objArrayOop InterpretedIC::pic_array() {
  assert(send_type() == Bytecodes::polymorphic_send, "Must be a polymorphic send site");
  objArrayOop result = objArrayOop(second_word());
  assert(result->is_objArray(), "interpreter pic must be object array");
  assert(result->length() >= 4, "pic should contain at least two entries");
  return result;
}
void InterpretedIC::clear() {
  if (is_empty()) return;
  if (send_type() == Bytecodes::polymorphic_send) {
    // recycle PIC
    assert(second_word()->is_objArray(), "must be a pic");
    Interpreter_PICs::deallocate(objArrayOop(second_word()));
  }
  set(Bytecodes::original_send_code_for(send_code()), oop(selector()), smiOop_zero);
}
Exemple #3
0
void Classtable::on_pushButton_2_clicked()
{
    NewClass *nc =new NewClass(this);
    connect(this,SIGNAL(send_type(int,int,int,QString)),nc,SLOT(rec_type(int,int,int,QString)));
   // connect(nc,SIGNAL(sendtable(Table,QList<Tutor>*,QList<Problem>*,QList<Email>*)),this,SLOT(rec_table(Table,QList<Tutor>*,QList<Problem>*,QList<Email>*)));
    //count=tutor->count();
    emit send_type(i,j,2,ui->comboBox->currentText());
    nc->show();

}
void InterpretedIC::replace(LookupResult result, klassOop receiver_klass) {
  // IC entries before modification - used for loging only
  Bytecodes::Code code_before  = send_code();
  oop             word1_before = first_word();
  oop             word2_before = second_word();
  int             transition   = 0;
  // modify IC
  guarantee(word2_before == receiver_klass, "klass should be the same");
  if (result.is_empty()) {
    clear();
    transition = 1;
  } else if (result.is_method()) {
    if (send_type() == Bytecodes::megamorphic_send) {
      set(send_code(), result.method(), receiver_klass);
      transition = 2;
    } else {
      // Please Fix this Robert
      // implement set_monomorphic(klass, method)
      clear();
      transition = 3;
    }
  } else {
    if (send_type() == Bytecodes::megamorphic_send) {
      set(send_code(), oop(result.entry()), receiver_klass);
      transition = 4;
    } else {
      assert(result.is_entry(), "must be jump table entry");
      // a jump table entry of a nmethod is found so let's update the current send
      set(Bytecodes::compiled_send_code_for(send_code()), oop(result.entry()), receiver_klass);
      transition = 5;
    }
  }
  // IC entries after modification - used for loging only
  Bytecodes::Code code_after  = send_code();
  oop             word1_after = first_word();
  oop             word2_after = second_word();
  // log modification
  LOG_EVENT3("InterpretedIC::replace: IC at 0x%x: entry for klass 0x%x replaced (transition %d)", this, receiver_klass, transition);
  LOG_EVENT3("  from (%s, 0x%x, 0x%x)", Bytecodes::name(code_before), word1_before, word2_before);
  LOG_EVENT3("  to   (%s, 0x%x, 0x%x)", Bytecodes::name(code_after ), word1_after , word2_after );
}
void InterpretedIC::replace(nmethod* nm) {
  // replace entry with nm's klass by nm (if entry exists)
  smiOop entry_point = smiOop(nm->jump_table_entry()->entry_point());
  assert(selector() == nm->key.selector(), "mismatched selector");
  if (is_empty()) return;

  switch (send_type()) {
    case Bytecodes::accessor_send:    // fall through
    case Bytecodes::primitive_send:   // fall through
    case Bytecodes::predicted_send:   // fall through
    case Bytecodes::interpreted_send:
      { // replace the monomorphic interpreted send with compiled send
        klassOop receiver_klass = klassOop(second_word());
        assert(receiver_klass->is_klass(), "receiver klass must be a klass");
        if (receiver_klass == nm->key.klass()) {
          set(Bytecodes::compiled_send_code_for(send_code()), entry_point, nm->key.klass());
        }
      }
      break;
    case Bytecodes::compiled_send:   // fall through
    case Bytecodes::megamorphic_send:
      // replace the monomorphic compiled send with compiled send
      set(send_code(), entry_point, nm->key.klass());
      break;
    case Bytecodes::polymorphic_send:
      { objArrayOop pic = pic_array();
      for (int index = pic->length(); index > 0; index -= 2) {
        klassOop receiver_klass = klassOop(pic->obj_at(index));
        assert(receiver_klass->is_klass(), "receiver klass must be klass");
        if (receiver_klass == nm->key.klass()) {
          pic->obj_at_put(index-1, entry_point);
          return;
        }
      }
      }
      // did not find klass
      break;
    default: fatal("unknown send type");
  }
  LOG_EVENT3("interpreted IC at 0x%x: new nmethod 0x%x for klass 0x%x replaces old entry", this, nm, nm->key.klass());
}
void InterpretedIC::print() {
  std->print("Inline cache (");
  if (is_empty()) {
    std->print("empty");
  } else {
    std->print(Bytecodes::send_type_as_string(send_type()));
  }
  std->print(") ");
  selector()->print_value();
  std->cr();
  InterpretedIC_Iterator it(this);
  while (!it.at_end()) {
    std->print("\t- klass: ");
    it.klass()->print_value();
    if (it.is_interpreted()) {
      std->print(";\tmethod  %#x\n", it.interpreted_method());
    } else {
      std->print(";\tnmethod %#x\n", it.compiled_method());
    }
    it.advance();
  }
}
void InterpretedIC::cleanup() {
  if (is_empty()) return; // Nothing to cleanup

  switch (send_type()) {
    case Bytecodes::accessor_send:    // fall through
    case Bytecodes::primitive_send:   // fall through
    case Bytecodes::predicted_send:   // fall through
    case Bytecodes::interpreted_send:
      { // check if the interpreted send should be replaced by a compiled send
        klassOop receiver_klass = klassOop(second_word());
        assert(receiver_klass->is_klass(), "receiver klass must be a klass");
        methodOop method = methodOop(first_word());
        assert(method->is_method(), "first word in interpreter IC must be method");
        if (!Bytecodes::is_super_send(send_code())) {
          // super sends cannot be handled since the sending method holder is unknown at this point.
          LookupKey key(receiver_klass, selector());
          LookupResult result = lookupCache::lookup(&key);
          if (!result.matches(method)) {
            replace(result, receiver_klass);
          }
        }
      }
      break;
    case Bytecodes::compiled_send:
      { // check if the current compiled send is valid
        klassOop receiver_klass = klassOop(second_word());
        assert(receiver_klass->is_klass(), "receiver klass must be a klass");
        jumpTableEntry* entry = (jumpTableEntry*) first_word();
        nmethod* nm = entry->method();
        LookupResult result = lookupCache::lookup(&nm->key);
        if (!result.matches(nm)) {
          replace(result, receiver_klass);
        }
      }
      break;
    case Bytecodes::megamorphic_send:
      // Note that with the current definition of is_empty()
      // this will not be called for normal megamorphic sends
      // since they store only the selector.
      { klassOop receiver_klass = klassOop(second_word());
      if (first_word()->is_smi()) {
        jumpTableEntry* entry = (jumpTableEntry*) first_word();
        nmethod* nm = entry->method();
        LookupResult result = lookupCache::lookup(&nm->key);
        if (!result.matches(nm)) {
          replace(result, receiver_klass);
        }
      } else {
        methodOop method = methodOop(first_word());
        assert(method->is_method(), "first word in interpreter IC must be method");
        if (!Bytecodes::is_super_send(send_code())) {
          // super sends cannot be handled since the sending method holder is unknown at this point.
          LookupKey key(receiver_klass, selector());
          LookupResult result = lookupCache::lookup(&key);
          if (!result.matches(method)) {
            replace(result, receiver_klass);
          }
        }
      }
      }
      break;
    case Bytecodes::polymorphic_send:
      {
        // %implementation note:
        //   when cleaning up we can always preserve the old pic since the
        //   the only transitions are:
        //     (compiled    -> compiled)
        //     (compiled    -> interpreted)
        //     (interpreted -> compiled)
        //   in case of a super send we do not have to cleanup because
        //   no nmethods are compiled for super sends.
        if (!Bytecodes::is_super_send(send_code())) {
          objArrayOop pic = pic_array();
          for (int index = pic->length(); index > 0; index -= 2) {
            klassOop klass = klassOop(pic->obj_at(index));
            assert(klass->is_klass(), "receiver klass must be klass");
            oop first = pic->obj_at(index-1);
            if (first->is_smi()) {
              jumpTableEntry* entry = (jumpTableEntry*) first;
              nmethod* nm = entry->method();
              LookupResult result = lookupCache::lookup(&nm->key);
              if (!result.matches(nm)) {
                pic->obj_at_put(index-1, result.value());
              }
            } else {
              methodOop method = methodOop(first);
              assert(method->is_method(), "first word in interpreter IC must be method");
              LookupKey key(klass, selector());
              LookupResult result = lookupCache::lookup(&key);
              if (!result.matches(method)) {
                pic->obj_at_put(index-1, result.value());
              }
            }
          }
        }
      }
  }
}
jumpTableEntry* InterpretedIC::jump_table_entry() const {
  assert(send_type() == Bytecodes::compiled_send ||
    send_type() == Bytecodes::megamorphic_send, "must be a compiled call");
  assert(first_word()->is_smi(), "must be smi");
  return (jumpTableEntry*) first_word();
}
Exemple #9
0
int main(int argc, char* argv[]) {

	//----------------------

#ifndef DEBUG
	srand(time(NULL));
	srand_sse(time(NULL));
#else
	srand(1);
	srand_sse(1111);
#endif

	if (argc < 3) {
		printf("Usage: %s <scd file name> <port> \n", argv[0]);
		return -1;
	}

	int port = atoi(argv[2]);
	int connfd = server_init(port);
	if (connfd == -1) {
		printf("Something's wrong with the socket!\n");
		return -1;
	}

#define GARBLING

#ifndef GARBLING
	server_close(connfd);
	return 0;

#else
	//----------------------------------------- Garbling
	GarbledCircuit garbledCircuit;
	long i, j, cid;

	readCircuitFromFile(&garbledCircuit, argv[1]);

	printf("garbledCircuit.I[0] = %d\n", garbledCircuit.I[0]);

	int n = garbledCircuit.n;
	int g = garbledCircuit.g;
	int p = garbledCircuit.p;
	int m = garbledCircuit.m;
	int c = garbledCircuit.c;
	int e = n - g;

	int *garbler_inputs = (int *) malloc(sizeof(int) * (g) * c);
	block *inputLabels = (block *) malloc(sizeof(block) * 2 * n * c);
	block *initialDFFLable = (block *) malloc(sizeof(block) * 2 * p);
	block *outputLabels = (block *) malloc(sizeof(block) * 2 * m * c);

	printf("\n\ninputs:\n");
	for (cid = 0; cid < c; cid++) {
		for (j = 0; j < g; j++) {
			garbler_inputs[cid * g + j] = rand() % 2;
			printf("%d ", garbler_inputs[cid * g + j]);
		}
	}
	printf("\n\n");

#ifndef DEBUG
	block R = randomBlock();
	*((short *) (&R)) |= 1;
#else
	block R = makeBlock((long )(-1), (long )(-1));
#endif
	uint8_t * rptr = (uint8_t*) &R;
	for (int i = 0; i < 16; i++)
		rptr[i] = 0xff;

//	*((short *) (&R)) |= 1;
	rptr[0] |= 1;

	createInputLabels(inputLabels, R, n * c);
	createInputLabels(initialDFFLable, R, p);

	///--------------------------------------------------------------- OT Extension
	//Parameters
	int numOTs = c * e;
	int bitlength = 128;
	m_nSecParam = 128;
	m_nNumOTThreads = 1;
	BYTE version;
	crypto *crypt = new crypto(m_nSecParam, (uint8_t*) m_vSeed);
	InitOTSender(connfd, crypt);
	CBitVector delta, X1, X2;

	delta.Create(numOTs, bitlength, crypt);
	m_fMaskFct = new XORMasking(bitlength, delta);
	for (int i=0;i<numOTs;i++)
		delta.SetBytes(rptr, i*16, 16);

	printf("Delta: ");
	for (int i = 0; i < 16; i++) {
		printf("%02x", delta.GetByte(i));
	}
	printf("\n");

	printf("R: ");
	print__m128i(R);
	printf("\n");



	X1.Create(numOTs, bitlength);
	X1.Reset();
	X2.Create(numOTs, bitlength);
	X2.Reset();
	uint8_t* b = new BYTE[16];
	BYTE* b2 = new BYTE[16];

	cout << "Sender performing " << numOTs << " C_OT extensions on "
			<< bitlength << " bit elements" << endl;

	version = C_OT;
	ObliviouslySend(X1, X2, numOTs, bitlength, version, crypt);



	//putting X1 & X2 into inputLabels
	printf("printing inputLabels after copy from X1 and X2:\n\n");
	uint8_t* inputLabelsptr;
	for (cid = 0; cid < c; cid++) {
		for (j = 0; j < e; j++) {
			inputLabelsptr = (uint8_t*) &inputLabels[2 * (cid * n + g + j)];
			X1.GetBytes(inputLabelsptr, 16*(cid * e + j), 16);
			print__m128i(inputLabels[2 * (cid * n + g + j)]);

			inputLabelsptr = (uint8_t*) &inputLabels[2 * (cid * n + g + j) + 1];
			X2.GetBytes(inputLabelsptr, 16*(cid * e + j), 16);
			print__m128i(inputLabels[2 * (cid * n + g + j) + 1]);

		}
	}

	//print
	printf("Printing X1:\n");
	for (int j = 0; j < numOTs; j++) {
		for (int i = 0; i < 16; i++) {
			b[i] = X1.GetByte(i + j * 16);
			printf("%02x", b[i]);
		}
		printf("\n");
	}
	printf("\n\n");
	printf("Printing X2:\n");
	for (int j = 0; j < numOTs; j++) {
		for (int i = 0; i < 16; i++) {
			b[i] = X2.GetByte(i + j * 16);
			printf("%02x", b[i]);
		}
		printf("\n");
	}
	printf("\n\n");
	printf("Printing delta:\t");
	for (int i = 0; i < 16; i++) {
		b[i] = delta.GetByte(i);
		printf("%02x", b[i]);
	}
	printf("\n");

//----------------------------------------------------end of OT Extension

	for (cid = 0; cid < c; cid++) {
		for (j = 0; j < g; j++) {
			if (garbler_inputs[cid * g + j] == 0)
				send_block(connfd, inputLabels[2 * (cid * n + j)]);
			else
				send_block(connfd, inputLabels[2 * (cid * n + j) + 1]);

			printf("i(%ld, %ld, %d)\n", cid, j, garbler_inputs[cid * g + j]);
			print__m128i(inputLabels[2 * (cid * n + j)]);
			print__m128i(inputLabels[2 * (cid * n + j) + 1]);
		}

		//------------------------------------------------------------------------------------------ CHANGE 1
		for (j = 0; j < e; j++) {
//			int ev_input;
//			read(connfd, &ev_input, sizeof(int));
//			if (!ev_input)
//				send_block(connfd, inputLabels[2 * (cid * n + g + j)]);
//			else
//				send_block(connfd, inputLabels[2 * (cid * n + g + j) + 1]);

			printf("evaluator : i(%ld, %ld, ?)\n", cid, j);
			print__m128i(inputLabels[2 * (cid * n + g + j)]);
			print__m128i(inputLabels[2 * (cid * n + g + j) + 1]);

		}

		printf("Compare to:   ");

		printf("\n");
		//----------------------------------------------------------------------end

	}
	printf("\n\n");

	for (j = 0; j < p; j++) //p:#DFF
			{
		printf("garbledCircuit.I[j] = %d\n", garbledCircuit.I[j]);
		if (garbledCircuit.I[j] == CONST_ZERO) // constant zero
		{
			send_block(connfd, initialDFFLable[2 * j]);
			printf("dffi(%ld, %ld, %d)\n", cid, j, 0);
			print__m128i(initialDFFLable[2 * j]);
			print__m128i(initialDFFLable[2 * j + 1]);

		} else if (garbledCircuit.I[j] == CONST_ONE) // constant zero
		{
			send_block(connfd, initialDFFLable[2 * j + 1]);
			printf("dffi(%ld, %ld, %d)\n", cid, j, 0);
			print__m128i(inputLabels[2 * j]);
			print__m128i(inputLabels[2 * j + 1]);

		} else if (garbledCircuit.I[j] < g) //belongs to Alice (garbler)
				{
			int index = garbledCircuit.I[j];

			if (garbler_inputs[index] == 0)
				send_block(connfd, initialDFFLable[2 * j]);
			else
				send_block(connfd, initialDFFLable[2 * j + 1]);

			printf("dffi(%ld, %ld, %d)\n", cid, j, garbler_inputs[index]);
			print__m128i(initialDFFLable[2 * j]);
			print__m128i(initialDFFLable[2 * j + 1]);

		}
		//------------------------------------------------------------------------------------------ CHANGE 2
		else //**** belongs to Bob
		{
//			int ev_input;
//			read(connfd, &ev_input, sizeof(int));
//			if (!ev_input)
//				send_block(connfd, initialDFFLable[2 * j]);
//			else
//				send_block(connfd, initialDFFLable[2 * j + 1]);

//			printf("dffi(%ld, %ld, %d)\n", cid, j, ev_input);
			print__m128i(initialDFFLable[2 * j]);
			print__m128i(initialDFFLable[2 * j + 1]);
			printf("\n");
		}
		//----------------------------------------------------------------------end
	}
	printf("\n\n");

	///--------------------------------------------------------------- OT Extension
		//Parameters
		numOTs = p;
		delta.Create(numOTs, bitlength, crypt);
		m_fMaskFct = new XORMasking(bitlength, delta);
		for (int i=0;i<numOTs;i++)
			delta.SetBytes(rptr, i*16, 16);

		printf("Delta: ");
		for (int i = 0; i < 16; i++) {
			printf("%02x", delta.GetByte(i));
		}
		printf("\n");

		printf("R: ");
		print__m128i(R);
		printf("\n");



		X1.Create(numOTs, bitlength);
		X1.Reset();
		X2.Create(numOTs, bitlength);
		X2.Reset();


		cout << "Sender performing " << numOTs << " C_OT extensions on "
				<< bitlength << " bit elements" << endl;

		version = C_OT;
		ObliviouslySend(X1, X2, numOTs, bitlength, version, crypt);



		//putting X1 & X2 into inputLabels
		printf("printing inputLabels after copy from X1 and X2:\n\n");


			for (j = 0; j < p; j++) {
				inputLabelsptr = (uint8_t*) &initialDFFLable[2 * j];
				X1.GetBytes(inputLabelsptr, 16*(j), 16);


				inputLabelsptr = (uint8_t*) &initialDFFLable[2 * j +1];
				X2.GetBytes(inputLabelsptr, 16*( j), 16);
			}

		delete crypt;
	//----------------------------------------------------end of OT Extension



	garbledCircuit.globalKey = randomBlock();
	send_block(connfd, garbledCircuit.globalKey); // send DKC key

	printf("R: ");
	print__m128i(R);
	printf("\n");

	garble(&garbledCircuit, inputLabels, initialDFFLable, outputLabels, &R,
			connfd);

	printf("***************** InputLabels\n");
	for (int i=0;i<n*c*2;i++)
		print__m128i(inputLabels[i]);

	for (cid = 0; cid < c; cid++) {
		for (i = 0; i < m; i++) {
			short outputType = getLSB(outputLabels[2 * (m * cid + i) + 0]);
			send_type(connfd, outputType);
		}
	}

	server_close(connfd);
	removeGarbledCircuit(&garbledCircuit);

	return 0;
#endif
}