Exemple #1
0
static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
			    char * const argv[])
{
	int ret;

	if (((images.os.type == IH_TYPE_KERNEL) ||
	     (images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
	     (images.os.type == IH_TYPE_MULTI)) &&
	    (images.os.os == IH_OS_LINUX)) {
		/* find ramdisk */
		ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
				&images.rd_start, &images.rd_end);
		if (ret) {
			puts("Ramdisk image is corrupt or invalid\n");
			return 1;
		}

#if defined(CONFIG_OF_LIBFDT)
		/* find flattened device tree */
		ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
				   &images.ft_addr, &images.ft_len);
		if (ret) {
			puts("Could not find a valid device tree\n");
			return 1;
		}

		set_working_fdt_addr(images.ft_addr);
#endif
	}

	return 0;
}
Exemple #2
0
/**
 * bootm_find_images - wrapper to find and locate various images
 * @flag: Ignored Argument
 * @argc: command argument count
 * @argv: command argument list
 *
 * boot_find_images() will attempt to load an available ramdisk,
 * flattened device tree, as well as specifically marked
 * "loadable" images (loadables are FIT only)
 *
 * Note: bootm_find_images will skip an image if it is not found
 *
 * @return:
 *     0, if all existing images were loaded correctly
 *     1, if an image is found but corrupted, or invalid
 */
int bootm_find_images(int flag, int argc, char * const argv[])
{
	int ret;

	/* find ramdisk */
	ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
			       &images.rd_start, &images.rd_end);
	if (ret) {
		puts("Ramdisk image is corrupt or invalid\n");
		return 1;
	}

#if defined(CONFIG_OF_LIBFDT)
	/* find flattened device tree */
	ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
			   &images.ft_addr, &images.ft_len);
	if (ret) {
		puts("Could not find a valid device tree\n");
		return 1;
	}
	set_working_fdt_addr((ulong)images.ft_addr);
#endif

#if defined(CONFIG_FIT)
	/* find all of the loadables */
	ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT,
			       NULL, NULL);
	if (ret) {
		printf("Loadable(s) is corrupt or invalid\n");
		return 1;
	}
#endif

	return 0;
}
Exemple #3
0
/*
 * zImage booting support
 */
static int bootz_start(cmd_tbl_t *cmdtp, int flag, int argc,
			char * const argv[], bootm_headers_t *images)
{
	int ret;
	void *zi_start, *zi_end;

	memset(images, 0, sizeof(bootm_headers_t));

	boot_start_lmb(images);

	/* Setup Linux kernel zImage entry point */
	if (argc < 2) {
		images->ep = load_addr;
		debug("*  kernel: default image load address = 0x%08lx\n",
				load_addr);
	} else {
		images->ep = simple_strtoul(argv[1], NULL, 16);
		debug("*  kernel: cmdline image address = 0x%08lx\n",
			images->ep);
	}

	ret = bootz_setup((void *)images->ep, &zi_start, &zi_end);
	if (ret != 0)
		return 1;

	lmb_reserve(&images->lmb, images->ep, zi_end - zi_start);

	/* Find ramdisk */
	ret = boot_get_ramdisk(argc, argv, images, IH_INITRD_ARCH,
			&images->rd_start, &images->rd_end);
	if (ret) {
		puts("Ramdisk image is corrupt or invalid\n");
		return 1;
	}

#if defined(CONFIG_OF_LIBFDT)
	/* find flattened device tree */
	ret = boot_get_fdt(flag, argc, argv, images,
			   &images->ft_addr, &images->ft_len);
	if (ret) {
		puts("Could not find a valid device tree\n");
		return 1;
	}

	set_working_fdt_addr(images->ft_addr);
#endif

	return 0;
}
Exemple #4
0
static int bootm_find_fdt(int flag, int argc, char * const argv[])
{
	int ret;

	/* find flattened device tree */
	ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
			   &images.ft_addr, &images.ft_len);
	if (ret) {
		puts("Could not find a valid device tree\n");
		return 1;
	}

	set_working_fdt_addr(images.ft_addr);

	return 0;
}
Exemple #5
0
/**
 * bootm_find_images - wrapper to find and locate various images
 * @flag: Ignored Argument
 * @argc: command argument count
 * @argv: command argument list
 *
 * boot_find_images() will attempt to load an available ramdisk,
 * flattened device tree, as well as specifically marked
 * "loadable" images (loadables are FIT only)
 *
 * Note: bootm_find_images will skip an image if it is not found
 *
 * @return:
 *     0, if all existing images were loaded correctly
 *     1, if an image is found but corrupted, or invalid
 */
int bootm_find_images(int flag, int argc, char * const argv[])
{
	int ret;

	/* find ramdisk */
	ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
			       &images.rd_start, &images.rd_end);
	if (ret) {
		puts("Ramdisk image is corrupt or invalid\n");
		return 1;
	}

#if IMAGE_ENABLE_OF_LIBFDT
	/* find flattened device tree */
	ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
			   &images.ft_addr, &images.ft_len);
	if (ret) {
		puts("Could not find a valid device tree\n");
		return 1;
	}
	if (CONFIG_IS_ENABLED(CMD_FDT))
		set_working_fdt_addr(map_to_sysmem(images.ft_addr));
#endif

#if IMAGE_ENABLE_FIT
#if defined(CONFIG_FPGA)
	/* find bitstreams */
	ret = boot_get_fpga(argc, argv, &images, IH_ARCH_DEFAULT,
			    NULL, NULL);
	if (ret) {
		printf("FPGA image is corrupted or invalid\n");
		return 1;
	}
#endif

	/* find all of the loadables */
	ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT,
			       NULL, NULL);
	if (ret) {
		printf("Loadable(s) is corrupt or invalid\n");
		return 1;
	}
#endif

	return 0;
}
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	ulong		mem_start;
	phys_size_t	mem_size;
	void		*os_hdr;
	int		ret;

	memset ((void *)&images, 0, sizeof (images));
	images.verify = getenv_yesno ("verify");

	lmb_init(&images.lmb);

	mem_start = getenv_bootm_low();
	mem_size = getenv_bootm_size();

	lmb_add(&images.lmb, (phys_addr_t)mem_start, mem_size);

	arch_lmb_reserve(&images.lmb);
	board_lmb_reserve(&images.lmb);

	/* get kernel image header, start address and length */
	os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,
			&images, &images.os.image_start, &images.os.image_len);
	if (images.os.image_len == 0) {
		puts ("ERROR: can't get kernel image!\n");
		return 1;
	}

	/* get image parameters */
	switch (genimg_get_format (os_hdr)) {
	case IMAGE_FORMAT_LEGACY:
		images.os.type = image_get_type (os_hdr);
		images.os.comp = image_get_comp (os_hdr);
		images.os.os = image_get_os (os_hdr);

		images.os.end = image_get_image_end (os_hdr);
		images.os.load = image_get_load (os_hdr);
		break;
#if defined(CONFIG_FIT)
	case IMAGE_FORMAT_FIT:
		if (fit_image_get_type (images.fit_hdr_os,
					images.fit_noffset_os, &images.os.type)) {
			puts ("Can't get image type!\n");
			show_boot_progress (-109);
			return 1;
		}

		if (fit_image_get_comp (images.fit_hdr_os,
					images.fit_noffset_os, &images.os.comp)) {
			puts ("Can't get image compression!\n");
			show_boot_progress (-110);
			return 1;
		}

		if (fit_image_get_os (images.fit_hdr_os,
					images.fit_noffset_os, &images.os.os)) {
			puts ("Can't get image OS!\n");
			show_boot_progress (-111);
			return 1;
		}

		images.os.end = fit_get_end (images.fit_hdr_os);

		if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os,
					&images.os.load)) {
			puts ("Can't get image load address!\n");
			show_boot_progress (-112);
			return 1;
		}
		break;
#endif
	default:
		puts ("ERROR: unknown image format type!\n");
		return 1;
	}

	/* find kernel entry point */
	if (images.legacy_hdr_valid) {
		images.ep = image_get_ep (&images.legacy_hdr_os_copy);
#if defined(CONFIG_FIT)
	} else if (images.fit_uname_os) {
		ret = fit_image_get_entry (images.fit_hdr_os,
				images.fit_noffset_os, &images.ep);
		if (ret) {
			puts ("Can't get entry point property!\n");
			return 1;
		}
#endif
	} else {
		puts ("Could not find kernel entry point!\n");
		return 1;
	}

	if (images.os.os == IH_OS_LINUX) {
		/* find ramdisk */
		ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,
				&images.rd_start, &images.rd_end);
		if (ret) {
			puts ("Ramdisk image is corrupt or invalid\n");
			return 1;
		}

#if defined(CONFIG_OF_LIBFDT)
#if defined(CONFIG_PPC) || defined(CONFIG_M68K) || defined(CONFIG_SPARC)
		/* find flattened device tree */
		ret = boot_get_fdt (flag, argc, argv, &images,
				    &images.ft_addr, &images.ft_len);
		if (ret) {
			puts ("Could not find a valid device tree\n");
			return 1;
		}

		set_working_fdt_addr(images.ft_addr);
#endif
#endif
	}

	images.os.start = (ulong)os_hdr;
	images.state = BOOTM_STATE_START;

	return 0;
}
Exemple #7
0
/*
 * Flattened Device Tree command, see the help for parameter definitions.
 */
static int do_fdt(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	if (argc < 2)
		return CMD_RET_USAGE;

	/*
	 * Set the address of the fdt
	 */
	if (strncmp(argv[1], "ad", 2) == 0) {
		unsigned long addr;
		int control = 0;
		struct fdt_header *blob;
		/*
		 * Set the address [and length] of the fdt.
		 */
		argc -= 2;
		argv += 2;
/* Temporary #ifdef - some archs don't have fdt_blob yet */
#ifdef CONFIG_OF_CONTROL
		if (argc && !strcmp(*argv, "-c")) {
			control = 1;
			argc--;
			argv++;
		}
#endif
		if (argc == 0) {
			if (control)
				blob = (struct fdt_header *)gd->fdt_blob;
			else
				blob = working_fdt;
			if (!blob || !fdt_valid(&blob))
				return 1;
			printf("The address of the fdt is %#08lx\n",
			       control ? (ulong)map_to_sysmem(blob) :
					getenv_hex("fdtaddr", 0));
			return 0;
		}

		addr = simple_strtoul(argv[0], NULL, 16);
		blob = map_sysmem(addr, 0);
		if (!fdt_valid(&blob))
			return 1;
		if (control)
			gd->fdt_blob = blob;
		else
			set_working_fdt_addr(addr);

		if (argc >= 2) {
			int  len;
			int  err;
			/*
			 * Optional new length
			 */
			len = simple_strtoul(argv[1], NULL, 16);
			if (len < fdt_totalsize(blob)) {
				printf ("New length %d < existing length %d, "
					"ignoring.\n",
					len, fdt_totalsize(blob));
			} else {
				/*
				 * Open in place with a new length.
				 */
				err = fdt_open_into(blob, blob, len);
				if (err != 0) {
					printf ("libfdt fdt_open_into(): %s\n",
						fdt_strerror(err));
				}
			}
		}

		return CMD_RET_SUCCESS;
	}

	if (!working_fdt) {
		puts(
			"No FDT memory address configured. Please configure\n"
			"the FDT address via \"fdt addr <address>\" command.\n"
			"Aborting!\n");
		return CMD_RET_FAILURE;
	}

	/*
	 * Move the working_fdt
	 */
	if (strncmp(argv[1], "mo", 2) == 0) {
		struct fdt_header *newaddr;
		int  len;
		int  err;

		if (argc < 4)
			return CMD_RET_USAGE;

		/*
		 * Set the address and length of the fdt.
		 */
		working_fdt = (struct fdt_header *)simple_strtoul(argv[2], NULL, 16);
		if (!fdt_valid(&working_fdt))
			return 1;

		newaddr = (struct fdt_header *)simple_strtoul(argv[3],NULL,16);

		/*
		 * If the user specifies a length, use that.  Otherwise use the
		 * current length.
		 */
		if (argc <= 4) {
			len = fdt_totalsize(working_fdt);
		} else {
			len = simple_strtoul(argv[4], NULL, 16);
			if (len < fdt_totalsize(working_fdt)) {
				printf ("New length 0x%X < existing length "
					"0x%X, aborting.\n",
					len, fdt_totalsize(working_fdt));
				return 1;
			}
		}

		/*
		 * Copy to the new location.
		 */
		err = fdt_open_into(working_fdt, newaddr, len);
		if (err != 0) {
			printf ("libfdt fdt_open_into(): %s\n",
				fdt_strerror(err));
			return 1;
		}
		working_fdt = newaddr;

	/*
	 * Make a new node
	 */
	} else if (strncmp(argv[1], "mk", 2) == 0) {
		char *pathp;		/* path */
		char *nodep;		/* new node to add */
		int  nodeoffset;	/* node offset from libfdt */
		int  err;

		/*
		 * Parameters: Node path, new node to be appended to the path.
		 */
		if (argc < 4)
			return CMD_RET_USAGE;

		pathp = argv[2];
		nodep = argv[3];

		nodeoffset = fdt_path_offset (working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}
		err = fdt_add_subnode(working_fdt, nodeoffset, nodep);
		if (err < 0) {
			printf ("libfdt fdt_add_subnode(): %s\n",
				fdt_strerror(err));
			return 1;
		}

	/*
	 * Set the value of a property in the working_fdt.
	 */
	} else if (argv[1][0] == 's') {
		char *pathp;		/* path */
		char *prop;		/* property */
		int  nodeoffset;	/* node offset from libfdt */
		static char data[SCRATCHPAD];	/* storage for the property */
		int  len;		/* new length of the property */
		int  ret;		/* return value */

		/*
		 * Parameters: Node path, property, optional value.
		 */
		if (argc < 4)
			return CMD_RET_USAGE;

		pathp  = argv[2];
		prop   = argv[3];
		if (argc == 4) {
			len = 0;
		} else {
			ret = fdt_parse_prop(&argv[4], argc - 4, data, &len);
			if (ret != 0)
				return ret;
		}

		nodeoffset = fdt_path_offset (working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}

		ret = fdt_setprop(working_fdt, nodeoffset, prop, data, len);
		if (ret < 0) {
			printf ("libfdt fdt_setprop(): %s\n", fdt_strerror(ret));
			return 1;
		}

	/********************************************************************
	 * Get the value of a property in the working_fdt.
	 ********************************************************************/
	} else if (argv[1][0] == 'g') {
		char *subcmd;		/* sub-command */
		char *pathp;		/* path */
		char *prop;		/* property */
		char *var;		/* variable to store result */
		int  nodeoffset;	/* node offset from libfdt */
		const void *nodep;	/* property node pointer */
		int  len = 0;		/* new length of the property */

		/*
		 * Parameters: Node path, property, optional value.
		 */
		if (argc < 5)
			return CMD_RET_USAGE;

		subcmd = argv[2];

		if (argc < 6 && subcmd[0] != 's')
			return CMD_RET_USAGE;

		var    = argv[3];
		pathp  = argv[4];
		prop   = argv[5];

		nodeoffset = fdt_path_offset(working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}

		if (subcmd[0] == 'n' || (subcmd[0] == 's' && argc == 5)) {
			int reqIndex = -1;
			int startDepth = fdt_node_depth(
				working_fdt, nodeoffset);
			int curDepth = startDepth;
			int curIndex = -1;
			int nextNodeOffset = fdt_next_node(
				working_fdt, nodeoffset, &curDepth);

			if (subcmd[0] == 'n')
				reqIndex = simple_strtoul(argv[5], NULL, 16);

			while (curDepth > startDepth) {
				if (curDepth == startDepth + 1)
					curIndex++;
				if (subcmd[0] == 'n' && curIndex == reqIndex) {
					const char *nodeName = fdt_get_name(
					    working_fdt, nextNodeOffset, NULL);

					setenv(var, (char *)nodeName);
					return 0;
				}
				nextNodeOffset = fdt_next_node(
					working_fdt, nextNodeOffset, &curDepth);
				if (nextNodeOffset < 0)
					break;
			}
			if (subcmd[0] == 's') {
				/* get the num nodes at this level */
				setenv_ulong(var, curIndex + 1);
			} else {
				/* node index not found */
				printf("libfdt node not found\n");
				return 1;
			}
		} else {
			nodep = fdt_getprop(
				working_fdt, nodeoffset, prop, &len);
			if (len == 0) {
				/* no property value */
				setenv(var, "");
				return 0;
			} else if (len > 0) {
				if (subcmd[0] == 'v') {
					int ret;

					ret = fdt_value_setenv(nodep, len, var);
					if (ret != 0)
						return ret;
				} else if (subcmd[0] == 'a') {
					/* Get address */
					char buf[11];

					sprintf(buf, "0x%p", nodep);
					setenv(var, buf);
				} else if (subcmd[0] == 's') {
					/* Get size */
					char buf[11];

					sprintf(buf, "0x%08X", len);
					setenv(var, buf);
				} else
					return CMD_RET_USAGE;
				return 0;
			} else {
				printf("libfdt fdt_getprop(): %s\n",
					fdt_strerror(len));
				return 1;
			}
		}

	/*
	 * Print (recursive) / List (single level)
	 */
	} else if ((argv[1][0] == 'p') || (argv[1][0] == 'l')) {
		int depth = MAX_LEVEL;	/* how deep to print */
		char *pathp;		/* path */
		char *prop;		/* property */
		int  ret;		/* return value */
		static char root[2] = "/";

		/*
		 * list is an alias for print, but limited to 1 level
		 */
		if (argv[1][0] == 'l') {
			depth = 1;
		}

		/*
		 * Get the starting path.  The root node is an oddball,
		 * the offset is zero and has no name.
		 */
		if (argc == 2)
			pathp = root;
		else
			pathp = argv[2];
		if (argc > 3)
			prop = argv[3];
		else
			prop = NULL;

		ret = fdt_print(pathp, prop, depth);
		if (ret != 0)
			return ret;

	/*
	 * Remove a property/node
	 */
	} else if (strncmp(argv[1], "rm", 2) == 0) {
		int  nodeoffset;	/* node offset from libfdt */
		int  err;

		/*
		 * Get the path.  The root node is an oddball, the offset
		 * is zero and has no name.
		 */
		nodeoffset = fdt_path_offset (working_fdt, argv[2]);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}
		/*
		 * Do the delete.  A fourth parameter means delete a property,
		 * otherwise delete the node.
		 */
		if (argc > 3) {
			err = fdt_delprop(working_fdt, nodeoffset, argv[3]);
			if (err < 0) {
				printf("libfdt fdt_delprop():  %s\n",
					fdt_strerror(err));
				return err;
			}
		} else {
			err = fdt_del_node(working_fdt, nodeoffset);
			if (err < 0) {
				printf("libfdt fdt_del_node():  %s\n",
					fdt_strerror(err));
				return err;
			}
		}

	/*
	 * Display header info
	 */
	} else if (argv[1][0] == 'h') {
		u32 version = fdt_version(working_fdt);
		printf("magic:\t\t\t0x%x\n", fdt_magic(working_fdt));
		printf("totalsize:\t\t0x%x (%d)\n", fdt_totalsize(working_fdt),
		       fdt_totalsize(working_fdt));
		printf("off_dt_struct:\t\t0x%x\n",
		       fdt_off_dt_struct(working_fdt));
		printf("off_dt_strings:\t\t0x%x\n",
		       fdt_off_dt_strings(working_fdt));
		printf("off_mem_rsvmap:\t\t0x%x\n",
		       fdt_off_mem_rsvmap(working_fdt));
		printf("version:\t\t%d\n", version);
		printf("last_comp_version:\t%d\n",
		       fdt_last_comp_version(working_fdt));
		if (version >= 2)
			printf("boot_cpuid_phys:\t0x%x\n",
				fdt_boot_cpuid_phys(working_fdt));
		if (version >= 3)
			printf("size_dt_strings:\t0x%x\n",
				fdt_size_dt_strings(working_fdt));
		if (version >= 17)
			printf("size_dt_struct:\t\t0x%x\n",
				fdt_size_dt_struct(working_fdt));
		printf("number mem_rsv:\t\t0x%x\n",
		       fdt_num_mem_rsv(working_fdt));
		printf("\n");

	/*
	 * Set boot cpu id
	 */
	} else if (strncmp(argv[1], "boo", 3) == 0) {
		unsigned long tmp = simple_strtoul(argv[2], NULL, 16);
		fdt_set_boot_cpuid_phys(working_fdt, tmp);

	/*
	 * memory command
	 */
	} else if (strncmp(argv[1], "me", 2) == 0) {
		uint64_t addr, size;
		int err;
		addr = simple_strtoull(argv[2], NULL, 16);
		size = simple_strtoull(argv[3], NULL, 16);
		err = fdt_fixup_memory(working_fdt, addr, size);
		if (err < 0)
			return err;

	/*
	 * mem reserve commands
	 */
	} else if (strncmp(argv[1], "rs", 2) == 0) {
		if (argv[2][0] == 'p') {
			uint64_t addr, size;
			int total = fdt_num_mem_rsv(working_fdt);
			int j, err;
			printf("index\t\t   start\t\t    size\n");
			printf("-------------------------------"
				"-----------------\n");
			for (j = 0; j < total; j++) {
				err = fdt_get_mem_rsv(working_fdt, j, &addr, &size);
				if (err < 0) {
					printf("libfdt fdt_get_mem_rsv():  %s\n",
							fdt_strerror(err));
					return err;
				}
				printf("    %x\t%08x%08x\t%08x%08x\n", j,
					(u32)(addr >> 32),
					(u32)(addr & 0xffffffff),
					(u32)(size >> 32),
					(u32)(size & 0xffffffff));
			}
		} else if (argv[2][0] == 'a') {
/**
 * boot_relocate_fdt - relocate flat device tree
 * @lmb: pointer to lmb handle, will be used for memory mgmt
 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
 * @of_size: pointer to a ulong variable, will hold fdt length
 *
 * boot_relocate_fdt() allocates a region of memory within the bootmap and
 * relocates the of_flat_tree into that region, even if the fdt is already in
 * the bootmap.  It also expands the size of the fdt by CONFIG_SYS_FDT_PAD
 * bytes.
 *
 * of_flat_tree and of_size are set to final (after relocation) values
 *
 * returns:
 *      0 - success
 *      1 - failure
 */
int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size)
{
	void	*fdt_blob = *of_flat_tree;
	void	*of_start = NULL;
	char	*fdt_high;
	ulong	of_len = 0;
	int	err;
	int	disable_relocation = 0;

	/* nothing to do */
	if (*of_size == 0)
		return 0;

	if (fdt_check_header(fdt_blob) != 0) {
		fdt_error("image is not a fdt");
		goto error;
	}

	/* position on a 4K boundary before the alloc_current */
	/* Pad the FDT by a specified amount */
	of_len = *of_size + CONFIG_SYS_FDT_PAD;

	/* If fdt_high is set use it to select the relocation address */
	fdt_high = getenv("fdt_high");
	if (fdt_high) {
		void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16);

		if (((ulong) desired_addr) == ~0UL) {
			/* All ones means use fdt in place */
			of_start = fdt_blob;
			lmb_reserve(lmb, (ulong)of_start, of_len);
			disable_relocation = 1;
		} else if (desired_addr) {
			of_start =
			    (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
							   (ulong)desired_addr);
			if (of_start == NULL) {
				puts("Failed using fdt_high value for Device Tree");
				goto error;
			}
		} else {
			of_start =
			    (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000);
		}
	} else {
		of_start =
		    (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
						   getenv_bootm_mapsize()
						   + getenv_bootm_low());
	}

	if (of_start == NULL) {
		puts("device tree - allocation error\n");
		goto error;
	}

	if (disable_relocation) {
		/*
		 * We assume there is space after the existing fdt to use
		 * for padding
		 */
		fdt_set_totalsize(of_start, of_len);
		printf("   Using Device Tree in place at %p, end %p\n",
		       of_start, of_start + of_len - 1);
	} else {
		debug("## device tree at %p ... %p (len=%ld [0x%lX])\n",
		      fdt_blob, fdt_blob + *of_size - 1, of_len, of_len);

		printf("   Loading Device Tree to %p, end %p ... ",
		       of_start, of_start + of_len - 1);

		err = fdt_open_into(fdt_blob, of_start, of_len);
		if (err != 0) {
			fdt_error("fdt move failed");
			goto error;
		}
		puts("OK\n");
	}

	*of_flat_tree = of_start;
	*of_size = of_len;

	set_working_fdt_addr((ulong)*of_flat_tree);
	return 0;

error:
	return 1;
}
Exemple #9
0
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	const void *os_hdr;
	int ret;

	memset((void *)&images, 0, sizeof(images));
	images.verify = getenv_yesno("verify");

	boot_start_lmb(&images);

	bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");

	/* get kernel image header, start address and length */
	os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
			&images, &images.os.image_start, &images.os.image_len);
	if (images.os.image_len == 0) {
		puts("ERROR: can't get kernel image!\n");
		return 1;
	}

	/* get image parameters */
	switch (genimg_get_format(os_hdr)) {
	case IMAGE_FORMAT_LEGACY:
		images.os.type = image_get_type(os_hdr);
		images.os.comp = image_get_comp(os_hdr);
		images.os.os = image_get_os(os_hdr);

		images.os.end = image_get_image_end(os_hdr);
		images.os.load = image_get_load(os_hdr);
		break;
#if defined(CONFIG_FIT)
	case IMAGE_FORMAT_FIT:
		if (fit_image_get_type(images.fit_hdr_os,
					images.fit_noffset_os, &images.os.type)) {
			puts("Can't get image type!\n");
			bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
			return 1;
		}

		if (fit_image_get_comp(images.fit_hdr_os,
					images.fit_noffset_os, &images.os.comp)) {
			puts("Can't get image compression!\n");
			bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
			return 1;
		}

		if (fit_image_get_os(images.fit_hdr_os,
					images.fit_noffset_os, &images.os.os)) {
			puts("Can't get image OS!\n");
			bootstage_error(BOOTSTAGE_ID_FIT_OS);
			return 1;
		}

		images.os.end = fit_get_end(images.fit_hdr_os);

		if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
					&images.os.load)) {
			puts("Can't get image load address!\n");
			bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
			return 1;
		}
		break;
#endif
	default:
		puts("ERROR: unknown image format type!\n");
		return 1;
	}

	/* find kernel entry point */
	if (images.legacy_hdr_valid) {
		images.ep = image_get_ep(&images.legacy_hdr_os_copy);
#if defined(CONFIG_FIT)
	} else if (images.fit_uname_os) {
		ret = fit_image_get_entry(images.fit_hdr_os,
					  images.fit_noffset_os, &images.ep);
		if (ret) {
			puts("Can't get entry point property!\n");
			return 1;
		}
#endif
	} else {
		puts("Could not find kernel entry point!\n");
		return 1;
	}

	if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
		images.os.load = images.os.image_start;
		images.ep += images.os.load;
	}

	if (((images.os.type == IH_TYPE_KERNEL) ||
	     (images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
	     (images.os.type == IH_TYPE_MULTI)) &&
	    (images.os.os == IH_OS_LINUX)) {
		/* find ramdisk */
		ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
				&images.rd_start, &images.rd_end);
		if (ret) {
			puts("Ramdisk image is corrupt or invalid\n");
			return 1;
		}

#if defined(CONFIG_OF_LIBFDT)
		/* find flattened device tree */
		ret = boot_get_fdt(flag, argc, argv, &images,
				   &images.ft_addr, &images.ft_len);
		if (ret) {
			puts("Could not find a valid device tree\n");
			return 1;
		}

		set_working_fdt_addr(images.ft_addr);
#endif
	}

	images.os.start = (ulong)os_hdr;
	images.state = BOOTM_STATE_START;

	return 0;
}
/*
 * Flattened Device Tree command, see the help for parameter definitions.
 */
int do_fdt (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
	if (argc < 2) {
		cmd_usage(cmdtp);
		return 1;
	}

	/********************************************************************
	 * Set the address of the fdt
	 ********************************************************************/
	if (argv[1][0] == 'a') {
		unsigned long addr;
		/*
		 * Set the address [and length] of the fdt.
		 */
		if (argc == 2) {
			if (!fdt_valid()) {
				return 1;
			}
			printf("The address of the fdt is %p\n", working_fdt);
			return 0;
		}

		addr = simple_strtoul(argv[2], NULL, 16);
		set_working_fdt_addr((void *)addr);

		if (!fdt_valid()) {
			return 1;
		}

		if (argc >= 4) {
			int  len;
			int  err;
			/*
			 * Optional new length
			 */
			len = simple_strtoul(argv[3], NULL, 16);
			if (len < fdt_totalsize(working_fdt)) {
				printf ("New length %d < existing length %d, "
					"ignoring.\n",
					len, fdt_totalsize(working_fdt));
			} else {
				/*
				 * Open in place with a new length.
				 */
				err = fdt_open_into(working_fdt, working_fdt, len);
				if (err != 0) {
					printf ("libfdt fdt_open_into(): %s\n",
						fdt_strerror(err));
				}
			}
		}

	/********************************************************************
	 * Move the working_fdt
	 ********************************************************************/
	} else if (strncmp(argv[1], "mo", 2) == 0) {
		struct fdt_header *newaddr;
		int  len;
		int  err;

		if (argc < 4) {
			cmd_usage(cmdtp);
			return 1;
		}

		/*
		 * Set the address and length of the fdt.
		 */
		working_fdt = (struct fdt_header *)simple_strtoul(argv[2], NULL, 16);
		if (!fdt_valid()) {
			return 1;
		}

		newaddr = (struct fdt_header *)simple_strtoul(argv[3],NULL,16);

		/*
		 * If the user specifies a length, use that.  Otherwise use the
		 * current length.
		 */
		if (argc <= 4) {
			len = fdt_totalsize(working_fdt);
		} else {
			len = simple_strtoul(argv[4], NULL, 16);
			if (len < fdt_totalsize(working_fdt)) {
				printf ("New length 0x%X < existing length "
					"0x%X, aborting.\n",
					len, fdt_totalsize(working_fdt));
				return 1;
			}
		}

		/*
		 * Copy to the new location.
		 */
		err = fdt_open_into(working_fdt, newaddr, len);
		if (err != 0) {
			printf ("libfdt fdt_open_into(): %s\n",
				fdt_strerror(err));
			return 1;
		}
		working_fdt = newaddr;

	/********************************************************************
	 * Make a new node
	 ********************************************************************/
	} else if (strncmp(argv[1], "mk", 2) == 0) {
		char *pathp;		/* path */
		char *nodep;		/* new node to add */
		int  nodeoffset;	/* node offset from libfdt */
		int  err;

		/*
		 * Parameters: Node path, new node to be appended to the path.
		 */
		if (argc < 4) {
			cmd_usage(cmdtp);
			return 1;
		}

		pathp = argv[2];
		nodep = argv[3];

		nodeoffset = fdt_path_offset (working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}
		err = fdt_add_subnode(working_fdt, nodeoffset, nodep);
		if (err < 0) {
			printf ("libfdt fdt_add_subnode(): %s\n",
				fdt_strerror(err));
			return 1;
		}

	/********************************************************************
	 * Set the value of a property in the working_fdt.
	 ********************************************************************/
	} else if (argv[1][0] == 's') {
		char *pathp;		/* path */
		char *prop;		/* property */
		int  nodeoffset;	/* node offset from libfdt */
		static char data[SCRATCHPAD];	/* storage for the property */
		int  len;		/* new length of the property */
		int  ret;		/* return value */

		/*
		 * Parameters: Node path, property, optional value.
		 */
		if (argc < 4) {
			cmd_usage(cmdtp);
			return 1;
		}

		pathp  = argv[2];
		prop   = argv[3];
		if (argc == 4) {
			len = 0;
		} else {
			ret = fdt_parse_prop(&argv[4], argc - 4, data, &len);
			if (ret != 0)
				return ret;
		}

		nodeoffset = fdt_path_offset (working_fdt, pathp);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}

		ret = fdt_setprop(working_fdt, nodeoffset, prop, data, len);
		if (ret < 0) {
			printf ("libfdt fdt_setprop(): %s\n", fdt_strerror(ret));
			return 1;
		}

	/********************************************************************
	 * Print (recursive) / List (single level)
	 ********************************************************************/
	} else if ((argv[1][0] == 'p') || (argv[1][0] == 'l')) {
		int depth = MAX_LEVEL;	/* how deep to print */
		char *pathp;		/* path */
		char *prop;		/* property */
		int  ret;		/* return value */
		static char root[2] = "/";

		/*
		 * list is an alias for print, but limited to 1 level
		 */
		if (argv[1][0] == 'l') {
			depth = 1;
		}

		/*
		 * Get the starting path.  The root node is an oddball,
		 * the offset is zero and has no name.
		 */
		if (argc == 2)
			pathp = root;
		else
			pathp = argv[2];
		if (argc > 3)
			prop = argv[3];
		else
			prop = NULL;

		ret = fdt_print(pathp, prop, depth);
		if (ret != 0)
			return ret;

	/********************************************************************
	 * Remove a property/node
	 ********************************************************************/
	} else if (strncmp(argv[1], "rm", 2) == 0) {
		int  nodeoffset;	/* node offset from libfdt */
		int  err;

		/*
		 * Get the path.  The root node is an oddball, the offset
		 * is zero and has no name.
		 */
		nodeoffset = fdt_path_offset (working_fdt, argv[2]);
		if (nodeoffset < 0) {
			/*
			 * Not found or something else bad happened.
			 */
			printf ("libfdt fdt_path_offset() returned %s\n",
				fdt_strerror(nodeoffset));
			return 1;
		}
		/*
		 * Do the delete.  A fourth parameter means delete a property,
		 * otherwise delete the node.
		 */
		if (argc > 3) {
			err = fdt_delprop(working_fdt, nodeoffset, argv[3]);
			if (err < 0) {
				printf("libfdt fdt_delprop():  %s\n",
					fdt_strerror(err));
				return err;
			}
		} else {
			err = fdt_del_node(working_fdt, nodeoffset);
			if (err < 0) {
				printf("libfdt fdt_del_node():  %s\n",
					fdt_strerror(err));
				return err;
			}
		}

	/********************************************************************
	 * Display header info
	 ********************************************************************/
	} else if (argv[1][0] == 'h') {
		u32 version = fdt_version(working_fdt);
		printf("magic:\t\t\t0x%x\n", fdt_magic(working_fdt));
		printf("totalsize:\t\t0x%x (%d)\n", fdt_totalsize(working_fdt),
		       fdt_totalsize(working_fdt));
		printf("off_dt_struct:\t\t0x%x\n",
		       fdt_off_dt_struct(working_fdt));
		printf("off_dt_strings:\t\t0x%x\n",
		       fdt_off_dt_strings(working_fdt));
		printf("off_mem_rsvmap:\t\t0x%x\n",
		       fdt_off_mem_rsvmap(working_fdt));
		printf("version:\t\t%d\n", version);
		printf("last_comp_version:\t%d\n",
		       fdt_last_comp_version(working_fdt));
		if (version >= 2)
			printf("boot_cpuid_phys:\t0x%x\n",
				fdt_boot_cpuid_phys(working_fdt));
		if (version >= 3)
			printf("size_dt_strings:\t0x%x\n",
				fdt_size_dt_strings(working_fdt));
		if (version >= 17)
			printf("size_dt_struct:\t\t0x%x\n",
				fdt_size_dt_struct(working_fdt));
		printf("number mem_rsv:\t\t0x%x\n",
		       fdt_num_mem_rsv(working_fdt));
		printf("\n");

	/********************************************************************
	 * Set boot cpu id
	 ********************************************************************/
	} else if (strncmp(argv[1], "boo", 3) == 0) {
		unsigned long tmp = simple_strtoul(argv[2], NULL, 16);
		fdt_set_boot_cpuid_phys(working_fdt, tmp);

	/********************************************************************
	 * memory command
	 ********************************************************************/
	} else if (strncmp(argv[1], "me", 2) == 0) {
		uint64_t addr, size;
		int err;
		addr = simple_strtoull(argv[2], NULL, 16);
		size = simple_strtoull(argv[3], NULL, 16);
		err = fdt_fixup_memory(working_fdt, addr, size);
		if (err < 0)
			return err;

	/********************************************************************
	 * mem reserve commands
	 ********************************************************************/
	} else if (strncmp(argv[1], "rs", 2) == 0) {
		if (argv[2][0] == 'p') {
			uint64_t addr, size;
			int total = fdt_num_mem_rsv(working_fdt);
			int j, err;
			printf("index\t\t   start\t\t    size\n");
			printf("-------------------------------"
				"-----------------\n");
			for (j = 0; j < total; j++) {
				err = fdt_get_mem_rsv(working_fdt, j, &addr, &size);
				if (err < 0) {
					printf("libfdt fdt_get_mem_rsv():  %s\n",
							fdt_strerror(err));
					return err;
				}
				printf("    %x\t%08x%08x\t%08x%08x\n", j,
					(u32)(addr >> 32),
					(u32)(addr & 0xffffffff),
					(u32)(size >> 32),
					(u32)(size & 0xffffffff));
			}
		} else if (argv[2][0] == 'a') {
Exemple #11
0
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	void		*os_hdr;
	int		ret;
#if defined(CONFIG_ANDROID_IMG)
	void	*temp_os_hdr = NULL;
	boot_img_hdr *temp_android_hdr = NULL;
#endif

	memset ((void *)&images, 0, sizeof (images));
	images.verify = getenv_yesno ("verify");

	bootm_start_lmb();

	/* get kernel image header, start address and length */
	os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,
			&images, &images.os.image_start, &images.os.image_len);
	if (images.os.image_len == 0) {
		puts ("ERROR: can't get kernel image!\n");
		return 1;
	}

	/* get image parameters */
	switch (genimg_get_format (os_hdr)) {
	case IMAGE_FORMAT_LEGACY:
		images.os.type = image_get_type (os_hdr);
		images.os.comp = image_get_comp (os_hdr);
		images.os.os = image_get_os (os_hdr);

		images.os.end = image_get_image_end (os_hdr);
		images.os.load = image_get_load (os_hdr);
		break;
#if defined(CONFIG_FIT)
	case IMAGE_FORMAT_FIT:
		if (fit_image_get_type (images.fit_hdr_os,
					images.fit_noffset_os, &images.os.type)) {
			puts ("Can't get image type!\n");
			show_boot_progress (-109);
			return 1;
		}

		if (fit_image_get_comp (images.fit_hdr_os,
					images.fit_noffset_os, &images.os.comp)) {
			puts ("Can't get image compression!\n");
			show_boot_progress (-110);
			return 1;
		}

		if (fit_image_get_os (images.fit_hdr_os,
					images.fit_noffset_os, &images.os.os)) {
			puts ("Can't get image OS!\n");
			show_boot_progress (-111);
			return 1;
		}

		images.os.end = fit_get_end (images.fit_hdr_os);

		if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os,
					&images.os.load)) {
			puts ("Can't get image load address!\n");
			show_boot_progress (-112);
			return 1;
		}
		break;
#endif
#if defined(CONFIG_ANDROID_IMG)
	case IMAGE_FORMAT_ANDROID:
		temp_os_hdr = os_hdr + 0x800;//shift 0x800 Android format head
		temp_android_hdr = (void *) os_hdr;
		images.os.type = image_get_type (temp_os_hdr);
		images.os.comp = image_get_comp (temp_os_hdr);
		images.os.os = image_get_os (temp_os_hdr);

		images.os.end = image_get_image_end (temp_os_hdr);
		images.os.load = image_get_load (temp_os_hdr);
		images.rd_start = ((ulong)temp_android_hdr->kernel_size + 0x800 + (ulong)os_hdr 
			+  ((ulong)temp_android_hdr->page_size - 1)) & (~((ulong)temp_android_hdr->page_size - 1));
		images.rd_end = images.rd_start + (ulong)temp_android_hdr->ramdisk_size;
		printf("    Ramdisk start addr = 0x%x, len = 0x%x\n",images.rd_start,temp_android_hdr->ramdisk_size );
#if defined(CONFIG_OF_LIBFDT)
		if(images.ft_len = (ulong)temp_android_hdr->second_size)
		{
			fdt_addr = (images.rd_end
				+ ((ulong)temp_android_hdr->page_size - 1)) & (~((ulong)temp_android_hdr->page_size - 1));
			/*get_multi_dt_entry, compatible with single dt*/
			fdt_addr = get_multi_dt_entry(fdt_addr);
			images.ft_addr = (char *)fdt_addr;
			images.ft_len = fdt_totalsize(fdt_addr);
			printf("    Flat device tree start addr = 0x%x, len = 0x%x magic=0x%x\n",
			(int *)images.ft_addr,images.ft_len,*(unsigned int*)images.ft_addr);
		}
#endif
		break;
#endif
	default:
		puts ("ERROR: unknown image format type!\n");
		return 1;
	}

	/* find kernel entry point */
	if (images.legacy_hdr_valid) {
		images.ep = image_get_ep (&images.legacy_hdr_os_copy);
#if defined(CONFIG_FIT)
	} else if (images.fit_uname_os) {
		ret = fit_image_get_entry (images.fit_hdr_os,
				images.fit_noffset_os, &images.ep);
		if (ret) {
			puts ("Can't get entry point property!\n");
			return 1;
		}
#endif
	} else {
		puts ("Could not find kernel entry point!\n");
		return 1;
	}

	if (((images.os.type == IH_TYPE_KERNEL) ||
	     (images.os.type == IH_TYPE_MULTI)) &&
	    (images.os.os == IH_OS_LINUX)) {
		/* find ramdisk */
#ifndef CONFIG_ANDROID_IMG
#if defined(CONFIG_AML_MESON_FIT)
		//call boot_get_ramdisk() here for get ramdisk start addr
		boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,
						&images.rd_start, &images.rd_end);
#endif
#endif

#if defined(CONFIG_ANDROID_IMG)
		if(!images.rd_start)
#endif
		{
			ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,
					&images.rd_start, &images.rd_end);
			if (ret) {
				puts ("Ramdisk image is corrupt or invalid\n");
				return 1;
			}
		}

#if defined(CONFIG_OF_LIBFDT)
		/* find flattened device tree */
#if defined(CONFIG_ANDROID_IMG)
		if(!images.ft_addr)
#endif
		{
			ret = boot_get_fdt (flag, argc, argv, &images,
					    &images.ft_addr, &images.ft_len);
			if (ret) {
				puts ("Could not find a valid device tree\n");
				return 1;
			}
		}

		set_working_fdt_addr(images.ft_addr);
#endif
	}

#if defined(CONFIG_ANDROID_IMG)
	images.os.start = (ulong)temp_os_hdr;
#else
	images.os.start = (ulong)os_hdr;
#endif
	
	images.state = BOOTM_STATE_START;

	return 0;
}
Exemple #12
0
void dump_fdt(unsigned long fdt_addr)
{
	set_working_fdt_addr((void *)fdt_addr);
	fdt_print("/", NULL, 32);
}