Exemple #1
0
Exp::Exp()
{
  STANDARD_CONSTRUCTOR()
  setMean(10.0);

  std::cout << "Exp::Exp() called\n";
}
 void descriptorExtractor::loadNet(const String& model_file, const String& trained_file, const String& mean_file)
 {
     if (net_set)
     {
         /* Load the network. */
         convnet = new Net<float>(model_file, TEST);
         convnet->CopyTrainedLayersFrom(trained_file);
         if (convnet->num_inputs() != 1)
             std::cout << "Network should have exactly one input." << std::endl;
         if (convnet->num_outputs() != 1)
             std::cout << "Network should have exactly one output." << std::endl;
         Blob<float>* input_layer = convnet->input_blobs()[0];
         num_channels = input_layer->channels();
         if (num_channels != 3 && num_channels != 1)
             std::cout << "Input layer should have 1 or 3 channels." << std::endl;
         input_geometry = cv::Size(input_layer->width(), input_layer->height());
         /* Load the binaryproto mean file. */
         if (!mean_file.empty())
         {
             setMean(mean_file);
             net_ready = 2;
         }
         else
         {
             net_ready = 1;
         }
     }
     else
     {
         std::cout << "Error: Net is not set properly in advance using construtor." << std::endl;
     }
 };
NormalDistribution::NormalDistribution(double mean, double standardDeviation) 
  : UncertaintyDescription(boost::shared_ptr<detail::UncertaintyDescription_Impl>(
        new detail::UncertaintyDescription_Impl(NormalDistribution::type())))
{
  setMean(mean);
  setStandardDeviation(standardDeviation);
}
void CybGaussianNaiveBayes::initData()
{	
		for(int i=0; i < this->getVariablesNumber();i++) //X, Y, Z
		{
			float mean = 0; //mean variable
			
			for(int j=0; j < this->getData()->size(); j++) //from 0 to size do
				mean += this->getData()->pos(j)->operator[](i); //add value to mean 
			
			setMean(mean/this->getData()->size(), i); //divide mean by its size
		}

		for(int i=0; i < this->getVariablesNumber();i++) //X, Y, Z
		{	
			float variance = 0; //variance variable

			for(int j=0; j<this->getData()->size(); j++) //from 0 to size do
			{
				//variancia = variancia + pow((float_aux[j] - media), 2);
				variance += pow((this->getData()->pos(j)->operator[](i) - this->getMean(i)), 2); //add to variance 
			}
			
			setVariance(variance/this->getData()->size(), i); //divide variance by its size
		}	
}
Exemple #5
0
Moment& Moment::operator=(const Moment& source)
{
    if (this != &source) // protect against invalid self-assignment
    {
        m_numStates = source.m_numStates;
        setMean(source.mean());
        setCovariance(source.covariance());
    }
    // by convention, always return *this
    return *this;
}
Exemple #6
0
 void Gaussian::configure(const std::string& parameters) {
     if (parameters.empty()) return;
     std::vector<std::string> values = Op::split(parameters, " ");
     std::size_t required = 2;
     if (values.size() < required) {
         std::ostringstream ex;
         ex << "[configuration error] term <" << className() << ">"
                 << " requires <" << required << "> parameters";
         throw fl::Exception(ex.str(), FL_AT);
     }
     setMean(Op::toScalar(values.at(0)));
     setStandardDeviation(Op::toScalar(values.at(1)));
     if (values.size() > required)
         setHeight(Op::toScalar(values.at(required)));
 }
Exemple #7
0
bool Exp::setSlotMean(const oe::base::Number* const mean)
{
  if (mean != nullptr)
    setMean(mean->getDouble());
  return true;
}