Exemple #1
0
static void identifyUniqueNodes(boolean(*isUniqueFunction) (Node *))
{
	IDnum index;
	Node *node;
	IDnum counter = 0;

	velvetLog("Identifying unique nodes\n");

	for (index = 1; index <= nodeCount(graph); index++) {
		node = getNodeInGraph(graph, index);

		if (node == NULL)
			continue;

		setUniqueness(node, isUniqueFunction(node));

		if (getUniqueness(node))
			counter++;
	}

	velvetLog("Done, %li unique nodes counted\n", (long) counter);
}
// Replaces two consecutive nodes into a single equivalent node
// The extra memory is freed
void concatenateNodes(Node * nodeA, Node * nodeB, Graph * graph)
{
	PassageMarkerI marker, tmpMarker;
	Node *twinA = getTwinNode(nodeA);
	Node *twinB = getTwinNode(nodeB);
	Arc *arc;
	Category cat;

	// Arc management:
	// Freeing useless arcs
	while (getArc(nodeA) != NULL)
		destroyArc(getArc(nodeA), graph);

	// Correct arcs
	for (arc = getArc(nodeB); arc != NULL; arc = getNextArc(arc)) {
		if (getDestination(arc) != twinB)
			createAnalogousArc(nodeA, getDestination(arc),
					   arc, graph);
		else
			createAnalogousArc(nodeA, twinA, arc, graph);
	}

	// Passage marker management in node A:
	for (marker = getMarker(nodeA); marker != NULL_IDX;
	     marker = getNextInNode(marker))
		if (isTerminal(marker))
			incrementFinishOffset(marker,
					      getNodeLength(nodeB));

	// Swapping new born passageMarkers from B to A
	for (marker = getMarker(nodeB); marker != NULL_IDX; marker = tmpMarker) {
		tmpMarker = getNextInNode(marker);

		if (isInitial(marker)
		    || getNode(getPreviousInSequence(marker)) != nodeA) {
			extractPassageMarker(marker);
			transposePassageMarker(marker, nodeA);
			incrementFinishOffset(getTwinMarker(marker),
					      getNodeLength(nodeA));
		} else
			disconnectNextPassageMarker(getPreviousInSequence
						    (marker), graph);
	}

	// Read starts
	concatenateReadStarts(nodeA, nodeB, graph);

	// Gaps
	appendNodeGaps(nodeA, nodeB, graph);

	// Descriptor management (node)
	appendDescriptors(nodeA, nodeB);

	// Update uniqueness:
	setUniqueness(nodeA, getUniqueness(nodeA) || getUniqueness(nodeB));

	// Update virtual coverage
	for (cat = 0; cat < CATEGORIES; cat++)
		incrementVirtualCoverage(nodeA, cat,
					 getVirtualCoverage(nodeB, cat));

	// Update original virtual coverage
	for (cat = 0; cat < CATEGORIES; cat++)
		incrementOriginalVirtualCoverage(nodeA, cat,
						 getOriginalVirtualCoverage
						 (nodeB, cat));

	// Freeing gobbled node
	destroyNode(nodeB, graph);
}
// Replaces two consecutive nodes into a single equivalent node
// The extra memory is freed
void concatenateStringOfNodes(Node * nodeA, Graph * graph)
{
	Node *twinA = getTwinNode(nodeA);
	Node * nodeB = nodeA;
	Node * twinB;
	Node *currentNode, *nextNode;
	Coordinate totalLength = 0;
	PassageMarkerI marker, tmpMarker;
	Arc *arc;
	Category cat;

	while (simpleArcCount(nodeB) == 1
	       &&
	       simpleArcCount(getTwinNode
			      (getDestination(getArc(nodeB)))) ==
	       1
	       && getDestination(getArc(nodeB)) != getTwinNode(nodeB)
	       && getDestination(getArc(nodeB)) != nodeA) {
		totalLength += getNodeLength(nodeB);
		nodeB = getDestination(getArc(nodeB));
	}
	twinB = getTwinNode(nodeB);
	totalLength += getNodeLength(nodeB);
	reallocateNodeDescriptor(nodeA, totalLength);

	currentNode = nodeA;
	while (currentNode != nodeB) {		
		currentNode = getDestination(getArc(currentNode));

		// Passage marker management in node A:
		for (marker = getMarker(nodeA); marker != NULL_IDX;
		     marker = getNextInNode(marker))
			if (getNode(getNextInSequence(marker)) != currentNode)
				incrementFinishOffset(marker,
						      getNodeLength(currentNode));

		// Swapping new born passageMarkers from B to A
		for (marker = getMarker(currentNode); marker != NULL_IDX; marker = tmpMarker) {
			tmpMarker = getNextInNode(marker);

			if (isInitial(marker)
			    || getNode(getPreviousInSequence(marker)) != nodeA) {
				extractPassageMarker(marker);
				transposePassageMarker(marker, nodeA);
				incrementFinishOffset(getTwinMarker(marker),
						      getNodeLength(nodeA));
			} else
				disconnectNextPassageMarker(getPreviousInSequence
							    (marker), graph);
		}

		// Read starts
		concatenateReadStarts(nodeA, currentNode, graph);

		// Gaps
		appendNodeGaps(nodeA, currentNode, graph);

		// Update uniqueness:
		setUniqueness(nodeA, getUniqueness(nodeA) || getUniqueness(currentNode));

		// Update virtual coverage
		for (cat = 0; cat < CATEGORIES; cat++)
			incrementVirtualCoverage(nodeA, cat,
						 getVirtualCoverage(currentNode, cat));

		// Update original virtual coverage
		for (cat = 0; cat < CATEGORIES; cat++)
			incrementOriginalVirtualCoverage(nodeA, cat,
							 getOriginalVirtualCoverage
							 (currentNode, cat));
		// Descriptor management (node)
		directlyAppendDescriptors(nodeA, currentNode, totalLength);
	}

	// Correct arcs
	for (arc = getArc(nodeB); arc != NULL; arc = getNextArc(arc)) {
		if (getDestination(arc) != twinB)
			createAnalogousArc(nodeA, getDestination(arc),
					   arc, graph);
		else
			createAnalogousArc(nodeA, twinA, arc, graph);
	}

	// Freeing gobbled nodes
	currentNode = getTwinNode(nodeB);
	while (currentNode != getTwinNode(nodeA)) {
		arc = getArc(currentNode);
		nextNode = getDestination(arc);
		destroyNode(currentNode, graph);
		currentNode = nextNode;
	}
}
Exemple #4
0
static boolean uniqueNodesConnect(Node * startingNode)
{
	Node *destination = NULL;
	PassageMarkerI startMarker, currentMarker;
	RBConnection *newList;
	RBConnection *list = NULL;
	boolean multipleHits = false;

	if (arcCount(startingNode) == 0)
		return false;

	if (getMarker(startingNode) == NULL_IDX)
		return false;

	dbgCounter++;

	// Checking for multiple destinations
	for (startMarker = getMarker(startingNode); startMarker != NULL_IDX;
	     startMarker = getNextInNode(startMarker)) {
		if (getFinishOffset(startMarker) >
		    2 * getWordLength(graph))
			continue;

		for (currentMarker = getNextInSequence(startMarker);
		     currentMarker != NULL_IDX;
		     currentMarker = getNextInSequence(currentMarker)) {
			if (!getUniqueness(getNode(currentMarker))) {
				continue;
			} else if (getNodeStatus(getNode(currentMarker))) {
				if (getStartOffset(currentMarker) >
				    2 * getWordLength(graph))
					break;
				for (newList = list; newList != NULL;
				     newList = newList->next) {
					if (newList->node ==
					    getNode(currentMarker)) {
						newList->multiplicity++;
						break;
					}
				}
				if (newList == NULL)
					abort();
				break;
			} else {
				if (getStartOffset(currentMarker) >
				    2 * getWordLength(graph))
					break;
				setSingleNodeStatus(getNode(currentMarker),
						    true);
				newList = allocateRBConnection();
				newList->node = getNode(currentMarker);
				newList->multiplicity = 1;
				newList->marker = startMarker;
				newList->next = list;
				list = newList;
				break;
			}
		}
	}

	while (list != NULL) {
		newList = list;
		list = newList->next;
		setSingleNodeStatus(newList->node, false);
		if (newList->multiplicity >= MULTIPLICITY_CUTOFF) {
			if (destination == NULL) {
				destination = newList->node;
				path = newList->marker;
			} else if (destination != newList->node)
				multipleHits = true;
		}
		deallocateRBConnection(newList);
	}

	if (multipleHits) {
		multCounter++;
		setUniqueness(startingNode, false);
		return false;
	}

	if (destination == NULL || destination == startingNode
	    || destination == getTwinNode(startingNode)) {
		nullCounter++;
		return false;
	}
	// Check for reciprocity
	for (startMarker = getMarker(getTwinNode(destination));
	     startMarker != NULL_IDX;
	     startMarker = getNextInNode(startMarker)) {
		if (getFinishOffset(startMarker) >
		    2 * getWordLength(graph))
			continue;

		for (currentMarker = getNextInSequence(startMarker);
		     currentMarker != NULL_IDX;
		     currentMarker = getNextInSequence(currentMarker)) {
			if (!getUniqueness(getNode(currentMarker))) {
				continue;
			} else if (getNodeStatus(getNode(currentMarker))) {
				if (getStartOffset(currentMarker) >
				    2 * getWordLength(graph))
					break;
				for (newList = list; newList != NULL;
				     newList = newList->next) {
					if (newList->node ==
					    getNode(currentMarker)) {
						newList->multiplicity++;
						break;
					}
				}
				if (newList == NULL)
					abort();
				break;
			} else {
				if (getStartOffset(currentMarker) >
				    2 * getWordLength(graph))
					break;
				setSingleNodeStatus(getNode(currentMarker),
						    true);
				newList = allocateRBConnection();
				newList->node = getNode(currentMarker);
				newList->multiplicity = 1;
				newList->next = list;
				list = newList;
				break;
			}
		}
	}

	while (list != NULL) {
		newList = list;
		list = newList->next;
		setSingleNodeStatus(newList->node, false);
		if (newList->multiplicity >= MULTIPLICITY_CUTOFF
		    && newList->node != getTwinNode(startingNode))
			multipleHits = true;
		deallocateRBConnection(newList);
	}

	if (multipleHits) {
		multCounter++;
		setUniqueness(destination, false);
		return false;
	}
	// Aligning long reads to each other:
	// TODO 

	// Merge pairwise alignments and produce consensus
	// TODO

	return true;
}