < SDS_MAX_PREALLOC)
        newlen *= 2;
    else
        newlen += SDS_MAX_PREALLOC;

    type = sdsReqType(newlen);

    /* Don't use type 5: the user is appending to the string and type 5 is
     * not able to remember empty space, so sdsMakeRoomFor() must be called
     * at every appending operation. */
    if (type == SDS_TYPE_5) type = SDS_TYPE_8;

    hdrlen = sdsHdrSize(type);
    if (oldtype==type) {
        newsh = s_realloc(sh, hdrlen+newlen+1);
        if (newsh == NULL) return NULL;
        s = (char*)newsh+hdrlen;
    } else {
        /* Since the header size changes, need to move the string forward,
         * and can't use realloc */
        newsh = s_malloc(hdrlen+newlen+1);
        if (newsh == NULL) return NULL;
        memcpy((char*)newsh+hdrlen, s, len+1);
        s_free(sh);
        s = (char*)newsh+hdrlen;
        s[-1] = type;
        sdssetlen(s, len);
    }
    sdssetalloc(s, newlen);
    return s;
}
Exemple #7
0
/* Modify an sds string in-place to make it empty (zero length).
 * However all the existing buffer is not discarded but set as free space
 * so that next append operations will not require allocations up to the
 * number of bytes previously available. */
void sdsclear(sds s) {
    sdssetlen(s, 0);
    s[0] = '\0';
}
Exemple #8
0
/* Set the sds string length to the length as obtained with strlen(), so
 * considering as content only up to the first null term character.
 *
 * This function is useful when the sds string is hacked manually in some
 * way, like in the following example:
 *
 * s = sdsnew("foobar");
 * s[2] = '\0';
 * sdsupdatelen(s);
 * printf("%d\n", sdslen(s));
 *
 * The output will be "2", but if we comment out the call to sdsupdatelen()
 * the output will be "6" as the string was modified but the logical length
 * remains 6 bytes. */
void sdsupdatelen(sds s) {
    int reallen = strlen(s);
    sdssetlen(s, reallen);
}
Exemple #9
0
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
    int j, k, count;
    dictEntry *samples[server.maxmemory_samples];

    count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
    for (j = 0; j < count; j++) {
        unsigned long long idle;
        sds key;
        robj *o;
        dictEntry *de;

        de = samples[j];
        key = dictGetKey(de);
        /* If the dictionary we are sampling from is not the main
         * dictionary (but the expires one) we need to lookup the key
         * again in the key dictionary to obtain the value object. */
        if (sampledict != keydict) de = dictFind(keydict, key);
        o = dictGetVal(de);
        idle = estimateObjectIdleTime(o);

        /* Insert the element inside the pool.
         * First, find the first empty bucket or the first populated
         * bucket that has an idle time smaller than our idle time. */
        k = 0;
        while (k < EVPOOL_SIZE &&
               pool[k].key &&
               pool[k].idle < idle) k++;
        if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
            /* Can't insert if the element is < the worst element we have
             * and there are no empty buckets. */
            continue;
        } else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
            /* Inserting into empty position. No setup needed before insert. */
        } else {
            /* Inserting in the middle. Now k points to the first element
             * greater than the element to insert.  */
            if (pool[EVPOOL_SIZE-1].key == NULL) {
                /* Free space on the right? Insert at k shifting
                 * all the elements from k to end to the right. */

                /* Save SDS before overwriting. */
                sds cached = pool[EVPOOL_SIZE-1].cached;
                memmove(pool+k+1,pool+k,
                    sizeof(pool[0])*(EVPOOL_SIZE-k-1));
                pool[k].cached = cached;
            } else {
                /* No free space on right? Insert at k-1 */
                k--;
                /* Shift all elements on the left of k (included) to the
                 * left, so we discard the element with smaller idle time. */
                sds cached = pool[0].cached; /* Save SDS before overwriting. */
                if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
                memmove(pool,pool+1,sizeof(pool[0])*k);
                pool[k].cached = cached;
            }
        }

        /* Try to reuse the cached SDS string allocated in the pool entry,
         * because allocating and deallocating this object is costly
         * (according to the profiler, not my fantasy. Remember:
         * premature optimizbla bla bla bla. */
        int klen = sdslen(key);
        if (klen > EVPOOL_CACHED_SDS_SIZE) {
            pool[k].key = sdsdup(key);
        } else {
            memcpy(pool[k].cached,key,klen+1);
            sdssetlen(pool[k].cached,klen);
            pool[k].key = pool[k].cached;
        }
        pool[k].idle = idle;
        pool[k].dbid = dbid;
    }
}
Exemple #10
0
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
    int j, k, count;
    dictEntry *samples[server.maxmemory_samples];

    count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
    for (j = 0; j < count; j++) {
        unsigned long long idle;
        sds key;
        robj *o;
        dictEntry *de;

        de = samples[j];
        key = dictGetKey(de);

        /* If the dictionary we are sampling from is not the main
         * dictionary (but the expires one) we need to lookup the key
         * again in the key dictionary to obtain the value object. */
        if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
            if (sampledict != keydict) de = dictFind(keydict, key);
            o = dictGetVal(de);
        }

        /* Calculate the idle time according to the policy. This is called
         * idle just because the code initially handled LRU, but is in fact
         * just a score where an higher score means better candidate. */
        if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
            idle = estimateObjectIdleTime(o);
        } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
            /* When we use an LRU policy, we sort the keys by idle time
             * so that we expire keys starting from greater idle time.
             * However when the policy is an LFU one, we have a frequency
             * estimation, and we want to evict keys with lower frequency
             * first. So inside the pool we put objects using the inverted
             * frequency subtracting the actual frequency to the maximum
             * frequency of 255. */
            idle = 255-LFUDecrAndReturn(o);
        } else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
            /* In this case the sooner the expire the better. */
            idle = ULLONG_MAX - (long)dictGetVal(de);
        } else {
            serverPanic("Unknown eviction policy in evictionPoolPopulate()");
        }

        /* Insert the element inside the pool.
         * First, find the first empty bucket or the first populated
         * bucket that has an idle time smaller than our idle time. */
        k = 0;
        while (k < EVPOOL_SIZE &&
               pool[k].key &&
               pool[k].idle < idle) k++;
        if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
            /* Can't insert if the element is < the worst element we have
             * and there are no empty buckets. */
            continue;
        } else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
            /* Inserting into empty position. No setup needed before insert. */
        } else {
            /* Inserting in the middle. Now k points to the first element
             * greater than the element to insert.  */
            if (pool[EVPOOL_SIZE-1].key == NULL) {
                /* Free space on the right? Insert at k shifting
                 * all the elements from k to end to the right. */

                /* Save SDS before overwriting. */
                sds cached = pool[EVPOOL_SIZE-1].cached;
                memmove(pool+k+1,pool+k,
                    sizeof(pool[0])*(EVPOOL_SIZE-k-1));
                pool[k].cached = cached;
            } else {
                /* No free space on right? Insert at k-1 */
                k--;
                /* Shift all elements on the left of k (included) to the
                 * left, so we discard the element with smaller idle time. */
                sds cached = pool[0].cached; /* Save SDS before overwriting. */
                if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
                memmove(pool,pool+1,sizeof(pool[0])*k);
                pool[k].cached = cached;
            }
        }

        /* Try to reuse the cached SDS string allocated in the pool entry,
         * because allocating and deallocating this object is costly
         * (according to the profiler, not my fantasy. Remember:
         * premature optimizbla bla bla bla. */
        int klen = sdslen(key);
        if (klen > EVPOOL_CACHED_SDS_SIZE) {
            pool[k].key = sdsdup(key);
        } else {
            memcpy(pool[k].cached,key,klen+1);
            sdssetlen(pool[k].cached,klen);
            pool[k].key = pool[k].cached;
        }
        pool[k].idle = idle;
        pool[k].dbid = dbid;
    }
}