void bench_scalar_inverse(void* arg) {
    int i;
    bench_inv_t *data = (bench_inv_t*)arg;

    for (i = 0; i < 2000; i++) {
        secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x);
        secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
    }
}
Exemple #2
0
void scalar_test(void) {
    unsigned char c[32];

    /* Set 's' to a random scalar, with value 'snum'. */
    secp256k1_scalar_t s;
    random_scalar_order_test(&s);

    /* Set 's1' to a random scalar, with value 's1num'. */
    secp256k1_scalar_t s1;
    random_scalar_order_test(&s1);

    /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
    secp256k1_scalar_t s2;
    random_scalar_order_test(&s2);
    secp256k1_scalar_get_b32(c, &s2);

#ifndef USE_NUM_NONE
    secp256k1_num_t snum, s1num, s2num;
    secp256k1_scalar_get_num(&snum, &s);
    secp256k1_scalar_get_num(&s1num, &s1);
    secp256k1_scalar_get_num(&s2num, &s2);

    secp256k1_num_t order;
    secp256k1_scalar_order_get_num(&order);
    secp256k1_num_t half_order = order;
    secp256k1_num_shift(&half_order, 1);
#endif

    {
        /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        for (int i = 0; i < 256; i += 4) {
            secp256k1_scalar_t t;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
            for (int j = 0; j < 4; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

    {
        /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        int i = 0;
        while (i < 256) {
            int now = (secp256k1_rand32() % 15) + 1;
            if (now + i > 256) {
                now = 256 - i;
            }
            secp256k1_scalar_t t;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
            for (int j = 0; j < now; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
            i += now;
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

#ifndef USE_NUM_NONE
    {
        /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_add(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_t r;
        secp256k1_scalar_add(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
    }

    {
        /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_t r;
        secp256k1_scalar_mul(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
        /* The result can only be zero if at least one of the factors was zero. */
        CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
        /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
        CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
        CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
    }

    {
        /* Check that comparison with zero matches comparison with zero on the number. */
        CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
        /* Check that comparison with the half order is equal to testing for high scalar. */
        CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
        secp256k1_scalar_t neg;
        secp256k1_scalar_negate(&neg, &s);
        secp256k1_num_t negnum;
        secp256k1_num_sub(&negnum, &order, &snum);
        secp256k1_num_mod(&negnum, &order);
        /* Check that comparison with the half order is equal to testing for high scalar after negation. */
        CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
        /* Negating should change the high property, unless the value was already zero. */
        CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
        secp256k1_num_t negnum2;
        secp256k1_scalar_get_num(&negnum2, &neg);
        /* Negating a scalar should be equal to (order - n) mod order on the number. */
        CHECK(secp256k1_num_eq(&negnum, &negnum2));
        secp256k1_scalar_add(&neg, &neg, &s);
        /* Adding a number to its negation should result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
        secp256k1_scalar_negate(&neg, &neg);
        /* Negating zero should still result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
    }

    {
        /* Test secp256k1_scalar_mul_shift_var. */
        secp256k1_scalar_t r;
        unsigned int shift = 256 + (secp256k1_rand32() % 257);
        secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &s1num, &s2num);
        secp256k1_num_shift(&rnum, shift - 1);
        secp256k1_num_t one;
        unsigned char cone[1] = {0x01};
        secp256k1_num_set_bin(&one, cone, 1);
        secp256k1_num_add(&rnum, &rnum, &one);
        secp256k1_num_shift(&rnum, 1);
        secp256k1_num_t rnum2;
        secp256k1_scalar_get_num(&rnum2, &r);
        CHECK(secp256k1_num_eq(&rnum, &rnum2));
    }
#endif

    {
        /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
        if (!secp256k1_scalar_is_zero(&s)) {
            secp256k1_scalar_t inv;
            secp256k1_scalar_inverse(&inv, &s);
#ifndef USE_NUM_NONE
            secp256k1_num_t invnum;
            secp256k1_num_mod_inverse(&invnum, &snum, &order);
            secp256k1_num_t invnum2;
            secp256k1_scalar_get_num(&invnum2, &inv);
            CHECK(secp256k1_num_eq(&invnum, &invnum2));
#endif
            secp256k1_scalar_mul(&inv, &inv, &s);
            /* Multiplying a scalar with its inverse must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
            secp256k1_scalar_inverse(&inv, &inv);
            /* Inverting one must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
        }
    }

    {
        /* Test commutativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test add_bit. */
        int bit = secp256k1_rand32() % 256;
        secp256k1_scalar_t b;
        secp256k1_scalar_set_int(&b, 1);
        CHECK(secp256k1_scalar_is_one(&b));
        for (int i = 0; i < bit; i++) {
            secp256k1_scalar_add(&b, &b, &b);
        }
        secp256k1_scalar_t r1 = s1, r2 = s1;
        if (!secp256k1_scalar_add(&r1, &r1, &b)) {
            /* No overflow happened. */
            secp256k1_scalar_add_bit(&r2, bit);
            CHECK(secp256k1_scalar_eq(&r1, &r2));
        }
    }

    {
        /* Test commutativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r1, &r1, &s);
        secp256k1_scalar_add(&r2, &s2, &s);
        secp256k1_scalar_add(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s2, &s);
        secp256k1_scalar_mul(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test distributitivity of mul over add. */
        secp256k1_scalar_t r1, r2, t;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s1, &s);
        secp256k1_scalar_mul(&t, &s2, &s);
        secp256k1_scalar_add(&r2, &r2, &t);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test square. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_sqr(&r1, &s1);
        secp256k1_scalar_mul(&r2, &s1, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

}
Exemple #3
0
/* Tests several edge cases. */
void test_ecdsa_edge_cases(void) {
    const unsigned char msg32[32] = {
        'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
        'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
        'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
        's', 's', 'a', 'g', 'e', '.', '.', '.'
    };
    const unsigned char sig64[64] = {
        /* Generated by signing the above message with nonce 'This is the nonce we will use...'
         * and secret key 0 (which is not valid), resulting in recid 0. */
        0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
        0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
        0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
        0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
        0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
        0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
        0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
        0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
    };
    unsigned char pubkey[65];
    int pubkeylen = 65;
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 0));
    CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 1));
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 2));
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 3));

    /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
    const unsigned char sigb64[64] = {
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
    };
    unsigned char pubkeyb[33];
    int pubkeyblen = 33;
    for (int recid = 0; recid < 4; recid++) {
        /* (4,4) encoded in DER. */
        unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
        /* (order + r,4) encoded in DER. */
        unsigned char sigbderlong[40] = {
            0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
            0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
            0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
        };
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
        for (int recid2 = 0; recid2 < 4; recid2++) {
            unsigned char pubkey2b[33];
            int pubkey2blen = 33;
            CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkey2b, &pubkey2blen, 1, recid2));
            /* Verifying with (order + r,4) should always fail. */
            CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1);
        }
        /* Damage signature. */
        sigbder[7]++;
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0);
    }

    /* Test the case where ECDSA recomputes a point that is infinity. */
    {
        secp256k1_ecdsa_sig_t sig;
        secp256k1_scalar_set_int(&sig.s, 1);
        secp256k1_scalar_negate(&sig.s, &sig.s);
        secp256k1_scalar_inverse(&sig.s, &sig.s);
        secp256k1_scalar_set_int(&sig.r, 1);
        secp256k1_gej_t keyj;
        secp256k1_ecmult_gen(&keyj, &sig.r);
        secp256k1_ge_t key;
        secp256k1_ge_set_gej(&key, &keyj);
        secp256k1_scalar_t msg = sig.s;
        CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0);
    }

    /* Test r/s equal to zero */
    {
        /* (1,1) encoded in DER. */
        unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
        unsigned char sigc64[64] = {
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
        };
        unsigned char pubkeyc[65];
        int pubkeyclen = 65;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1);
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1);
        sigcder[4] = 0;
        sigc64[31] = 0;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
        sigcder[4] = 1;
        sigcder[7] = 0;
        sigc64[31] = 1;
        sigc64[63] = 0;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
    }
}
Exemple #4
0
void scalar_test(void) {
    unsigned char c[32];

    /* Set 's' to a random scalar, with value 'snum'. */
    secp256k1_rand256_test(c);
    secp256k1_scalar_t s;
    secp256k1_scalar_set_b32(&s, c, NULL);
    secp256k1_num_t snum;
    secp256k1_num_set_bin(&snum, c, 32);
    secp256k1_num_mod(&snum, &secp256k1_ge_consts->order);

    /* Set 's1' to a random scalar, with value 's1num'. */
    secp256k1_rand256_test(c);
    secp256k1_scalar_t s1;
    secp256k1_scalar_set_b32(&s1, c, NULL);
    secp256k1_num_t s1num;
    secp256k1_num_set_bin(&s1num, c, 32);
    secp256k1_num_mod(&s1num, &secp256k1_ge_consts->order);

    /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
    secp256k1_rand256_test(c);
    secp256k1_scalar_t s2;
    int overflow = 0;
    secp256k1_scalar_set_b32(&s2, c, &overflow);
    secp256k1_num_t s2num;
    secp256k1_num_set_bin(&s2num, c, 32);
    secp256k1_num_mod(&s2num, &secp256k1_ge_consts->order);

    {
        /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
        secp256k1_num_t n, t, m;
        secp256k1_num_set_int(&n, 0);
        secp256k1_num_set_int(&m, 16);
        for (int i = 0; i < 256; i += 4) {
            secp256k1_num_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
            secp256k1_num_mul(&n, &n, &m);
            secp256k1_num_add(&n, &n, &t);
        }
        CHECK(secp256k1_num_eq(&n, &snum));
    }

    {
        /* Test that get_b32 returns the same as get_bin on the number. */
        unsigned char r1[32];
        secp256k1_scalar_get_b32(r1, &s2);
        unsigned char r2[32];
        secp256k1_num_get_bin(r2, 32, &s2num);
        CHECK(memcmp(r1, r2, 32) == 0);
        /* If no overflow occurred when assigning, it should also be equal to the original byte array. */
        CHECK((memcmp(r1, c, 32) == 0) == (overflow == 0));
    }

    {
        /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_add(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
        secp256k1_scalar_t r;
        secp256k1_scalar_add(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
    }

    {
        /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
        secp256k1_scalar_t r;
        secp256k1_scalar_mul(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
        /* The result can only be zero if at least one of the factors was zero. */
        CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
        /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
        CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
        CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
    }

    {
        /* Check that comparison with zero matches comparison with zero on the number. */
        CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
        /* Check that comparison with the half order is equal to testing for high scalar. */
        CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &secp256k1_ge_consts->half_order) > 0));
        secp256k1_scalar_t neg;
        secp256k1_scalar_negate(&neg, &s);
        secp256k1_num_t negnum;
        secp256k1_num_sub(&negnum, &secp256k1_ge_consts->order, &snum);
        secp256k1_num_mod(&negnum, &secp256k1_ge_consts->order);
        /* Check that comparison with the half order is equal to testing for high scalar after negation. */
        CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &secp256k1_ge_consts->half_order) > 0));
        /* Negating should change the high property, unless the value was already zero. */
        CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
        secp256k1_num_t negnum2;
        secp256k1_scalar_get_num(&negnum2, &neg);
        /* Negating a scalar should be equal to (order - n) mod order on the number. */
        CHECK(secp256k1_num_eq(&negnum, &negnum2));
        secp256k1_scalar_add(&neg, &neg, &s);
        /* Adding a number to its negation should result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
        secp256k1_scalar_negate(&neg, &neg);
        /* Negating zero should still result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
    }

    {
        /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
        if (!secp256k1_scalar_is_zero(&s)) {
            secp256k1_scalar_t inv;
            secp256k1_scalar_inverse(&inv, &s);
            secp256k1_num_t invnum;
            secp256k1_num_mod_inverse(&invnum, &snum, &secp256k1_ge_consts->order);
            secp256k1_num_t invnum2;
            secp256k1_scalar_get_num(&invnum2, &inv);
            CHECK(secp256k1_num_eq(&invnum, &invnum2));
            secp256k1_scalar_mul(&inv, &inv, &s);
            /* Multiplying a scalar with its inverse must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
            secp256k1_scalar_inverse(&inv, &inv);
            /* Inverting one must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
        }
    }

    {
        /* Test commutativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test commutativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r1, &r1, &s);
        secp256k1_scalar_add(&r2, &s2, &s);
        secp256k1_scalar_add(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s2, &s);
        secp256k1_scalar_mul(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test distributitivity of mul over add. */
        secp256k1_scalar_t r1, r2, t;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s1, &s);
        secp256k1_scalar_mul(&t, &s2, &s);
        secp256k1_scalar_add(&r2, &r2, &t);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test square. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_sqr(&r1, &s1);
        secp256k1_scalar_mul(&r2, &s1, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }
}